Last active
December 19, 2022 07:11
-
-
Save AmosLewis/df6feb5c9618bd4b5a843c3ce490a2f9 to your computer and use it in GitHub Desktop.
deberta
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
import tempfile | |
import torch_mlir | |
def prepare_sentence_tokens(hf_model: str, sentence: str): | |
tokenizer = AutoTokenizer.from_pretrained(hf_model) | |
return torch.tensor([tokenizer.encode(sentence)]) | |
class HfMaskedLM(torch.nn.Module): | |
def __init__(self, model_name: str): | |
super().__init__() | |
self.model = AutoModelForSequenceClassification.from_pretrained( | |
model_name, # The pretrained model name. | |
# The number of output labels--2 for binary classification. | |
num_labels=2, | |
# Whether the model returns attentions weights. | |
output_attentions=False, | |
# Whether the model returns all hidden-states. | |
output_hidden_states=False, | |
torchscript=True, | |
) | |
self.model.eval() | |
def forward(self, tokens): | |
return self.model.forward(tokens)[0] | |
#hf_minilm_model = "hf-internal-testing/tiny-random-deberta" | |
hf_minilm_model = "microsoft/deberta-v3-base" | |
test_input = torch.randint(2, (1, 128)) | |
model = HfMaskedLM(hf_minilm_model) | |
print("model(test_input): ") | |
print(model(test_input)) | |
fx_g = make_fx( | |
model, | |
decomposition_table=get_decompositions( | |
[ | |
torch.ops.aten.embedding_dense_backward, | |
torch.ops.aten.native_layer_norm_backward, | |
torch.ops.aten.slice_backward, | |
torch.ops.aten.select_backward, | |
torch.ops.aten.norm.ScalarOpt_dim, | |
torch.ops.aten.native_group_norm, | |
torch.ops.aten.upsample_bilinear2d.vec, | |
torch.ops.aten.split.Tensor, | |
torch.ops.aten.split_with_sizes, | |
] | |
), | |
)(test_input) | |
# print(fx_g.graph) | |
fx_g.graph.set_codegen(torch.fx.graph.CodeGen()) | |
fx_g.recompile() | |
def strip_overloads(gm): | |
""" | |
Modifies the target of graph nodes in :attr:`gm` to strip overloads. | |
Args: | |
gm(fx.GraphModule): The input Fx graph module to be modified | |
""" | |
for node in gm.graph.nodes: | |
if isinstance(node.target, torch._ops.OpOverload): | |
node.target = node.target.overloadpacket | |
gm.recompile() | |
strip_overloads(fx_g) | |
ts_g = torch.jit.script(fx_g) | |
# module = torch_mlir.compile( | |
# ts_g, | |
# (test_input), | |
# torch_mlir.OutputType.LINALG_ON_TENSORS, | |
# use_tracing=True, | |
# verbose=False, | |
# ) | |
module = torch_mlir.compile( | |
ts_g, | |
(test_input), | |
torch_mlir.OutputType.TOSA, | |
use_tracing=True, | |
verbose=False, | |
) | |
module.dump() | |
from shark.shark_inference import SharkInference | |
mlir_model = module | |
func_name = "forward" | |
shark_module = SharkInference( | |
mlir_model, func_name, device="cpu", mlir_dialect="tosa" | |
) | |
shark_module.compile() | |
def shark_result(x): | |
x_ny = x.detach().numpy() | |
inputs = (x_ny,) | |
result = shark_module.forward(inputs) | |
return torch.from_numpy(result) | |
observed_out = shark_result(test_input) | |
print(observed_out) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Copy op Error:
Fixed by add llvm/torch-mlir#1592