Created
July 12, 2018 06:16
-
-
Save Anderssorby/cc23150c16b36adb054ddffa6fd8b371 to your computer and use it in GitHub Desktop.
Pollard's Rho algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from argparse import ArgumentParser | |
import numpy as np | |
gcd_table = {} | |
def gcd(a, b): | |
while a % b != 0: | |
a, b = b, a % b | |
return b | |
bound = 10000 | |
def b_gcd(u, v): | |
""" | |
binary gcd (not mine) | |
""" | |
if u in gcd_table: | |
table = gcd_table.get(u) | |
if v in table: | |
return table[v] | |
elif u < bound: | |
gcd_table[u] = {} | |
if u == v: | |
return u | |
elif u == 0: | |
return v | |
elif v == 0: | |
return u | |
# u is even | |
elif u & 1 == 0: | |
# v is even | |
if v & 1 == 0: | |
b = 2*gcd(u >> 1, v >> 1) | |
if u < bound: gcd_table[u][v] = b | |
return b | |
# v is odd | |
else: | |
b = gcd(u >> 1, v) | |
if u < bound: gcd_table[u][v] = b | |
return b | |
# u is odd | |
elif u & 1 != 0: | |
# v is even | |
if v & 1 == 0: | |
b = gcd(u, v >> 1) | |
if u < bound: gcd_table[u][v] = b | |
return b | |
# v is odd and u is greater than v | |
elif u > v and v & 1 != 0: | |
b = gcd((u-v) >> 1, v) | |
if u < bound: gcd_table[u][v] = b | |
return b | |
# v is odd and u is smaller than v | |
else: | |
b = gcd((v-u) >> 1, u) | |
if u < bound: gcd_table[u][v] = b | |
return b | |
def pollards_rho(n, g, x=2, brent=False, output=True, rand=False): | |
if rand: | |
n_64 = min(n, 2**64-1) | |
a = np.random.randint(1, n_64-3) | |
b = np.random.randint(1, n_64-1) | |
print(a, b) | |
x = a | |
y = b | |
else: | |
y = x | |
cycle_size = 2 | |
d = 1 | |
latex = output | |
iteration = 0 | |
if latex: | |
print("\\hline \n %d & %d & %d & %d \\\\" % (iteration, x, y, d)) | |
while d == 1: | |
if brent: | |
count = 1 | |
while count <= cycle_size and d <= 1: | |
x = g(x) % n | |
d = b_gcd(abs(x - y), n) | |
count += 1 | |
cycle_size *= 2 | |
y = x | |
else: | |
x = g(x) % n | |
y = g(g(y)) % n | |
d = b_gcd(abs(x - y), n) | |
# count += 1 | |
# cycle_size *= 2 | |
iteration += 1 | |
if latex: | |
print("\\hline \n %d & %d & %d & %d \\\\" % (iteration, x, y, d)) | |
elif output: | |
print("At iteration %d" % iteration) | |
print("x = %d" % x) | |
print("y = %d" % y) | |
print("d = %d" % d) | |
print() | |
if iteration % 100 == 0: | |
print(iteration) | |
if d == n: | |
print("Unsuccessful") | |
return False | |
return d, iteration | |
if __name__ == "__main__": | |
ap = ArgumentParser() | |
ap.add_argument("-n", dest="n", type=int, default=10403) | |
ap.add_argument("-x", dest="x", type=int, default=2) | |
ap.add_argument("-o", dest="output", type=bool, default=False) | |
ap.add_argument("-r", "--rand", dest="rand", type=bool, default=False) | |
ap.add_argument("-c", "--cycle_alg", type=str, | |
choices=["brent", "floyd"], default="floyd") | |
args = ap.parse_args() | |
result = pollards_rho(args.n, lambda x: (x*x + 1), x=args.x, | |
brent=(args.cycle_alg == "brent"), output=args.output, rand=args.rand) | |
print(result) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment