Last active
October 6, 2020 12:09
-
-
Save AndrasKovacs/092fb6075d3f32a16bf9608c070e71f6 to your computer and use it in GitHub Desktop.
Transfinite, cumulative, Russell-style, inductive-recursive universes in Agda.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{- | |
Inductive-recursive universes, indexed by levels which are below an arbitrary type-theoretic ordinal number (see HoTT book 10.3). This includes all kinds of transfinite levels as well. | |
Checked with: Agda 2.6.1, stdlib 1.3 | |
My original motivation was to give inductive-recursive (or equivalently: large inductive) | |
semantics to to Jon Sterling's cumulative algebraic TT paper: | |
https://arxiv.org/abs/1902.08848 | |
Prior art that I know about: | |
- Conor: | |
https://personal.cis.strath.ac.uk/conor.mcbride/pub/Hmm/Hier.agda | |
- Larry Diehl: | |
gist: https://gist.github.com/larrytheliquid/3909860 | |
thesis: https://pdfs.semanticscholar.org/fc9a/5a2a904a7dff3562bcf31275d4b029894b5f.pdf | |
section 8.1.3 | |
However, these don't simultaneously support cumulativity and lift computation on | |
type formers. | |
-} | |
-- std lib | |
-------------------------------------------------------------------------------- | |
open import Data.Unit using (⊤; tt) | |
open import Data.Empty using (⊥; ⊥-elim) | |
open import Data.Product renaming (proj₁ to ₁; proj₂ to ₂) | |
open import Data.Sum using (_⊎_; inj₁; inj₂) | |
open import Function | |
open import Induction.WellFounded | |
open import Relation.Binary.PropositionalEquality | |
coe : ∀ {α}{A B : Set α} → A ≡ B → A → B | |
coe refl x = x | |
_&_ = cong; infixl 9 _&_; {-# DISPLAY cong = _&_ #-} | |
_◾_ = trans; infixr 4 _◾_; {-# DISPLAY trans = _◾_ #-} | |
_⁻¹ = sym; infix 6 _⁻¹; {-# DISPLAY sym = _⁻¹ #-} | |
coe∘ : ∀ {i}{A B C : Set i}(p : B ≡ C)(q : A ≡ B)(a : A) | |
→ coe p (coe q a) ≡ coe (q ◾ p) a | |
coe∘ refl refl _ = refl | |
UIP : ∀ {i}{A : Set i}{x y : A}{p q : x ≡ y} → p ≡ q | |
UIP {p = refl}{refl} = refl | |
-- function extensionality | |
postulate | |
ext : ∀{i j}{A : Set i}{B : A → Set j}{f g : (x : A) → B x} | |
→ ((x : A) → f x ≡ g x) → f ≡ g | |
exti : ∀{i j}{A : Set i}{B : A → Set j}{f g : ∀ {x} → B x} | |
→ ((x : A) → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ g | |
unAcc : ∀ {α β A R i} → Acc {α}{β}{A} R i → ∀ j → R j i → Acc R j | |
unAcc (acc f) = f | |
Acc-prop : ∀ {α β A R i}(p q : Acc {α}{β}{A} R i) → p ≡ q | |
Acc-prop (acc f) (acc g) = acc & ext λ j → ext λ p → Acc-prop (f j p) (g j p) | |
-------------------------------------------------------------------------------- | |
-- We demand that a type of levels has a well-founded transitive relation. | |
-- This is the same as the definition of an ordinal in HoTT book 10.3, except | |
-- that we don't require extensionality, and don't yet require <-irrelevance. | |
record LevelStructure : Set₁ where | |
infix 4 _<_ | |
field | |
Lvl : Set | |
_<_ : Lvl → Lvl → Set | |
trs : ∀ {i j k} → i < j → j < k → i < k | |
instance wf : ∀ {i} → Acc _<_ i | |
<-irrefl : ∀ {i} → i < i → ⊥ | |
<-irrefl {i} p = go wf p where | |
go : ∀ {i} → Acc _<_ i → i < i → ⊥ | |
go {i} (acc f) q = go (f i q) q | |
-- Given any level structure, we have a cumulative IR universe hierarchy. | |
module IR-Univ (lvl : LevelStructure) where | |
open LevelStructure lvl public | |
open import Data.Nat hiding (_<_; _≤_) | |
-- The actual IR type of codes. We already assume semantics for the "i" level | |
-- when we define UU, in order to avoid positivity issues. | |
-------------------------------------------------------------------------------- | |
infix 4 _<'_ | |
data UU {i}(l : ∀ j → j < i → Set) : Set | |
EL : ∀ {i l} → UU {i} l → Set | |
data UU {i} l where | |
U' : ∀ {j} → j < i → UU l -- cumulativity appears here first, but | |
-- it will be extended to other types as well | |
ℕ' : UU l | |
-- We make it possible to write bounded level-polymorphic functions, | |
-- by internalizing Lvl and _<_ in codes. | |
Lvl' : UU l | |
_<'_ : Lvl → Lvl → UU l | |
Π' Σ' : (a : UU l) → (EL a → UU l) → UU l | |
EL {_}{l}(U' p) = l _ p -- we just refer to the semantics of levels | |
EL ℕ' = ℕ | |
EL Lvl' = Lvl | |
EL (i <' j) = i < j | |
EL (Π' a b) = ∀ x → EL (b x) | |
EL (Σ' a b) = ∃ λ x → EL (b x) | |
-- Interpreting levels | |
-------------------------------------------------------------------------------- | |
-- U↓ i assigns a set to every j below i. | |
-- We would like the defining equation as follows: | |
-- U↓ : ∀ i j → i < j → Set | |
-- U↓ {i} j p = UU (U↓ {j}) | |
-- However, this is not a well-founded definition, so we instead define U↓ by | |
-- recursion on _<_ accessibility. | |
U↓ : ∀ {i} {{_ : Acc _<_ i}} j → j < i → Set | |
U↓ {i} {{acc f}} j p = UU (U↓ {{f j p}}) | |
U : Lvl → Set | |
U i = UU (U↓ {i}) | |
El : ∀ {i} → U i → Set | |
El = EL | |
U↓-compute : ∀ {i a j p} → U↓ {i}{{a}} j p ≡ U j | |
U↓-compute {i} {acc f} {j} {p} = (λ a → UU (U↓ {{a}})) & Acc-prop (f j p) wf | |
-- Cumulativity | |
-------------------------------------------------------------------------------- | |
-- cumulativity means that | |
-- a) every type can be lifted to higher levels | |
-- b) lifting doesn't change sets of elements of types | |
↑ : ∀ {i j} → i < j → U i → U j | |
El↑ : ∀ {i j} p a → El (↑ {i}{j} p a) ≡ El a | |
↑ p (U' q) = U' (trs q p) | |
↑ p ℕ' = ℕ' | |
↑ p Lvl' = Lvl' | |
↑ p (i <' j) = i <' j | |
↑ p (Π' a b) = Π' (↑ p a) λ x → ↑ p (b (coe (El↑ p a) x)) | |
↑ p (Σ' a b) = Σ' (↑ p a) λ x → ↑ p (b (coe (El↑ p a) x)) | |
El↑ p (U' q) = U↓-compute ◾ U↓-compute ⁻¹ | |
El↑ p ℕ' = refl | |
El↑ p Lvl' = refl | |
El↑ p (i <' j) = refl | |
El↑ p (Π' a b) rewrite El↑ p a = (λ f → ∀ x → f x) & ext (El↑ p ∘ b) | |
El↑ p (Σ' a b) rewrite El↑ p a = ∃ & ext (El↑ p ∘ b) | |
-- conveniences | |
-------------------------------------------------------------------------------- | |
_⇒'_ : ∀ {i l} → UU {i} l → UU l → UU l | |
a ⇒' b = Π' a λ _ → b | |
infixr 3 _⇒'_ | |
_×'_ : ∀ {i l} → UU {i} l → UU l → UU l | |
a ×' b = Σ' a λ _ → b | |
infixr 4 _×'_ | |
-- This is convenient in code examples, where we often want to lift values in EL U' | |
↑U : ∀ {i j}(p : i < j) → El (U' p) → U j | |
↑U p a = ↑ p (coe U↓-compute a) | |
-- Example fragment of a model for Jon's TT | |
-- Many omitted parts are awful to formalize. | |
-------------------------------------------------------------------------------- | |
module JonTT where | |
Con : Set₁ | |
Con = Set | |
Ty : Con → Lvl → Set | |
Ty Γ j = Γ → U j | |
Tm : ∀ Γ {i} → Ty Γ i → Set | |
Tm Γ A = (γ : Γ) → El (A γ) | |
Sub : Con → Con → Set | |
Sub Γ Δ = Γ → Δ | |
lift : ∀ {Γ i j} → i < j → Ty Γ i → Ty Γ j | |
lift p A γ = ↑ p (A γ) | |
infixl 5 _[_]T | |
_[_]T : ∀ {Γ Δ i} → Ty Δ i → Sub Γ Δ → Ty Γ i | |
_[_]T A σ γ = A (σ γ) | |
lift[]T : ∀ {Γ Δ i j p σ A} → lift {Δ}{i}{j} p A [ σ ]T ≡ lift {Γ} p (A [ σ ]T) | |
lift[]T = refl | |
Cumulative : ∀ {Γ i j p A} → Tm Γ A ≡ Tm Γ (lift {Γ}{i}{j} p A) | |
Cumulative {p = p}{A} = (λ f → ∀ x → f x) & ext λ γ → El↑ p (A γ) ⁻¹ | |
u : ∀ {Γ i j} → i < j → Ty Γ j | |
u p _ = U' p | |
Russell : ∀ {Γ i j p} → Tm Γ (u {Γ}{i}{j} p) ≡ Ty Γ i | |
Russell = (λ f → ∀ x → f x) & ext λ _ → U↓-compute | |
infixl 4 _▶_ | |
_▶_ : (Γ : Con) → ∀ {i} → Ty Γ i → Con | |
Γ ▶ A = Σ Γ λ γ → El (A γ) | |
▶lift : ∀ {Γ i j A}{p : i < j} → (Γ ▶ A) ≡ (Γ ▶ lift p A) | |
▶lift {Γ}{A = A}{p} = Σ Γ & ext λ γ → El↑ p (A γ) ⁻¹ | |
Π : ∀ {Γ i}(A : Ty Γ i) → Ty (Γ ▶ A) i → Ty Γ i | |
Π {Γ}{i} A B γ = Π' (A γ) λ α → B (γ , α) | |
lam : ∀ {Γ i A B} → Tm (Γ ▶ A) B → Tm Γ {i} (Π A B) | |
lam t γ α = t (γ , α) | |
app : ∀ {Γ i A B} → Tm Γ {i} (Π A B) → Tm (Γ ▶ A) B | |
app t (γ , α) = t γ α | |
-- Example for TT with internalized levels | |
-------------------------------------------------------------------------------- | |
module InternalLevelTT where | |
Con : Set₁ | |
Con = Set | |
-- levels in context | |
Level : Con → Set | |
Level Γ = Γ → Lvl | |
Ty : (Γ : Con) → Level Γ → Set | |
Ty Γ i = (γ : Γ) → U (i γ) | |
Tm : (Γ : Con) → ∀ {i} → Ty Γ i → Set | |
Tm Γ {i} A = (γ : Γ) → El (A γ) | |
Level' : ∀ {Γ i} → Ty Γ i | |
Level' {Γ}{i} γ = Lvl' | |
-- "Russell-style" levels | |
RussellLevel : ∀ {Γ i} → Tm Γ (Level' {Γ}{i}) ≡ Level Γ | |
RussellLevel = refl | |
Lt : ∀ {Γ i} → Level Γ → Level Γ → Ty Γ i | |
Lt i j γ = i γ <' j γ | |
Trs : ∀ {Γ l i j k} → Tm Γ {l} (Lt i j) → Tm Γ {l} (Lt j k) → Tm Γ {l} (Lt i k) | |
Trs t u γ = trs (t γ) (u γ) | |
lift : ∀ {Γ}{i j : Level Γ} → Tm Γ {j} (Lt i j) → Ty Γ i → Ty Γ j | |
lift {i = i}{j} p A γ = ↑ (p γ) (A γ) | |
Cumulative : ∀ {Γ i j p A} → Tm Γ A ≡ Tm Γ (lift {Γ}{i}{j} p A) | |
Cumulative {Γ}{i}{j}{p}{A} = (λ f → ∀ x → f x) & ext λ γ → El↑ (p γ) (A γ) ⁻¹ | |
u : ∀ {Γ i j} → Tm Γ {j} (Lt i j) → Ty Γ j | |
u p γ = U' (p γ) | |
RussellUniv : ∀ {Γ i j p} → Tm Γ (u {Γ}{i}{j} p) ≡ Ty Γ i | |
RussellUniv = (λ f → ∀ x → f x) & ext λ γ → U↓-compute | |
-- Additional assumption: | |
-- proof-irrelevant, strict total ordering for levels. | |
-- This is a realistic assumption for notions of TT models and for type checking. | |
-------------------------------------------------------------------------------- | |
pattern inj₂₁ x = inj₂ (inj₁ x) | |
pattern inj₂₂ x = inj₂ (inj₂ x) | |
-- Corresponds to classical ordinal in HoTT book 10.4 without extensionality | |
record StrictTotalLevel (lvl : LevelStructure) : Set where | |
open LevelStructure lvl | |
field | |
cmp : ∀ i j → i < j ⊎ j < i ⊎ i ≡ j | |
<-prop : ∀ {i j}{p q : i < j} → p ≡ q | |
_≤_ : Lvl → Lvl → Set; infix 4 _≤_ | |
i ≤ j = i < j ⊎ i ≡ j | |
_⊔_ : Lvl → Lvl → Lvl; infixr 5 _⊔_ | |
i ⊔ j with cmp i j | |
... | inj₁ _ = j | |
... | inj₂₁ _ = i | |
... | inj₂₂ _ = i | |
⊔₁ : ∀ i j → i ≤ i ⊔ j | |
⊔₁ i j with cmp i j | |
... | inj₁ p = inj₁ p | |
... | inj₂₁ p = inj₂ refl | |
... | inj₂₂ p = inj₂ refl | |
⊔₂ : ∀ i j → j ≤ i ⊔ j | |
⊔₂ i j with cmp i j | |
... | inj₁ p = inj₂ refl | |
... | inj₂₁ p = inj₁ p | |
... | inj₂₂ p = inj₂ (p ⁻¹) | |
⊔-least : ∀ {i j k} → i ≤ k → j ≤ k → i ⊔ j ≤ k | |
⊔-least {i}{j}{k} p q with cmp i j | |
... | inj₁ _ = q | |
... | inj₂₁ _ = p | |
... | inj₂₂ _ = p | |
≤-prop : ∀ {i j}{p q : i ≤ j} → p ≡ q | |
≤-prop {p = inj₁ p} {inj₁ q} = inj₁ & <-prop | |
≤-prop {p = inj₁ p} {inj₂ refl} = ⊥-elim (<-irrefl p) | |
≤-prop {p = inj₂ refl} {inj₁ q} = ⊥-elim (<-irrefl q) | |
≤-prop {p = inj₂ p} {inj₂ q} = inj₂ & UIP | |
module IR-Univ-StrictTotal {lvl} (strictTotal : StrictTotalLevel lvl) where | |
open StrictTotalLevel strictTotal public | |
open IR-Univ lvl public | |
-- non-strict lifts | |
↑≤ : ∀ {i j} → i ≤ j → U i → U j | |
↑≤ (inj₁ p) a = ↑ p a | |
↑≤ (inj₂ refl) a = a | |
El↑≤ : ∀ {i j} p a → El (↑≤ {i}{j} p a) ≡ El a | |
El↑≤ (inj₁ p) a = El↑ p a | |
El↑≤ (inj₂ refl) a = refl | |
-- example: alternative type formation with _⊔_ | |
-- We might need this for models of TTs. | |
Π'' : ∀ {i j}(a : U i) → (El a → U j) → U (i ⊔ j) | |
Π'' {i}{j} a b = Π' (↑≤ (⊔₁ i j) a) λ x → ↑≤ (⊔₂ i j) (b (coe (El↑≤ (⊔₁ i j) a) x)) | |
-- congruence helper | |
ΠΣ≡ : ∀ {i}{l : ∀ j → j < i → Set} | |
(F' : (a : UU l) → (EL a → UU l) → UU l) | |
{a₀ a₁ : UU l}(a₂ : a₀ ≡ a₁) | |
{b₀ : EL a₀ → UU l}{b₁ : EL a₁ → UU l} | |
→ (∀ x → b₀ x ≡ b₁ (coe (EL & a₂) x)) | |
→ F' a₀ b₀ ≡ F' a₁ b₁ | |
ΠΣ≡ {i} {l} F' {a₀} refl {b₀} {b₁} b₂ = F' a₀ & ext b₂ | |
-- Composing lifts | |
↑↑ : ∀ {i j k}(p : i < j)(q : j < k) a → ↑ q (↑ p a) ≡ ↑ (trs p q) a | |
↑↑ p q (U' r) = U' & <-prop -- alternative: require associative trs | |
↑↑ p q ℕ' = refl | |
↑↑ p q Lvl' = refl | |
↑↑ p q (i <' j) = refl | |
↑↑ p q (Π' a b) = | |
ΠΣ≡ Π' (↑↑ p q a) | |
(λ x → ↑↑ p q _ | |
◾ (λ x → ↑ (trs p q) (b x)) & | |
(coe∘ (El↑ p a) (El↑ q (↑ p a)) x | |
◾ (λ y → coe y x) & UIP | |
◾ coe∘ (El↑ (trs p q) a) (EL & ↑↑ p q a) x ⁻¹)) | |
↑↑ p q (Σ' a b) = | |
ΠΣ≡ Σ' (↑↑ p q a) | |
(λ x → ↑↑ p q _ | |
◾ (λ x → ↑ (trs p q) (b x)) & | |
(coe∘ (El↑ p a) (El↑ q (↑ p a)) x | |
◾ (λ y → coe y x) & UIP | |
◾ coe∘ (El↑ (trs p q) a) (EL & ↑↑ p q a) x ⁻¹)) | |
-- Examples | |
-------------------------------------------------------------------------------- | |
-- finite levels | |
module ℕ-example where | |
open import Data.Nat | |
open import Data.Nat.Properties | |
open import Data.Nat.Induction | |
lvl : LevelStructure | |
lvl = record { | |
Lvl = ℕ | |
; _<_ = _<_ | |
; trs = <-trans | |
; wf = <-wellFounded _ | |
} | |
open IR-Univ lvl hiding (_<_) | |
<suc : ∀ {i} → i < suc i | |
<suc {i} = ≤-refl | |
id' : ∀ {i} → El {suc i} (Π' (U' <suc) λ A → ↑U <suc A ⇒' ↑U <suc A) | |
id' {i} A x = x | |
const₀' : El {1} (Π' (U' <suc) λ A → Π' (U' <suc) λ B → ↑U <suc A ⇒' ↑U <suc B ⇒' ↑U <suc A) | |
const₀' A B x y = x | |
-- ω*ω levels | |
module ℕ*ℕ-example where | |
import Data.Nat as N | |
open import Data.Nat.Properties | |
open import Data.Nat.Induction | |
open Lexicographic N._<_ (λ _ → N._<_) | |
trs : ∀ {i j k} → i < j → j < k → i < k | |
trs (left p) (left q) = left (<-trans p q) | |
trs (left p) (right q) = left p | |
trs (right p) (left q) = left q | |
trs (right p) (right q) = right (<-trans p q) | |
-- representation: (i, j) ~ (ω*i + j) | |
lvl : LevelStructure | |
lvl = record { | |
Lvl = N.ℕ × N.ℕ | |
; _<_ = _<_ | |
; trs = trs | |
; wf = wellFounded <-wellFounded <-wellFounded _ | |
} | |
open IR-Univ lvl hiding (_<_; trs) | |
-- raise by 1 | |
<suc : ∀ {i j} → (i , j) < (i , N.suc j) | |
<suc {i} = right ≤-refl | |
-- raise to closest limit level | |
<Suc : ∀ {i} j → (i , j) < (N.suc i , 0) | |
<Suc {i} j = left ≤-refl | |
ω : Lvl | |
ω = 1 , 0 | |
#_ : N.ℕ → Lvl; infix 10 #_ | |
# n = 0 , n | |
_+_ : Lvl → Lvl → Lvl; infix 6 _+_ | |
(i , j) + (i' , j') = i N.+ i' , j N.+ j' | |
idω : El {ω} (Π' ℕ' λ i → Π' (U' (<Suc i)) λ A → ↑U (<Suc i) A ⇒' ↑U (<Suc i) A) | |
idω i A x = x | |
idω' : El {ω} (Π' Lvl' λ i → Π' (i <' ω) λ p → Π' (U' p) λ A → ↑U p A ⇒' ↑U p A) | |
idω' i p A x = x | |
fω+2 : El {ω + # 2} (U' (trs <suc <suc) ⇒' U' <suc) | |
fω+2 = ↑U <suc | |
-- W-types as levels. | |
-- It's clear that pretty much any inductive type has LvlStructure, although many of | |
-- them don't have StrictTotal structure. | |
module W-example (Sh : Set)(Pos : Sh → Set) where | |
data W : Set where | |
sup : ∀ s → (Pos s → W) → W | |
infix 4 _<_ | |
data _<_ : W → W → Set where | |
here : ∀ {s f s*} → f s* < sup s f | |
there : ∀ {x s f s*} → x < f s* → x < sup s f | |
trs : ∀ {i j k} → i < j → j < k → i < k | |
trs p here = there p | |
trs p (there q) = there (trs p q) | |
wf : ∀ w → Acc _<_ w | |
wf (sup s f) = acc λ {_ here → wf _; y (there p) → unAcc (wf _) y p} | |
lvl : LevelStructure | |
lvl = record { Lvl = W ; _<_ = _<_ ; trs = trs ; wf = wf _ } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment