Created
April 23, 2020 03:00
-
-
Save AndreiBarsan/801b4e8561c9e7da02745c332fb3cf3b to your computer and use it in GitHub Desktop.
Compares hacky gradient descent to Nelder-Mead search (simplex search)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
matplotlib.rcParams['xtick.direction'] = 'out' | |
matplotlib.rcParams['ytick.direction'] = 'out' | |
def rosenbrock(x, y, a=1.0, b=100.0): | |
return (a - x) ** 2 + b * (y - x * x) ** 2 | |
def rosenbrock_grad(x, y, a=1.0, b=100.0): | |
return [ | |
-2.0 * (a - x) + 2 * b * (y - x * x) * (-2.0) * x, | |
2 * b * (y - x * x), | |
] | |
def gradient_descent(alpha=0.005, eps=1e-8): | |
"""Simple GD with momentum.""" | |
theta = [-1.0, 2.0] | |
vals = [] | |
thetas = [] | |
thetas.append(list(theta)) | |
mom = [0.0, 0.0] | |
for i in range(1000): | |
val = rosenbrock(theta[0], theta[1]) | |
vals.append(val) | |
if len(vals) > 1 and abs(vals[-1] - vals[-2]) < eps: | |
break | |
grad = rosenbrock_grad(theta[0], theta[1]) | |
mom[0] = mom[0] * 0.9 + grad[0] * 0.1 | |
mom[1] = mom[1] * 0.9 + grad[1] * 0.1 | |
theta[0] -= alpha * mom[0] | |
theta[1] -= alpha * mom[1] | |
thetas.append(list(theta)) | |
return vals, thetas | |
def contour(function, x_vals=None, y_vals=None): | |
if x_vals is None: | |
x_vals = np.linspace(-2.0, 2.0, num=500) | |
if y_vals is None: | |
y_vals = np.linspace(-5.0, 5.0, num=500) | |
xx, yy = np.meshgrid(x_vals, y_vals) | |
zz = function(xx, yy) | |
contour_plot = plt.contourf(xx, yy, zz, levels=[0.1, 0.5, 1.0, 10.0, 100.0, 250, 1000.0, 3000.0]) | |
# plt.imshow(zz, extent=[-5, 5, -5, 5]) | |
plt.colorbar() | |
# plt.clabel(contour_plot, fontsize=9, inline=1) | |
vals, thetas = gradient_descent() | |
thetas = np.array(thetas) | |
contour(rosenbrock) | |
plt.scatter(thetas[:, 0], thetas[:, 1]) | |
plt.title("Final val {} | {} steps".format(vals[-1], len(vals))) | |
print(vals[-1]) | |
print(np.array(vals).min()) | |
def nelder_mead(fn_2d, **kwargs): | |
simplex = np.array([ | |
[1.0, -3.0], | |
[2.0, 0.0], | |
[1.0, 4.0], | |
]) | |
alpha = kwargs.get('alpha', 1.0) | |
gamma = kwargs.get('gamma', 2.0) | |
rho = kwargs.get('rho', 0.5) | |
sigma = kwargs.get('sigma', 0.5) | |
def draw(): | |
plt.figure() | |
contour(fn_2d) | |
xs, ys = zip(*np.vstack((simplex, simplex[:1, :]))) | |
plt.plot(xs, ys) | |
# TODO proper termination condition | |
for iteration in range(20): | |
draw() | |
costs = fn_2d(simplex[:, 0], simplex[:, 1]) | |
sorted_args = np.argsort(costs) | |
sorted_costs = costs[sorted_args] | |
sorted_simplex = simplex[sorted_args, :] | |
centroid = np.mean(sorted_simplex[:-1, :], axis=0) | |
reflected = centroid + alpha * (centroid - sorted_simplex[-1, :]) | |
# Only for display purposes | |
centroid_val = fn_2d(centroid[0], centroid[1]) | |
# print(centroid_val) | |
reflected_val = fn_2d(reflected[0], reflected[1]) | |
if reflected_val <= sorted_costs[0]: | |
# Expand | |
expanded = centroid + gamma * (reflected - centroid) | |
expanded_val = fn_2d(expanded[0], expanded[1]) | |
if expanded_val < reflected_val: | |
# Expansion worked! | |
sorted_simplex[-1, :] = expanded | |
else: | |
# Expansion failed | |
sorted_simplex[-1, :] = reflected | |
elif sorted_costs[0] < reflected_val < sorted_costs[1]: | |
# OK point | |
sorted_simplex[-1, :] = reflected | |
else: | |
# Try to contract | |
contraction = centroid + rho * (sorted_simplex[-1, :] - centroid) | |
contraction_val = fn_2d(contraction[0], contraction[1]) | |
if contraction_val < sorted_costs[-1]: | |
# Eh, at least we didn't make things worse... | |
sorted_simplex[-1, :] = contraction | |
else: | |
# Crap... re-compute simplex points around best | |
sorted_simplex[1:, :] = sorted_simplex[0, :] + sigma * (sorted_simplex[1:, :] - sorted_simplex[0, :]) | |
simplex = np.array(sorted_simplex) | |
plt.title("it = {} | centroid val = {:.4f}".format(iteration, centroid_val)) | |
plt.savefig('/tmp/amoeba-{:04d}.png'.format(iteration)) | |
nelder_mead(rosenbrock) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment