Created
March 1, 2024 07:32
-
-
Save AmosLewis/f498809d2f8193820b6a53e20873d185 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#loc = loc(unknown) | |
module attributes {torch.debug_module_name = "BernoulliModule"} { | |
func.func @forward(%arg0: !torch.vtensor<[?,?,?],f64> loc(unknown)) -> (!torch.vtensor<[],f64>, !torch.vtensor<[],f64>) { | |
%true = torch.constant.bool true loc(#loc) | |
%false = torch.constant.bool false loc(#loc) | |
%int7 = torch.constant.int 7 loc(#loc) | |
%int2 = torch.constant.int 2 loc(#loc) | |
%int1 = torch.constant.int 1 loc(#loc) | |
%none = torch.constant.none loc(#loc) | |
%float0.000000e00 = torch.constant.float 0.000000e+00 loc(#loc4) | |
%float1.000000e00 = torch.constant.float 1.000000e+00 loc(#loc) | |
%0 = torch.vtensor.literal(dense<0.000000e+00> : tensor<f64>) : !torch.vtensor<[],f64> loc(#loc4) | |
%int0 = torch.constant.int 0 loc(#loc) | |
%1 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc4) | |
%2 = torch.aten.size.int %arg0, %int1 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc4) | |
%3 = torch.aten.size.int %arg0, %int2 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc4) | |
%4 = torch.prim.ListConstruct %1, %2, %3 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int> loc(#loc4) | |
%5 = torch.aten.broadcast_to %0, %4 : !torch.vtensor<[],f64>, !torch.list<int> -> !torch.vtensor<[?,?,?],f64> loc(#loc4) | |
%6 = torch.aten.uniform %5, %float0.000000e00, %float1.000000e00, %none : !torch.vtensor<[?,?,?],f64>, !torch.float, !torch.float, !torch.none -> !torch.vtensor<[?,?,?],f64> loc(#loc4) | |
%7 = torch.aten.lt.Tensor %6, %arg0 : !torch.vtensor<[?,?,?],f64>, !torch.vtensor<[?,?,?],f64> -> !torch.vtensor<[?,?,?],i1> loc(#loc4) | |
%8 = torch.aten.to.dtype %7, %int7, %false, %false, %none : !torch.vtensor<[?,?,?],i1>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f64> loc(#loc4) | |
%9 = torch.aten.sum %8, %none : !torch.vtensor<[?,?,?],f64>, !torch.none -> !torch.vtensor<[],f64> loc(#loc5) | |
%10 = torch.aten.numel %8 : !torch.vtensor<[?,?,?],f64> -> !torch.int loc(#loc5) | |
%11 = torch.aten.div.Scalar %9, %10 : !torch.vtensor<[],f64>, !torch.int -> !torch.vtensor<[],f64> loc(#loc5) | |
%12 = torch.prim.ListConstruct %int0, %int1, %int2 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int> loc(#loc6) | |
%13 = torch.aten.sum.dim_IntList %8, %12, %true, %none : !torch.vtensor<[?,?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f64> loc(#loc6) | |
%14 = torch.aten.size.int %8, %int0 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc6) | |
%15 = torch.aten.mul.int %int1, %14 : !torch.int, !torch.int -> !torch.int loc(#loc6) | |
%16 = torch.aten.size.int %8, %int1 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc6) | |
%17 = torch.aten.mul.int %15, %16 : !torch.int, !torch.int -> !torch.int loc(#loc6) | |
%18 = torch.aten.size.int %8, %int2 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc6) | |
%19 = torch.aten.mul.int %17, %18 : !torch.int, !torch.int -> !torch.int loc(#loc6) | |
%20 = torch.aten.div.Scalar %13, %19 : !torch.vtensor<[1,1,1],f64>, !torch.int -> !torch.vtensor<[1,1,1],f64> loc(#loc6) | |
%21 = torch.aten.sub.Tensor %8, %20, %float1.000000e00 : !torch.vtensor<[?,?,?],f64>, !torch.vtensor<[1,1,1],f64>, !torch.float -> !torch.vtensor<[?,?,?],f64> loc(#loc6) | |
%22 = torch.aten.mul.Tensor %21, %21 : !torch.vtensor<[?,?,?],f64>, !torch.vtensor<[?,?,?],f64> -> !torch.vtensor<[?,?,?],f64> loc(#loc6) | |
%23 = torch.aten.sum.dim_IntList %22, %12, %false, %none : !torch.vtensor<[?,?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[],f64> loc(#loc6) | |
%24 = torch.aten.size.int %8, %int0 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc6) | |
%25 = torch.aten.mul.int %int1, %24 : !torch.int, !torch.int -> !torch.int loc(#loc6) | |
%26 = torch.aten.size.int %8, %int1 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc6) | |
%27 = torch.aten.mul.int %25, %26 : !torch.int, !torch.int -> !torch.int loc(#loc6) | |
%28 = torch.aten.size.int %8, %int2 : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int loc(#loc6) | |
%29 = torch.aten.mul.int %27, %28 : !torch.int, !torch.int -> !torch.int loc(#loc6) | |
%30 = torch.aten.Float.Scalar %29 : !torch.int -> !torch.float loc(#loc6) | |
%31 = torch.aten.add %30, %float1.000000e00 : !torch.float, !torch.float -> !torch.float loc(#loc6) | |
%32 = torch.aten.ge.float %31, %float1.000000e00 : !torch.float, !torch.float -> !torch.bool loc(#loc6) | |
torch.runtime.assert %32, "correction value should be less than or equal to productDimSize + 1" loc(#loc6) | |
%33 = torch.aten.sub.float %30, %float1.000000e00 : !torch.float, !torch.float -> !torch.float loc(#loc6) | |
%34 = torch.aten.div.Scalar %23, %33 : !torch.vtensor<[],f64>, !torch.float -> !torch.vtensor<[],f64> loc(#loc6) | |
%35 = torch.aten.sqrt %34 : !torch.vtensor<[],f64> -> !torch.vtensor<[],f64> loc(#loc6) | |
return %11, %35 : !torch.vtensor<[],f64>, !torch.vtensor<[],f64> loc(#loc) | |
} loc(#loc) | |
} loc(#loc) | |
#loc1 = loc("/home/chi/src/torch-mlir/build/tools/torch-mlir/python_packages/torch_mlir/torch_mlir_e2e_test/test_suite/rng.py":193:12) | |
#loc2 = loc("/home/chi/src/torch-mlir/build/tools/torch-mlir/python_packages/torch_mlir/torch_mlir_e2e_test/test_suite/rng.py":194:15) | |
#loc3 = loc("/home/chi/src/torch-mlir/build/tools/torch-mlir/python_packages/torch_mlir/torch_mlir_e2e_test/test_suite/rng.py":195:14) | |
#loc4 = loc("aten::bernoulli"(#loc1)) | |
#loc5 = loc("aten::mean"(#loc2)) | |
#loc6 = loc("aten::std"(#loc3)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment