Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.
| library(mapgl) | |
| library(tidycensus) | |
| library(tigris) | |
| options(tigris_use_cache = TRUE) | |
| manhattan_income <- get_acs( | |
| geography = "tract", | |
| variables = "B19013_001", | |
| state = "NY", | |
| county = "New York", |
| library(tidycensus) | |
| library(tigris) | |
| library(tidyverse) | |
| library(sf) | |
| library(ggiraph) | |
| library(patchwork) | |
| options(tigris_use_cache = TRUE) | |
| set.seed(123456) | |
| # Get a list of counties within the Austin CBSA using tigris |
| snippet fragment | |
| [${1:text}]{.${2:type}} | |
| snippet aside | |
| [${1:text}]{.aside} | |
| snippet fence | |
| :::{.${1:type}} | |
| ${2:body} | |
| ::: |
| library(mapview) | |
| library(leafem) | |
| library(leaflet) | |
| library(sf) | |
| library(geojsonsf) | |
| franc_ext <- unname(as.vector(st_bbox(franconia))) | |
| francgj = geojsonsf::sf_geojson(franconia) | |
| leaflet() |> |
| library(tidyverse) | |
| big_tech_companies <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-02-07/big_tech_companies.csv') | |
| big_tech_companies | |
| # # A tibble: 14 × 2 | |
| # stock_symbol company | |
| # <chr> <chr> | |
| # 1 AAPL Apple Inc. | |
| # 2 ADBE Adobe Inc. | |
| # 3 AMZN Amazon.com, Inc. | |
| # 4 CRM Salesforce, Inc. |
| library(tidyverse) | |
| library(gt) | |
| filtered_penguins <- palmerpenguins::penguins |> | |
| filter(!is.na(sex)) | |
| penguin_weights <- palmerpenguins::penguins |> | |
| filter(!is.na(sex)) |> | |
| group_by(species) |> | |
| summarise( |
| #!/bin/bash | |
| # Launching RStuido server on a docker with different settings | |
| # Basic run command to launce rocker container with RStudio Server | |
| docker run -d -p 8787:8787 \ | |
| -e USER=rstudio -e PASSWORD=rstudio \ | |
| rocker/rstudio:4.2 | |
| # Disabling the authentication |
| # to create the plots in this Twitter thread: https://twitter.com/MeghanMHall/status/1560411406935138305 | |
| library(tidyverse) | |
| library(ggrepel) | |
| library(scales) | |
| df1 <- txhousing %>% | |
| filter(city %in% c("Houston","Austin")) %>% | |
| group_by(year, city) %>% | |
| summarize(avg = mean(median, na.rm = TRUE)) %>% |