Created
August 10, 2024 00:16
-
-
Save AmosLewis/ee29f6178696688d19057c80586fab5b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hal.executable public @torch_jit_dispatch_23 { | |
hal.executable.variant public @embedded_elf_x86_64 target(<"llvm-cpu", "embedded-elf-x86_64", {cpu = "generic", cpu_features = "", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 16 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}>) { | |
hal.executable.export public @torch_jit_dispatch_23_quantized_batch_matmul_56x56x512x128_i8xi8xi32xi32xi32 ordinal(0) layout(#hal.pipeline.layout<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer, ReadOnly>, <2, storage_buffer>], flags = Indirect>]>) attributes {hal.interface.bindings = [#hal.interface.binding<0, 0>, #hal.interface.binding<0, 1>, #hal.interface.binding<0, 2>]} { | |
^bb0(%arg0: !hal.device): | |
%x, %y, %z = flow.dispatch.workgroup_count_from_slice | |
hal.return %x, %y, %z : index, index, index | |
} | |
builtin.module { | |
func.func @torch_jit_dispatch_23_quantized_batch_matmul_56x56x512x128_i8xi8xi32xi32xi32() { | |
%c0_i32 = arith.constant 0 : i32 | |
%cst = arith.constant 4.8828125E-4 : f32 | |
%cst_0 = arith.constant 6.250000e-02 : f32 | |
%cst_1 = arith.constant 0.000000e+00 : f32 | |
%cst_2 = arith.constant -1.280000e+02 : f32 | |
%cst_3 = arith.constant 1.270000e+02 : f32 | |
%cst_4 = arith.constant 1.41421354 : f32 | |
%cst_5 = arith.constant 1.000000e+00 : f32 | |
%cst_6 = arith.constant 5.000000e-01 : f32 | |
%cst_7 = arith.constant 3.125000e-02 : f32 | |
%c401408 = arith.constant 401408 : index | |
%c2408448 = arith.constant 2408448 : index | |
%c99122880 = arith.constant 99122880 : index | |
%c802816 = arith.constant 802816 : index | |
%0 = hal.interface.binding.subspan layout(<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer, ReadOnly>, <2, storage_buffer>], flags = Indirect>]>) set(0) binding(0) alignment(64) offset(%c401408) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<56x56x128xi8>> | |
%1 = hal.interface.binding.subspan layout(<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer, ReadOnly>, <2, storage_buffer>], flags = Indirect>]>) set(0) binding(0) alignment(64) offset(%c2408448) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<56x128x512xi8>> | |
%2 = hal.interface.binding.subspan layout(<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer, ReadOnly>, <2, storage_buffer>], flags = Indirect>]>) set(0) binding(1) alignment(64) offset(%c99122880) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<512xf32>> | |
%3 = hal.interface.binding.subspan layout(<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer, ReadOnly>, <2, storage_buffer>], flags = Indirect>]>) set(0) binding(2) alignment(64) offset(%c802816) : !flow.dispatch.tensor<writeonly:tensor<56x56x512xi8>> | |
%4 = flow.dispatch.tensor.load %0, offsets = [0, 0, 0], sizes = [56, 56, 128], strides = [1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<56x56x128xi8>> -> tensor<56x56x128xi8> | |
%5 = flow.dispatch.tensor.load %1, offsets = [0, 0, 0], sizes = [56, 128, 512], strides = [1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<56x128x512xi8>> -> tensor<56x128x512xi8> | |
%6 = flow.dispatch.tensor.load %2, offsets = [0], sizes = [512], strides = [1] : !flow.dispatch.tensor<readonly:tensor<512xf32>> -> tensor<512xf32> | |
%7 = tensor.empty() : tensor<56x56x512xi8> | |
%8 = tensor.empty() : tensor<56x56x512xi32> | |
%9 = linalg.fill ins(%c0_i32 : i32) outs(%8 : tensor<56x56x512xi32>) -> tensor<56x56x512xi32> | |
%10 = linalg.quantized_batch_matmul ins(%4, %5, %c0_i32, %c0_i32 : tensor<56x56x128xi8>, tensor<56x128x512xi8>, i32, i32) outs(%9 : tensor<56x56x512xi32>) -> tensor<56x56x512xi32> | |
%11 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%6, %10 : tensor<512xf32>, tensor<56x56x512xi32>) outs(%7 : tensor<56x56x512xi8>) { | |
^bb0(%in: f32, %in_8: i32, %out: i8): | |
%12 = arith.sitofp %in_8 : i32 to f32 | |
%13 = arith.mulf %12, %cst : f32 | |
%14 = arith.addf %in, %13 : f32 | |
%15 = arith.divf %14, %cst_0 : f32 | |
%16 = math.roundeven %15 : f32 | |
%17 = arith.addf %16, %cst_1 : f32 | |
%18 = arith.maximumf %17, %cst_2 : f32 | |
%19 = arith.minimumf %18, %cst_3 : f32 | |
%20 = arith.fptosi %19 : f32 to i8 | |
%21 = arith.extsi %20 : i8 to i32 | |
%22 = arith.sitofp %21 : i32 to f32 | |
%23 = arith.mulf %22, %cst_0 : f32 | |
%24 = arith.divf %23, %cst_4 : f32 | |
%25 = math.erf %24 : f32 | |
%26 = arith.addf %25, %cst_5 : f32 | |
%27 = arith.mulf %23, %26 : f32 | |
%28 = arith.mulf %27, %cst_6 : f32 | |
%29 = arith.divf %28, %cst_7 : f32 | |
%30 = math.roundeven %29 : f32 | |
%31 = arith.addf %30, %cst_1 : f32 | |
%32 = arith.maximumf %31, %cst_2 : f32 | |
%33 = arith.minimumf %32, %cst_3 : f32 | |
%34 = arith.fptosi %33 : f32 to i8 | |
linalg.yield %34 : i8 | |
} -> tensor<56x56x512xi8> | |
flow.dispatch.tensor.store %11, %3, offsets = [0, 0, 0], sizes = [56, 56, 512], strides = [1, 1, 1] : tensor<56x56x512xi8> -> !flow.dispatch.tensor<writeonly:tensor<56x56x512xi8>> | |
return | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment