Created
February 10, 2017 10:40
-
-
Save AndreasMadsen/5eb010f998f8d1eb54d23c6c33294301 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
import sugartensor as stf | |
# set log level to debug | |
stf.sg_verbosity(10) | |
@stf.sg_layer_func | |
def seq_dense(tensor, opt): | |
w = stf.sg_initializer.he_uniform('W', (1, opt.in_dim, opt.dim)) | |
b = stf.sg_initializer.constant('b', opt.dim) if opt.bias else 0 | |
w = tf.squeeze(w, axis=0) | |
out = tf.matmul(tensor, w) + b | |
return out | |
# | |
# setup dataset | |
# | |
dataset = [ | |
('four five two#____', '452#______________'), | |
('one nine#_________', '19#_______________'), | |
('four eight four#__', '484#______________'), | |
('two four five#____', '245#______________'), | |
('seven one#________', '71#_______________'), | |
('seven five eight#_', '758#______________'), | |
('zero nine nine#___', '099#______________'), | |
('six nine#_________', '69#_______________'), | |
('three nine#_______', '39#_______________'), | |
('four one#_________', '41#_______________') | |
] | |
vocabulary = '_#zerontwhufivsxg0123456789 ' | |
encoding = { | |
char: code for code, char in enumerate(vocabulary) | |
} | |
dataset = [ | |
([encoding[char] for char in source], [encoding[char] for char in target]) | |
for (source, target) in dataset | |
] | |
source, target = zip(*dataset) | |
# | |
# setup batch queue | |
# | |
source = tf.convert_to_tensor(np.asarray(source)) | |
target = tf.convert_to_tensor(np.asarray(target)) | |
source, target = tf.train.slice_input_producer([source, target], shuffle=True) | |
source, target = tf.train.shuffle_batch( | |
[source, target], 10, | |
capacity=640, | |
min_after_dequeue=320 | |
) | |
# | |
# setup loss | |
# | |
loss = 0 | |
with tf.name_scope(None, "semi-supervied-x", values=[source, target]): | |
x = tf.cast(source, tf.int32) | |
y = tf.cast(target, tf.int32) | |
emb_x = stf.sg_emb( | |
name='embedding-source', | |
voca_size=len(vocabulary), | |
dim=20 | |
) | |
enc = x.sg_lookup(emb=emb_x) | |
with tf.variable_scope("translator", values=[x]): | |
logits = enc.sg_conv1d( | |
size=1, dim=len(vocabulary), | |
name='logits-dense' | |
) | |
with tf.variable_scope("translator", values=[x], reuse=True): | |
# BUG: seq_dense is not passed reuse directly, instead the parent | |
# variable_scope has reuse=True | |
logits = tf.scan( | |
lambda acc, enc_t: seq_dense(enc_t, dim=len(vocabulary), | |
name='logits-dense'), | |
elems=tf.transpose(enc, perm=[1, 0, 2]), | |
initializer=tf.zeros( | |
(tf.shape(enc)[0], len(vocabulary)), dtype=enc.dtype | |
) | |
) | |
seq_logits = tf.transpose(logits, perm=[1, 0, 2]) | |
loss += tf.reduce_mean(logits.sg_ce(target=y, mask=True), axis=0) | |
loss += tf.reduce_mean(seq_logits.sg_ce(target=y, mask=True), axis=0) | |
# | |
# train | |
# | |
stf.sg_train(log_interval=30, | |
loss=loss, | |
ep_size=1, | |
max_ep=10000, | |
early_stop=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment