Last active
October 2, 2019 08:49
-
-
Save AnastasiaDunbar/99a8f90a8525322ae9c39fa503526a44 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//Note: JavaScript bitwise operators can only handle 32 bits, and 31st bit is used as a sign bit (use `x>>>0` to unsign it). | |
//Note: `1<<x` is sometimes used like an alternative to `2**x` (or `Math.pow(2,x)`) here. | |
//sign , (exponent bit)*eb , (mantissa bit)*mb. | |
function customFloatSize(eb,mb){return eb+mb+1;} | |
function maximumFloatNumber(eb,mb){let e=1<<(((1<<eb)-2)-1);return e+(e*(1-(1/(1<<mb))));} | |
function fromCustomFloat(x,eb,mb){ | |
let sign=(x>>>(eb+mb))&1?-1:1, | |
maxExp=(1<<eb)-1, | |
expBits=(x>>>mb)&maxExp, | |
mantissaMax=1<<mb, | |
mantissaBits=x&(mantissaMax-1); | |
if(expBits===maxExp){ | |
return(mantissaBits!==0)?NaN:Infinity*sign; | |
}else{ | |
return(expBits? //Is normal? | |
((1<<(expBits-1))*(mantissaBits+mantissaMax))/mantissaMax: | |
mantissaBits/mantissaMax | |
)*sign; | |
} | |
} | |
function toCustomFloat(x,eb,mb){ | |
if(isNaN(x)){return(((1<<eb)-1)<<mb)|1;} | |
let sign=x<0?1<<(mb+eb):0; | |
if(sign){x*=-1;} //Make the value positive. | |
if(x===Infinity||x>=(1<<(((1<<eb)-1)-1))){return(((1<<eb)-1)<<mb)|sign;} | |
if(x<1){ //Subnormal. | |
let m=0; | |
return(x*(1<<mb))|sign; //TODO: Fix rounding. | |
}else{ //Normalized. | |
let e=Math.floor(Math.log2(x)+1), //TODO: Fix rounding. | |
b=1<<(e-1), | |
m=(x-b)/(b/(1<<mb)); //TODO: Fix rounding. | |
return(m&((1<<mb)-1))|((e&((1<<eb)-1))<<mb)|sign; | |
} | |
} | |
/* | |
Minifloat bit specification: 1 sign bit, 4 exponent bits (0-15) and 3 significand/mantissa bits (0-7); 0bSEEEEMMM. | |
var exponentBias=bitsInExponent=>Math.pow(2,bitsInExponent-1)-1, | |
mix=(x,y,a)=>(a*(y-x))+x; | |
For normalized numbers: | |
`mix(2**(x-1),2**x,y/z)` → `((y/z)*((2**x)-(2**(x-1))))+(2**(x-1))` → `((2**(x-1))*(y+z))/z` or `(2**(x-(Math.log2(z)+1)))*(y+z)`. | |
For minifloats: | |
`mix(2**(x-1),2**x,y/8)` → `(2**(x-4))*(y+8)`. | |
*/ | |
function toMinifloat(x){return toCustomFloat(x,4,3);} | |
function fromMinifloat(x){return fromCustomFloat(x,4,3);} | |
//Test case. | |
[ | |
// (SEEEEMMM) | |
[0b00000000,0], | |
[0b00000100,0.5], | |
[0b00001000,1], | |
[0b10001000,-1], | |
[0b00010000,2], | |
[0b00010010,2.5], | |
[0b00010100,3], | |
[0b00011111,7.5], | |
[0b01110000,8192], | |
[0b01110111,15360], | |
[0b01111000,Infinity], | |
[0b11111000,-Infinity], | |
[0b11111101,NaN] | |
].map(x=>`${x[0].toString(2).padStart(8,"0")}, ${x[1]}, ${fromMinifloat(x[0])}`).join("\n"); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
For more references:
((-1)**sign)*(2**exponent)*(1+mantissa)