|
/* |
|
* This file is part of the MicroPython project, http://micropython.org/ |
|
* |
|
* The MIT License (MIT) |
|
* |
|
* Copyright (c) 2019 "Matt Trentini" <[email protected]> |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
|
* of this software and associated documentation files (the "Software"), to deal |
|
* in the Software without restriction, including without limitation the rights |
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
* copies of the Software, and to permit persons to whom the Software is |
|
* furnished to do so, subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included in |
|
* all copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|
* THE SOFTWARE. |
|
*/ |
|
|
|
#include "py/runtime.h" |
|
#include "modmachine.h" |
|
#include "mphalport.h" |
|
#include "modesp32.h" |
|
|
|
#include "esp_task.h" |
|
#include "driver/rmt.h" |
|
|
|
// This exposes the ESP32's RMT module to MicroPython. RMT is provided by the Espressif ESP-IDF: |
|
// |
|
// https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html |
|
// |
|
// With some examples provided: |
|
// |
|
// https://github.com/espressif/arduino-esp32/tree/master/libraries/ESP32/examples/RMT |
|
// |
|
// RMT allows accurate (down to 12.5ns resolution) transmit - and receive - of pulse signals. |
|
// Originally designed to generate infrared remote control signals, the module is very |
|
// flexible and quite easy-to-use. |
|
// |
|
// This current MicroPython implementation lacks some major features, notably receive pulses |
|
// and carrier output. |
|
|
|
// Last available RMT channel that can transmit. |
|
#if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 4, 0) |
|
#define RMT_LAST_TX_CHANNEL (RMT_CHANNEL_MAX - 1) |
|
#else |
|
#define RMT_LAST_TX_CHANNEL (SOC_RMT_TX_CANDIDATES_PER_GROUP - 1) |
|
#endif |
|
|
|
// Forward declaration |
|
extern const mp_obj_type_t esp32_rmt_type; |
|
|
|
typedef struct _esp32_rmt_obj_t { |
|
mp_obj_base_t base; |
|
uint8_t channel_id; |
|
gpio_num_t pin; |
|
uint8_t clock_div; |
|
mp_uint_t num_items; |
|
rmt_item32_t *items; |
|
bool loop_en; |
|
} esp32_rmt_obj_t; |
|
|
|
// Current channel used for machine.bitstream, in the machine_bitstream_high_low_rmt |
|
// implementation. A value of -1 means do not use RMT. |
|
int8_t esp32_rmt_bitstream_channel_id = RMT_LAST_TX_CHANNEL; |
|
|
|
#if MP_TASK_COREID == 0 |
|
|
|
typedef struct _rmt_install_state_t { |
|
SemaphoreHandle_t handle; |
|
uint8_t channel_id; |
|
esp_err_t ret; |
|
} rmt_install_state_t; |
|
|
|
STATIC void rmt_install_task(void *pvParameter) { |
|
rmt_install_state_t *state = pvParameter; |
|
state->ret = rmt_driver_install(state->channel_id, 0, 0); |
|
xSemaphoreGive(state->handle); |
|
vTaskDelete(NULL); |
|
for (;;) { |
|
} |
|
} |
|
|
|
// Call rmt_driver_install on core 1. This ensures that the RMT interrupt handler is |
|
// serviced on core 1, so that WiFi (if active) does not interrupt it and cause glitches. |
|
esp_err_t rmt_driver_install_core1(uint8_t channel_id) { |
|
TaskHandle_t th; |
|
rmt_install_state_t state; |
|
state.handle = xSemaphoreCreateBinary(); |
|
state.channel_id = channel_id; |
|
xTaskCreatePinnedToCore(rmt_install_task, "rmt_install_task", 2048 / sizeof(StackType_t), &state, ESP_TASK_PRIO_MIN + 1, &th, 1); |
|
xSemaphoreTake(state.handle, portMAX_DELAY); |
|
vSemaphoreDelete(state.handle); |
|
return state.ret; |
|
} |
|
|
|
#else |
|
|
|
// MicroPython runs on core 1, so we can call the RMT installer directly and its |
|
// interrupt handler will also run on core 1. |
|
esp_err_t rmt_driver_install_core1(uint8_t channel_id) { |
|
return rmt_driver_install(channel_id, 0, 0); |
|
} |
|
|
|
#endif |
|
|
|
STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { |
|
static const mp_arg_t allowed_args[] = { |
|
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, |
|
{ MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
|
{ MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, // 100ns resolution |
|
{ MP_QSTR_idle_level, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, // low voltage |
|
{ MP_QSTR_tx_carrier, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // no carrier |
|
}; |
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
|
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
|
mp_uint_t channel_id = args[0].u_int; |
|
gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj); |
|
mp_uint_t clock_div = args[2].u_int; |
|
mp_uint_t idle_level = args[3].u_bool; |
|
mp_obj_t tx_carrier_obj = args[4].u_obj; |
|
|
|
if (esp32_rmt_bitstream_channel_id >= 0 && channel_id == esp32_rmt_bitstream_channel_id) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("channel used by bitstream")); |
|
} |
|
|
|
if (clock_div < 1 || clock_div > 255) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255")); |
|
} |
|
|
|
esp32_rmt_obj_t *self = m_new_obj_with_finaliser(esp32_rmt_obj_t); |
|
self->base.type = &esp32_rmt_type; |
|
self->channel_id = channel_id; |
|
self->pin = pin_id; |
|
self->clock_div = clock_div; |
|
self->loop_en = false; |
|
|
|
rmt_config_t config = {0}; |
|
config.rmt_mode = RMT_MODE_TX; |
|
config.channel = (rmt_channel_t)self->channel_id; |
|
config.gpio_num = self->pin; |
|
config.mem_block_num = 1; |
|
config.tx_config.loop_en = 0; |
|
|
|
if (tx_carrier_obj != mp_const_none) { |
|
mp_obj_t *tx_carrier_details = NULL; |
|
mp_obj_get_array_fixed_n(tx_carrier_obj, 3, &tx_carrier_details); |
|
mp_uint_t frequency = mp_obj_get_int(tx_carrier_details[0]); |
|
mp_uint_t duty = mp_obj_get_int(tx_carrier_details[1]); |
|
mp_uint_t level = mp_obj_is_true(tx_carrier_details[2]); |
|
|
|
if (frequency == 0) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier frequency must be >0")); |
|
} |
|
if (duty > 100) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier duty must be 0..100")); |
|
} |
|
|
|
config.tx_config.carrier_en = 1; |
|
config.tx_config.carrier_freq_hz = frequency; |
|
config.tx_config.carrier_duty_percent = duty; |
|
config.tx_config.carrier_level = level; |
|
} else { |
|
config.tx_config.carrier_en = 0; |
|
} |
|
|
|
config.tx_config.idle_output_en = 1; |
|
config.tx_config.idle_level = idle_level; |
|
|
|
config.clk_div = self->clock_div; |
|
|
|
check_esp_err(rmt_config(&config)); |
|
check_esp_err(rmt_driver_install_core1(config.channel)); |
|
|
|
return MP_OBJ_FROM_PTR(self); |
|
} |
|
|
|
STATIC void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { |
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
|
if (self->pin != -1) { |
|
bool idle_output_en; |
|
rmt_idle_level_t idle_level; |
|
check_esp_err(rmt_get_idle_level(self->channel_id, &idle_output_en, &idle_level)); |
|
mp_printf(print, "RMT(channel=%u, pin=%u, source_freq=%u, clock_div=%u, idle_level=%u)", |
|
self->channel_id, self->pin, APB_CLK_FREQ, self->clock_div, idle_level); |
|
} else { |
|
mp_printf(print, "RMT()"); |
|
} |
|
} |
|
|
|
STATIC mp_obj_t esp32_rmt_deinit(mp_obj_t self_in) { |
|
// fixme: check for valid channel. Return exception if error occurs. |
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
|
if (self->pin != -1) { // Check if channel has already been deinitialised. |
|
rmt_driver_uninstall(self->channel_id); |
|
self->pin = -1; // -1 to indicate RMT is unused |
|
m_free(self->items); |
|
} |
|
return mp_const_none; |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_deinit_obj, esp32_rmt_deinit); |
|
|
|
// Return the source frequency. |
|
// Currently only the APB clock (80MHz) can be used but it is possible other |
|
// clock sources will added in the future. |
|
STATIC mp_obj_t esp32_rmt_source_freq(mp_obj_t self_in) { |
|
return mp_obj_new_int(APB_CLK_FREQ); |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_source_freq_obj, esp32_rmt_source_freq); |
|
|
|
// Return the clock divider. |
|
STATIC mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) { |
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
|
return mp_obj_new_int(self->clock_div); |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div); |
|
|
|
// Query whether the channel has finished sending pulses. Takes an optional |
|
// timeout (in milliseconds), returning true if the pulse stream has |
|
// completed or false if they are still transmitting (or timeout is reached). |
|
STATIC mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
|
static const mp_arg_t allowed_args[] = { |
|
{ MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
|
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
|
}; |
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
|
|
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj); |
|
|
|
esp_err_t err = rmt_wait_tx_done(self->channel_id, args[1].u_int / portTICK_PERIOD_MS); |
|
return err == ESP_OK ? mp_const_true : mp_const_false; |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done); |
|
|
|
STATIC mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) { |
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
|
self->loop_en = mp_obj_get_int(loop); |
|
if (!self->loop_en) { |
|
bool loop_en; |
|
check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en)); |
|
if (loop_en) { |
|
check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false)); |
|
check_esp_err(rmt_set_tx_intr_en(self->channel_id, true)); |
|
} |
|
} |
|
return mp_const_none; |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop); |
|
|
|
STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *args) { |
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]); |
|
mp_obj_t duration_obj = args[1]; |
|
mp_obj_t data_obj = n_args > 2 ? args[2] : mp_const_true; |
|
|
|
mp_uint_t duration = 0; |
|
size_t duration_length = 0; |
|
mp_obj_t *duration_ptr = NULL; |
|
mp_uint_t data = 0; |
|
size_t data_length = 0; |
|
mp_obj_t *data_ptr = NULL; |
|
mp_uint_t num_pulses = 0; |
|
|
|
if (!(mp_obj_is_type(data_obj, &mp_type_tuple) || mp_obj_is_type(data_obj, &mp_type_list))) { |
|
// Mode 1: array of durations, toggle initial data value |
|
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr); |
|
data = mp_obj_is_true(data_obj); |
|
num_pulses = duration_length; |
|
} else if (mp_obj_is_int(duration_obj)) { |
|
// Mode 2: constant duration, array of data values |
|
duration = mp_obj_get_int(duration_obj); |
|
mp_obj_get_array(data_obj, &data_length, &data_ptr); |
|
num_pulses = data_length; |
|
} else { |
|
// Mode 3: arrays of durations and data values |
|
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr); |
|
mp_obj_get_array(data_obj, &data_length, &data_ptr); |
|
if (duration_length != data_length) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("duration and data must have same length")); |
|
} |
|
num_pulses = duration_length; |
|
} |
|
|
|
if (num_pulses == 0) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("No pulses")); |
|
} |
|
if (self->loop_en && num_pulses > 126) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("Too many pulses for loop")); |
|
} |
|
|
|
mp_uint_t num_items = (num_pulses / 2) + (num_pulses % 2); |
|
if (num_items > self->num_items) { |
|
self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *)); |
|
self->num_items = num_items; |
|
} |
|
|
|
for (mp_uint_t item_index = 0, pulse_index = 0; item_index < num_items; item_index++) { |
|
self->items[item_index].duration0 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration; |
|
self->items[item_index].level0 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++; |
|
pulse_index++; |
|
if (pulse_index < num_pulses) { |
|
self->items[item_index].duration1 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration; |
|
self->items[item_index].level1 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++; |
|
pulse_index++; |
|
} else { |
|
self->items[item_index].duration1 = 0; |
|
self->items[item_index].level1 = 0; |
|
} |
|
} |
|
|
|
if (self->loop_en) { |
|
bool loop_en; |
|
check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en)); |
|
if (loop_en) { |
|
check_esp_err(rmt_set_tx_intr_en(self->channel_id, true)); |
|
check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false)); |
|
} |
|
check_esp_err(rmt_wait_tx_done(self->channel_id, portMAX_DELAY)); |
|
} |
|
|
|
check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false)); |
|
|
|
if (self->loop_en) { |
|
check_esp_err(rmt_set_tx_intr_en(self->channel_id, false)); |
|
check_esp_err(rmt_set_tx_loop_mode(self->channel_id, true)); |
|
} |
|
|
|
return mp_const_none; |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_write_pulses_obj, 2, 3, esp32_rmt_write_pulses); |
|
|
|
// USER |
|
|
|
// RMT.store_pulses(self, item_list:list[int32]) -> None |
|
STATIC mp_obj_t esp32_rmt_store_pulses(size_t n_args, const mp_obj_t *args) { |
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]); |
|
mp_obj_t item_list_obj = args[1]; |
|
|
|
size_t num_items = 0; |
|
mp_obj_t *item_list_ptr = NULL; |
|
mp_obj_get_array(item_list_obj, &num_items, &item_list_ptr); |
|
|
|
if (num_items > self->num_items) { |
|
self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *)); |
|
self->num_items = num_items; |
|
} |
|
|
|
for (mp_uint_t item_index = 0; item_index < num_items; item_index++) { |
|
self->items[item_index].val = mp_obj_get_int(item_list_ptr[item_index]); |
|
} |
|
|
|
return mp_const_none; |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_store_pulses_obj, 2, 2, esp32_rmt_store_pulses); |
|
|
|
#include "py/gc.h" |
|
#include "py/mpthread.h" |
|
#include "py/stackctrl.h" |
|
|
|
// called from esp32 RMT system ISR provided by rmt_driver_install() |
|
STATIC void esp32_rmt_private_tx_end_callback(rmt_channel_t channel, void *arg) { |
|
|
|
void *state_past = mp_thread_get_state(); |
|
mp_state_thread_t state_next; |
|
mp_thread_set_state(&state_next); |
|
|
|
mp_stack_set_top(&state_next + 1); |
|
mp_stack_set_limit(1024); |
|
|
|
mp_locals_set(mp_state_ctx.thread.dict_locals); |
|
mp_globals_set(mp_state_ctx.thread.dict_globals); |
|
|
|
mp_sched_lock(); |
|
gc_lock(); |
|
|
|
mp_obj_t *tx_ready_fn = (mp_obj_t *) arg; |
|
mp_call_function_0(tx_ready_fn); |
|
|
|
gc_unlock(); |
|
mp_sched_unlock(); |
|
mp_thread_set_state(state_past); |
|
|
|
} |
|
|
|
// RMT.issue_pulses(self, tx_ready_func:callable, item_index:int, item_count:int, clock_div:int) -> None |
|
STATIC mp_obj_t esp32_rmt_issue_pulses(size_t n_args, const mp_obj_t *args) { |
|
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]); |
|
mp_obj_t *tx_ready_fn = MP_OBJ_TO_PTR(args[1]); |
|
mp_uint_t item_index = mp_obj_get_int(args[2]); |
|
mp_uint_t item_count = mp_obj_get_int(args[3]); |
|
self->clock_div = mp_obj_get_int(args[4]); |
|
|
|
check_esp_err(rmt_set_clk_div(self->channel_id, self->clock_div)); |
|
|
|
rmt_register_tx_end_callback(esp32_rmt_private_tx_end_callback, tx_ready_fn); |
|
|
|
check_esp_err(rmt_write_items(self->channel_id, self->items + item_index, item_count, false)); |
|
|
|
return mp_const_none; |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_issue_pulses_obj, 5, 5, esp32_rmt_issue_pulses); |
|
|
|
// USER |
|
|
|
STATIC mp_obj_t esp32_rmt_bitstream_channel(size_t n_args, const mp_obj_t *args) { |
|
if (n_args > 0) { |
|
if (args[0] == mp_const_none) { |
|
esp32_rmt_bitstream_channel_id = -1; |
|
} else { |
|
mp_int_t channel_id = mp_obj_get_int(args[0]); |
|
if (channel_id < 0 || channel_id > RMT_LAST_TX_CHANNEL) { |
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid channel")); |
|
} |
|
esp32_rmt_bitstream_channel_id = channel_id; |
|
} |
|
} |
|
if (esp32_rmt_bitstream_channel_id < 0) { |
|
return mp_const_none; |
|
} else { |
|
return MP_OBJ_NEW_SMALL_INT(esp32_rmt_bitstream_channel_id); |
|
} |
|
} |
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_channel_fun_obj, 0, 1, esp32_rmt_bitstream_channel); |
|
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_channel_obj, MP_ROM_PTR(&esp32_rmt_bitstream_channel_fun_obj)); |
|
|
|
STATIC const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = { |
|
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, |
|
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, |
|
{ MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&esp32_rmt_source_freq_obj) }, |
|
{ MP_ROM_QSTR(MP_QSTR_clock_div), MP_ROM_PTR(&esp32_rmt_clock_div_obj) }, |
|
{ MP_ROM_QSTR(MP_QSTR_wait_done), MP_ROM_PTR(&esp32_rmt_wait_done_obj) }, |
|
{ MP_ROM_QSTR(MP_QSTR_loop), MP_ROM_PTR(&esp32_rmt_loop_obj) }, |
|
{ MP_ROM_QSTR(MP_QSTR_write_pulses), MP_ROM_PTR(&esp32_rmt_write_pulses_obj) }, |
|
|
|
// USER |
|
{ MP_ROM_QSTR(MP_QSTR_store_pulses), MP_ROM_PTR(&esp32_rmt_store_pulses_obj) }, |
|
{ MP_ROM_QSTR(MP_QSTR_issue_pulses), MP_ROM_PTR(&esp32_rmt_issue_pulses_obj) }, |
|
// USER |
|
|
|
// Static methods |
|
{ MP_ROM_QSTR(MP_QSTR_bitstream_channel), MP_ROM_PTR(&esp32_rmt_bitstream_channel_obj) }, |
|
}; |
|
STATIC MP_DEFINE_CONST_DICT(esp32_rmt_locals_dict, esp32_rmt_locals_dict_table); |
|
|
|
const mp_obj_type_t esp32_rmt_type = { |
|
{ &mp_type_type }, |
|
.name = MP_QSTR_RMT, |
|
.print = esp32_rmt_print, |
|
.make_new = esp32_rmt_make_new, |
|
.locals_dict = (mp_obj_dict_t *)&esp32_rmt_locals_dict, |
|
}; |