Last active
September 26, 2022 19:39
-
-
Save AmosLewis/d69134cec46de50083d7e50c980ee258 to your computer and use it in GitHub Desktop.
gpt2_linalg
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
import tempfile | |
import torch_mlir | |
def prepare_sentence_tokens(hf_model: str, sentence: str): | |
tokenizer = AutoTokenizer.from_pretrained(hf_model) | |
return torch.tensor([tokenizer.encode(sentence)]) | |
class HfMaskedLM(torch.nn.Module): | |
def __init__(self, model_name: str): | |
super().__init__() | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_name, # The pretrained model name. | |
# The number of output labels--2 for binary classification. | |
num_labels=2, | |
# Whether the model returns attentions weights. | |
output_attentions=False, | |
# Whether the model returns all hidden-states. | |
output_hidden_states=False, | |
torchscript=True, | |
) | |
self.model.eval() | |
def forward(self, tokens): | |
return self.model.forward(tokens)[0] | |
hf_minilm_model = "gpt2" | |
test_input = prepare_sentence_tokens(hf_minilm_model, | |
"this project is very interesting") | |
model = HfMaskedLM(hf_minilm_model) | |
print(model(test_input)) | |
fx_g = make_fx( | |
model, | |
decomposition_table=get_decompositions( | |
[ | |
torch.ops.aten.embedding_dense_backward, | |
torch.ops.aten.native_layer_norm_backward, | |
torch.ops.aten.slice_backward, | |
torch.ops.aten.select_backward, | |
torch.ops.aten.norm.ScalarOpt_dim, | |
torch.ops.aten.native_group_norm, | |
torch.ops.aten.upsample_bilinear2d.vec, | |
torch.ops.aten.split.Tensor, | |
torch.ops.aten.split_with_sizes, | |
] | |
), | |
)(test_input) | |
# print(fx_g.graph) | |
fx_g.graph.set_codegen(torch.fx.graph.CodeGen()) | |
fx_g.recompile() | |
def strip_overloads(gm): | |
""" | |
Modifies the target of graph nodes in :attr:`gm` to strip overloads. | |
Args: | |
gm(fx.GraphModule): The input Fx graph module to be modified | |
""" | |
for node in gm.graph.nodes: | |
if isinstance(node.target, torch._ops.OpOverload): | |
node.target = node.target.overloadpacket | |
gm.recompile() | |
strip_overloads(fx_g) | |
ts_g = torch.jit.script(fx_g) | |
module = torch_mlir.compile( | |
ts_g, | |
(test_input), | |
torch_mlir.OutputType.LINALG_ON_TENSORS, | |
use_tracing=True, | |
verbose=False, | |
) | |
# module = torch_mlir.compile( | |
# ts_g, | |
# (test_input), | |
# torch_mlir.OutputType.TOSA, | |
# use_tracing=True, | |
# verbose=False, | |
# ) | |
# module.dump() | |
from shark.shark_inference import SharkInference | |
mlir_model = module | |
func_name = "forward" | |
shark_module = SharkInference( | |
mlir_model, func_name, device="cpu", mlir_dialect="linalg" | |
) | |
shark_module.compile() | |
def shark_result(x): | |
x_ny = x.detach().numpy() | |
inputs = (x_ny,) | |
result = shark_module.forward(inputs) | |
return torch.from_numpy(result) | |
observed_out = shark_result(test_input) | |
print(observed_out) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment