Last active
July 8, 2019 15:02
-
-
Save AndreaPasqualini/707d4982875f71e014b850dbfbdd7b7d to your computer and use it in GitHub Desktop.
A small memo about Kroenecker products and linear indexing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{article} | |
\usepackage{amsmath, amsfonts, amssymb} | |
\title{Kroenecker Products and Linalg Trickery} | |
\author{Andrea Pasqualini} | |
\begin{document} | |
\maketitle | |
Consider two vectors, $x$ and $y$. | |
\begin{align*} | |
\underset{[n \times 1]}{x} && \underset{[m \times 1]}{y} | |
\end{align*} | |
Let $i$ index the elements of $x$ and $j$ index the elements of $y$. | |
Compute the Kroenecker product $z\equiv x \otimes y$. | |
The product $x_i \cdot y_j$ will be the element $z_k$, with \textcolor{red}{$k = (i - 1) \cdot m + j$}. | |
Explicitly, we will have | |
\begin{align*} | |
z &\equiv \underset{[(n \cdot m) \times (1 \cdot 1)]}{x \otimes y} | |
= | |
\begin{bmatrix} | |
x_1 \cdot y \\ | |
\hrulefill \\ | |
x_2 \cdot y \\ | |
\hrulefill \\ | |
\vdots \\ | |
\hrulefill \\ | |
x_i \cdot y \\ | |
\hrulefill \\ | |
\vdots \\ | |
\hrulefill \\ | |
x_n \cdot y | |
\end{bmatrix} | |
= | |
\begin{bmatrix} | |
x_1 \cdot y_1 \\ | |
x_1 \cdot y_2 \\ | |
\vdots \\ | |
x_1 \cdot y_m \\ | |
\hrulefill \\ | |
x_2 \cdot y_1 \\ | |
x_2 \cdot y_2 \\ | |
\vdots \\ | |
x_2 \cdot y_m \\ | |
\hrulefill \\ | |
\vdots \\ | |
\hrulefill \\ | |
x_i \cdot y_1 \\ | |
x_i \cdot y_2 \\ | |
\vdots \\ | |
x_i \cdot y_m \\ | |
\hrulefill \\ | |
\vdots \\ | |
\hrulefill \\ | |
x_n \cdot y_1 \\ | |
x_n \cdot y_2 \\ | |
\vdots \\ | |
x_n \cdot y_m | |
\end{bmatrix} | |
\end{align*} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment