Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.

library(mapgl) | |
library(tidycensus) | |
library(tigris) | |
options(tigris_use_cache = TRUE) | |
manhattan_income <- get_acs( | |
geography = "tract", | |
variables = "B19013_001", | |
state = "NY", | |
county = "New York", |
library(tidycensus) | |
library(tigris) | |
library(tidyverse) | |
library(sf) | |
library(ggiraph) | |
library(patchwork) | |
options(tigris_use_cache = TRUE) | |
set.seed(123456) | |
# Get a list of counties within the Austin CBSA using tigris |
snippet fragment | |
[${1:text}]{.${2:type}} | |
snippet aside | |
[${1:text}]{.aside} | |
snippet fence | |
:::{.${1:type}} | |
${2:body} | |
::: |
library(mapview) | |
library(leafem) | |
library(leaflet) | |
library(sf) | |
library(geojsonsf) | |
franc_ext <- unname(as.vector(st_bbox(franconia))) | |
francgj = geojsonsf::sf_geojson(franconia) | |
leaflet() |> |
library(tidyverse) | |
big_tech_companies <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-02-07/big_tech_companies.csv') | |
big_tech_companies | |
# # A tibble: 14 × 2 | |
# stock_symbol company | |
# <chr> <chr> | |
# 1 AAPL Apple Inc. | |
# 2 ADBE Adobe Inc. | |
# 3 AMZN Amazon.com, Inc. | |
# 4 CRM Salesforce, Inc. |
library(tidyverse) | |
library(gt) | |
filtered_penguins <- palmerpenguins::penguins |> | |
filter(!is.na(sex)) | |
penguin_weights <- palmerpenguins::penguins |> | |
filter(!is.na(sex)) |> | |
group_by(species) |> | |
summarise( |
#!/bin/bash | |
# Launching RStuido server on a docker with different settings | |
# Basic run command to launce rocker container with RStudio Server | |
docker run -d -p 8787:8787 \ | |
-e USER=rstudio -e PASSWORD=rstudio \ | |
rocker/rstudio:4.2 | |
# Disabling the authentication |
# to create the plots in this Twitter thread: https://twitter.com/MeghanMHall/status/1560411406935138305 | |
library(tidyverse) | |
library(ggrepel) | |
library(scales) | |
df1 <- txhousing %>% | |
filter(city %in% c("Houston","Austin")) %>% | |
group_by(year, city) %>% | |
summarize(avg = mean(median, na.rm = TRUE)) %>% |