Created
July 14, 2024 12:58
-
-
Save AngryLoki/15e31eb042f22adc266905c09893bdd4 to your computer and use it in GitHub Desktop.
half.cpp [r422] snapshot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// half - IEEE 754-based half-precision floating-point library. | |
// | |
// Copyright (c) 2012-2024 Christian Rau <[email protected]> | |
// | |
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation | |
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, | |
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the | |
// Software is furnished to do so, subject to the following conditions: | |
// | |
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. | |
// | |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE | |
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
// Version 2.2.0 | |
/// \file | |
/// Main header file for half-precision functionality. | |
#ifndef HALF_HALF_HPP | |
#define HALF_HALF_HPP | |
#define HALF_GCC_VERSION (__GNUC__*100+__GNUC_MINOR__) | |
#if defined(__INTEL_COMPILER) | |
#define HALF_ICC_VERSION __INTEL_COMPILER | |
#elif defined(__ICC) | |
#define HALF_ICC_VERSION __ICC | |
#elif defined(__ICL) | |
#define HALF_ICC_VERSION __ICL | |
#else | |
#define HALF_ICC_VERSION 0 | |
#endif | |
// check C++11 language features | |
#if defined(__clang__) // clang | |
#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR) | |
#define HALF_ENABLE_CPP11_CONSTEXPR 1 | |
#endif | |
#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT) | |
#define HALF_ENABLE_CPP11_NOEXCEPT 1 | |
#endif | |
#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS) | |
#define HALF_ENABLE_CPP11_USER_LITERALS 1 | |
#endif | |
#if __has_feature(cxx_thread_local) && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) | |
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1 | |
#endif | |
#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG) | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif | |
#elif HALF_ICC_VERSION && defined(__INTEL_CXX11_MODE__) // Intel C++ | |
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) | |
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1 | |
#endif | |
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) | |
#define HALF_ENABLE_CPP11_USER_LITERALS 1 | |
#endif | |
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) | |
#define HALF_ENABLE_CPP11_CONSTEXPR 1 | |
#endif | |
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) | |
#define HALF_ENABLE_CPP11_NOEXCEPT 1 | |
#endif | |
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_LONG_LONG) | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif | |
#elif defined(__GNUC__) // gcc | |
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L | |
#if HALF_GCC_VERSION >= 408 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) | |
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1 | |
#endif | |
#if HALF_GCC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) | |
#define HALF_ENABLE_CPP11_USER_LITERALS 1 | |
#endif | |
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) | |
#define HALF_ENABLE_CPP11_CONSTEXPR 1 | |
#endif | |
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) | |
#define HALF_ENABLE_CPP11_NOEXCEPT 1 | |
#endif | |
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if !defined(HALF_ENABLE_CPP11_LONG_LONG) | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif | |
#endif | |
#define HALF_TWOS_COMPLEMENT_INT 1 | |
#elif defined(_MSC_VER) // Visual C++ | |
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) | |
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1 | |
#endif | |
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) | |
#define HALF_ENABLE_CPP11_USER_LITERALS 1 | |
#endif | |
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) | |
#define HALF_ENABLE_CPP11_CONSTEXPR 1 | |
#endif | |
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) | |
#define HALF_ENABLE_CPP11_NOEXCEPT 1 | |
#endif | |
#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG) | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif | |
#define HALF_TWOS_COMPLEMENT_INT 1 | |
#define HALF_POP_WARNINGS 1 | |
#pragma warning(push) | |
#pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned | |
#endif | |
// check C++11 library features | |
#include <utility> | |
#if defined(_LIBCPP_VERSION) // libc++ | |
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 | |
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS | |
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_CSTDINT | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_CMATH | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_HASH | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_CFENV | |
#define HALF_ENABLE_CPP11_CFENV 1 | |
#endif | |
#endif | |
#elif defined(__GLIBCXX__) // libstdc++ | |
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 | |
#ifdef __clang__ | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) | |
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1 | |
#endif | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT) | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH) | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH) | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CFENV) | |
#define HALF_ENABLE_CPP11_CFENV 1 | |
#endif | |
#else | |
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) | |
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1 | |
#endif | |
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT) | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH) | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH) | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CFENV) | |
#define HALF_ENABLE_CPP11_CFENV 1 | |
#endif | |
#endif | |
#endif | |
#elif defined(_CPPLIB_VER) // Dinkumware/Visual C++ | |
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) | |
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1 | |
#endif | |
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_CSTDINT) | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_HASH) | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CMATH) | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CFENV) | |
#define HALF_ENABLE_CPP11_CFENV 1 | |
#endif | |
#endif | |
#undef HALF_GCC_VERSION | |
#undef HALF_ICC_VERSION | |
// any error throwing C++ exceptions? | |
#if defined(HALF_ERRHANDLING_THROW_INVALID) || defined(HALF_ERRHANDLING_THROW_DIVBYZERO) || defined(HALF_ERRHANDLING_THROW_OVERFLOW) || defined(HALF_ERRHANDLING_THROW_UNDERFLOW) || defined(HALF_ERRHANDLING_THROW_INEXACT) | |
#define HALF_ERRHANDLING_THROWS 1 | |
#endif | |
// any error handling enabled? | |
#define HALF_ERRHANDLING (HALF_ERRHANDLING_FLAGS||HALF_ERRHANDLING_ERRNO||HALF_ERRHANDLING_FENV||HALF_ERRHANDLING_THROWS) | |
#if HALF_ERRHANDLING | |
#define HALF_UNUSED_NOERR(name) name | |
#else | |
#define HALF_UNUSED_NOERR(name) | |
#endif | |
// support constexpr | |
#if HALF_ENABLE_CPP11_CONSTEXPR | |
#define HALF_CONSTEXPR constexpr | |
#define HALF_CONSTEXPR_CONST constexpr | |
#if HALF_ERRHANDLING | |
#define HALF_CONSTEXPR_NOERR | |
#else | |
#define HALF_CONSTEXPR_NOERR constexpr | |
#endif | |
#else | |
#define HALF_CONSTEXPR | |
#define HALF_CONSTEXPR_CONST const | |
#define HALF_CONSTEXPR_NOERR | |
#endif | |
// support noexcept | |
#if HALF_ENABLE_CPP11_NOEXCEPT | |
#define HALF_NOEXCEPT noexcept | |
#define HALF_NOTHROW noexcept | |
#else | |
#define HALF_NOEXCEPT | |
#define HALF_NOTHROW throw() | |
#endif | |
// support thread storage | |
#if HALF_ENABLE_CPP11_THREAD_LOCAL | |
#define HALF_THREAD_LOCAL thread_local | |
#else | |
#define HALF_THREAD_LOCAL static | |
#endif | |
#include <utility> | |
#include <algorithm> | |
#include <istream> | |
#include <ostream> | |
#include <limits> | |
#include <stdexcept> | |
#include <climits> | |
#include <cmath> | |
#include <cstring> | |
#include <cstdlib> | |
#if HALF_ENABLE_CPP11_TYPE_TRAITS | |
#include <type_traits> | |
#endif | |
#if HALF_ENABLE_CPP11_CSTDINT | |
#include <cstdint> | |
#endif | |
#if HALF_ERRHANDLING_ERRNO | |
#include <cerrno> | |
#endif | |
#if HALF_ENABLE_CPP11_CFENV | |
#include <cfenv> | |
#endif | |
#if HALF_ENABLE_CPP11_HASH | |
#include <functional> | |
#endif | |
#ifndef HALF_ENABLE_F16C_INTRINSICS | |
/// Enable F16C intruction set intrinsics. | |
/// Defining this to 1 enables the use of [F16C compiler intrinsics](https://en.wikipedia.org/wiki/F16C) for converting between | |
/// half-precision and single-precision values which may result in improved performance. This will not perform additional checks | |
/// for support of the F16C instruction set, so an appropriate target platform is required when enabling this feature. | |
/// | |
/// Unless predefined it will be enabled automatically when the `__F16C__` symbol is defined, which some compilers do on supporting platforms. | |
#define HALF_ENABLE_F16C_INTRINSICS __F16C__ | |
#endif | |
#if HALF_ENABLE_F16C_INTRINSICS | |
#include <immintrin.h> | |
#endif | |
#ifdef HALF_DOXYGEN_ONLY | |
/// Type for internal floating-point computations. | |
/// This can be predefined to a built-in floating-point type (`float`, `double` or `long double`) to override the internal | |
/// half-precision implementation to use this type for computing arithmetic operations and mathematical functions (if available). | |
/// This can result in improved performance for arithmetic operators and mathematical functions but might cause results to | |
/// deviate from the specified half-precision rounding mode and inhibits proper detection of half-precision exceptions. | |
#define HALF_ARITHMETIC_TYPE (undefined) | |
/// Enable internal exception flags. | |
/// Defining this to 1 causes operations on half-precision values to raise internal floating-point exception flags according to | |
/// the IEEE 754 standard. These can then be cleared and checked with clearexcept(), testexcept(). | |
#define HALF_ERRHANDLING_FLAGS 0 | |
/// Enable exception propagation to `errno`. | |
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to | |
/// [errno](https://en.cppreference.com/w/cpp/error/errno) from `<cerrno>`. Specifically this will propagate domain errors as | |
/// [EDOM](https://en.cppreference.com/w/cpp/error/errno_macros) and pole, overflow and underflow errors as | |
/// [ERANGE](https://en.cppreference.com/w/cpp/error/errno_macros). Inexact errors won't be propagated. | |
#define HALF_ERRHANDLING_ERRNO 0 | |
/// Enable exception propagation to built-in floating-point platform. | |
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to the built-in | |
/// single- and double-precision implementation's exception flags using the | |
/// [C++11 floating-point environment control](https://en.cppreference.com/w/cpp/numeric/fenv) from `<cfenv>`. However, this | |
/// does not work in reverse and single- or double-precision exceptions will not raise the corresponding half-precision | |
/// exception flags, nor will explicitly clearing flags clear the corresponding built-in flags. | |
#define HALF_ERRHANDLING_FENV 0 | |
/// Throw C++ exception on domain errors. | |
/// Defining this to a string literal causes operations on half-precision values to throw a | |
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on domain errors. | |
#define HALF_ERRHANDLING_THROW_INVALID (undefined) | |
/// Throw C++ exception on pole errors. | |
/// Defining this to a string literal causes operations on half-precision values to throw a | |
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on pole errors. | |
#define HALF_ERRHANDLING_THROW_DIVBYZERO (undefined) | |
/// Throw C++ exception on overflow errors. | |
/// Defining this to a string literal causes operations on half-precision values to throw a | |
/// [std::overflow_error](https://en.cppreference.com/w/cpp/error/overflow_error) with the specified message on overflows. | |
#define HALF_ERRHANDLING_THROW_OVERFLOW (undefined) | |
/// Throw C++ exception on underflow errors. | |
/// Defining this to a string literal causes operations on half-precision values to throw a | |
/// [std::underflow_error](https://en.cppreference.com/w/cpp/error/underflow_error) with the specified message on underflows. | |
#define HALF_ERRHANDLING_THROW_UNDERFLOW (undefined) | |
/// Throw C++ exception on rounding errors. | |
/// Defining this to 1 causes operations on half-precision values to throw a | |
/// [std::range_error](https://en.cppreference.com/w/cpp/error/range_error) with the specified message on general rounding errors. | |
#define HALF_ERRHANDLING_THROW_INEXACT (undefined) | |
#endif | |
#ifndef HALF_ERRHANDLING_OVERFLOW_TO_INEXACT | |
/// Raise INEXACT exception on overflow. | |
/// Defining this to 1 (default) causes overflow errors to also raise inexact exceptions. | |
/// These will be raised after any possible handling of the underflow exception. | |
#define HALF_ERRHANDLING_OVERFLOW_TO_INEXACT 1 | |
#endif | |
#ifndef HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT | |
/// Raise INEXACT exception on underflow. | |
/// Defining this to 1 (default) causes underflow errors to also raise inexact exceptions. | |
/// These will be raised after any possible handling of the underflow exception. | |
/// | |
/// **Note:** This will actually cause underflow (and the accompanying inexact) exceptions to be raised *only* when the result | |
/// is inexact, while if disabled bare underflow errors will be raised for *any* (possibly exact) subnormal result. | |
#define HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT 1 | |
#endif | |
/// Default rounding mode. | |
/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and more precise types | |
/// (unless using half_cast() and specifying the rounding mode directly) as well as in arithmetic operations and mathematical | |
/// functions. It can be redefined (before including half.hpp) to one of the standard rounding modes using their respective | |
/// constants or the equivalent values of | |
/// [std::float_round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/float_round_style): | |
/// | |
/// `std::float_round_style` | value | rounding | |
/// ---------------------------------|-------|------------------------- | |
/// `std::round_indeterminate` | -1 | fastest | |
/// `std::round_toward_zero` | 0 | toward zero | |
/// `std::round_to_nearest` | 1 | to nearest (default) | |
/// `std::round_toward_infinity` | 2 | toward positive infinity | |
/// `std::round_toward_neg_infinity` | 3 | toward negative infinity | |
/// | |
/// By default this is set to `1` (`std::round_to_nearest`), which rounds results to the nearest representable value. It can even | |
/// be set to [std::numeric_limits<float>::round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/round_style) to synchronize | |
/// the rounding mode with that of the built-in single-precision implementation (which is likely `std::round_to_nearest`, though). | |
#ifndef HALF_ROUND_STYLE | |
#define HALF_ROUND_STYLE 1 // = std::round_to_nearest | |
#endif | |
/// Value signaling overflow. | |
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an | |
/// operation, in particular it just evaluates to positive infinity. | |
/// | |
/// **See also:** Documentation for [HUGE_VAL](https://en.cppreference.com/w/cpp/numeric/math/HUGE_VAL) | |
#define HUGE_VALH std::numeric_limits<half_float::half>::infinity() | |
/// Fast half-precision fma function. | |
/// This symbol is defined if the fma() function generally executes as fast as, or faster than, a separate | |
/// half-precision multiplication followed by an addition, which is always the case. | |
/// | |
/// **See also:** Documentation for [FP_FAST_FMA](https://en.cppreference.com/w/cpp/numeric/math/fma) | |
#define FP_FAST_FMAH 1 | |
/// Half rounding mode. | |
/// In correspondence with `FLT_ROUNDS` from `<cfloat>` this symbol expands to the rounding mode used for | |
/// half-precision operations. It is an alias for [HALF_ROUND_STYLE](\ref HALF_ROUND_STYLE). | |
/// | |
/// **See also:** Documentation for [FLT_ROUNDS](https://en.cppreference.com/w/cpp/types/climits/FLT_ROUNDS) | |
#define HLF_ROUNDS HALF_ROUND_STYLE | |
#ifndef FP_ILOGB0 | |
#define FP_ILOGB0 INT_MIN | |
#endif | |
#ifndef FP_ILOGBNAN | |
#define FP_ILOGBNAN INT_MAX | |
#endif | |
#ifndef FP_SUBNORMAL | |
#define FP_SUBNORMAL 0 | |
#endif | |
#ifndef FP_ZERO | |
#define FP_ZERO 1 | |
#endif | |
#ifndef FP_NAN | |
#define FP_NAN 2 | |
#endif | |
#ifndef FP_INFINITE | |
#define FP_INFINITE 3 | |
#endif | |
#ifndef FP_NORMAL | |
#define FP_NORMAL 4 | |
#endif | |
#if !HALF_ENABLE_CPP11_CFENV && !defined(FE_ALL_EXCEPT) | |
#define FE_INVALID 0x10 | |
#define FE_DIVBYZERO 0x08 | |
#define FE_OVERFLOW 0x04 | |
#define FE_UNDERFLOW 0x02 | |
#define FE_INEXACT 0x01 | |
#define FE_ALL_EXCEPT (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT) | |
#endif | |
/// Main namespace for half-precision functionality. | |
/// This namespace contains all the functionality provided by the library. | |
namespace half_float | |
{ | |
class half; | |
#if HALF_ENABLE_CPP11_USER_LITERALS | |
/// Library-defined half-precision literals. | |
/// Import this namespace to enable half-precision floating-point literals: | |
/// ~~~~{.cpp} | |
/// using namespace half_float::literal; | |
/// half_float::half = 4.2_h; | |
/// ~~~~ | |
namespace literal | |
{ | |
half operator "" _h(long double); | |
} | |
#endif | |
/// \internal | |
/// \brief Implementation details. | |
namespace detail | |
{ | |
#if HALF_ENABLE_CPP11_TYPE_TRAITS | |
/// Conditional type. | |
template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {}; | |
/// Helper for tag dispatching. | |
template<bool B> struct bool_type : std::integral_constant<bool,B> {}; | |
using std::true_type; | |
using std::false_type; | |
/// Type traits for floating-point types. | |
template<typename T> struct is_float : std::is_floating_point<T> {}; | |
#else | |
/// Conditional type. | |
template<bool,typename T,typename> struct conditional { typedef T type; }; | |
template<typename T,typename F> struct conditional<false,T,F> { typedef F type; }; | |
/// Helper for tag dispatching. | |
template<bool> struct bool_type {}; | |
typedef bool_type<true> true_type; | |
typedef bool_type<false> false_type; | |
/// Type traits for floating-point types. | |
template<typename> struct is_float : false_type {}; | |
template<typename T> struct is_float<const T> : is_float<T> {}; | |
template<typename T> struct is_float<volatile T> : is_float<T> {}; | |
template<typename T> struct is_float<const volatile T> : is_float<T> {}; | |
template<> struct is_float<float> : true_type {}; | |
template<> struct is_float<double> : true_type {}; | |
template<> struct is_float<long double> : true_type {}; | |
#endif | |
/// Type traits for floating-point bits. | |
template<typename T> struct bits { typedef unsigned char type; }; | |
template<typename T> struct bits<const T> : bits<T> {}; | |
template<typename T> struct bits<volatile T> : bits<T> {}; | |
template<typename T> struct bits<const volatile T> : bits<T> {}; | |
#if HALF_ENABLE_CPP11_CSTDINT | |
/// Unsigned integer of (at least) 16 bits width. | |
typedef std::uint_least16_t uint16; | |
/// Fastest unsigned integer of (at least) 32 bits width. | |
typedef std::uint_fast32_t uint32; | |
/// Fastest signed integer of (at least) 32 bits width. | |
typedef std::int_fast32_t int32; | |
/// Unsigned integer of (at least) 32 bits width. | |
template<> struct bits<float> { typedef std::uint_least32_t type; }; | |
/// Unsigned integer of (at least) 64 bits width. | |
template<> struct bits<double> { typedef std::uint_least64_t type; }; | |
#else | |
/// Unsigned integer of (at least) 16 bits width. | |
typedef unsigned short uint16; | |
/// Fastest unsigned integer of (at least) 32 bits width. | |
typedef unsigned long uint32; | |
/// Fastest unsigned integer of (at least) 32 bits width. | |
typedef long int32; | |
/// Unsigned integer of (at least) 32 bits width. | |
template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {}; | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
/// Unsigned integer of (at least) 64 bits width. | |
template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {}; | |
#else | |
/// Unsigned integer of (at least) 64 bits width. | |
template<> struct bits<double> { typedef unsigned long type; }; | |
#endif | |
#endif | |
#ifdef HALF_ARITHMETIC_TYPE | |
/// Type to use for arithmetic computations and mathematical functions internally. | |
typedef HALF_ARITHMETIC_TYPE internal_t; | |
#endif | |
/// Tag type for binary construction. | |
struct binary_t {}; | |
/// Tag for binary construction. | |
HALF_CONSTEXPR_CONST binary_t binary = binary_t(); | |
/// \name Implementation defined classification and arithmetic | |
/// \{ | |
/// Check for infinity. | |
/// \tparam T argument type (builtin floating-point type) | |
/// \param arg value to query | |
/// \retval true if infinity | |
/// \retval false else | |
template<typename T> bool builtin_isinf(T arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return std::isinf(arg); | |
#elif defined(_MSC_VER) | |
return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg)); | |
#else | |
return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity(); | |
#endif | |
} | |
/// Check for NaN. | |
/// \tparam T argument type (builtin floating-point type) | |
/// \param arg value to query | |
/// \retval true if not a number | |
/// \retval false else | |
template<typename T> bool builtin_isnan(T arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return std::isnan(arg); | |
#elif defined(_MSC_VER) | |
return ::_isnan(static_cast<double>(arg)) != 0; | |
#else | |
return arg != arg; | |
#endif | |
} | |
/// Check sign. | |
/// \tparam T argument type (builtin floating-point type) | |
/// \param arg value to query | |
/// \retval true if signbit set | |
/// \retval false else | |
template<typename T> bool builtin_signbit(T arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return std::signbit(arg); | |
#else | |
return arg < T() || (arg == T() && T(1)/arg < T()); | |
#endif | |
} | |
/// Platform-independent sign mask. | |
/// \param arg integer value in two's complement | |
/// \retval -1 if \a arg negative | |
/// \retval 0 if \a arg positive | |
inline uint32 sign_mask(uint32 arg) | |
{ | |
static const int N = std::numeric_limits<uint32>::digits - 1; | |
#if HALF_TWOS_COMPLEMENT_INT | |
return static_cast<int32>(arg) >> N; | |
#else | |
return -((arg>>N)&1); | |
#endif | |
} | |
/// Platform-independent arithmetic right shift. | |
/// \param arg integer value in two's complement | |
/// \param i shift amount (at most 31) | |
/// \return \a arg right shifted for \a i bits with possible sign extension | |
inline uint32 arithmetic_shift(uint32 arg, int i) | |
{ | |
#if HALF_TWOS_COMPLEMENT_INT | |
return static_cast<int32>(arg) >> i; | |
#else | |
return static_cast<int32>(arg)/(static_cast<int32>(1)<<i) - ((arg>>(std::numeric_limits<uint32>::digits-1))&1); | |
#endif | |
} | |
/// \} | |
/// \name Error handling | |
/// \{ | |
/// Internal exception flags. | |
/// \return reference to global exception flags | |
inline int& errflags() { HALF_THREAD_LOCAL int flags = 0; return flags; } | |
/// Raise floating-point exception. | |
/// \param flags exceptions to raise | |
/// \param cond condition to raise exceptions for | |
inline void raise(int HALF_UNUSED_NOERR(flags), bool HALF_UNUSED_NOERR(cond) = true) | |
{ | |
#if HALF_ERRHANDLING | |
if(!cond) | |
return; | |
#if HALF_ERRHANDLING_FLAGS | |
errflags() |= flags; | |
#endif | |
#if HALF_ERRHANDLING_ERRNO | |
if(flags & FE_INVALID) | |
errno = EDOM; | |
else if(flags & (FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW)) | |
errno = ERANGE; | |
#endif | |
#if HALF_ERRHANDLING_FENV && HALF_ENABLE_CPP11_CFENV | |
std::feraiseexcept(flags); | |
#endif | |
#ifdef HALF_ERRHANDLING_THROW_INVALID | |
if(flags & FE_INVALID) | |
throw std::domain_error(HALF_ERRHANDLING_THROW_INVALID); | |
#endif | |
#ifdef HALF_ERRHANDLING_THROW_DIVBYZERO | |
if(flags & FE_DIVBYZERO) | |
throw std::domain_error(HALF_ERRHANDLING_THROW_DIVBYZERO); | |
#endif | |
#ifdef HALF_ERRHANDLING_THROW_OVERFLOW | |
if(flags & FE_OVERFLOW) | |
throw std::overflow_error(HALF_ERRHANDLING_THROW_OVERFLOW); | |
#endif | |
#ifdef HALF_ERRHANDLING_THROW_UNDERFLOW | |
if(flags & FE_UNDERFLOW) | |
throw std::underflow_error(HALF_ERRHANDLING_THROW_UNDERFLOW); | |
#endif | |
#ifdef HALF_ERRHANDLING_THROW_INEXACT | |
if(flags & FE_INEXACT) | |
throw std::range_error(HALF_ERRHANDLING_THROW_INEXACT); | |
#endif | |
#if HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT | |
if((flags & FE_UNDERFLOW) && !(flags & FE_INEXACT)) | |
detail::raise(FE_INEXACT); | |
#endif | |
#if HALF_ERRHANDLING_OVERFLOW_TO_INEXACT | |
if((flags & FE_OVERFLOW) && !(flags & FE_INEXACT)) | |
detail::raise(FE_INEXACT); | |
#endif | |
#endif | |
} | |
/// Check and signal for any NaN. | |
/// \param x first half-precision value to check | |
/// \param y second half-precision value to check | |
/// \retval true if either \a x or \a y is NaN | |
/// \retval false else | |
/// \exception FE_INVALID if \a x or \a y is NaN | |
inline HALF_CONSTEXPR_NOERR bool compsignal(unsigned int x, unsigned int y) | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_INVALID, (x&0x7FFF)>0x7C00 || (y&0x7FFF)>0x7C00); | |
#endif | |
return (x&0x7FFF) > 0x7C00 || (y&0x7FFF) > 0x7C00; | |
} | |
/// Signal and silence signaling NaN. | |
/// \param nan half-precision NaN value | |
/// \return quiet NaN | |
/// \exception FE_INVALID if \a nan is signaling NaN | |
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int nan) | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_INVALID, !(nan&0x200)); | |
#endif | |
return nan | 0x200; | |
} | |
/// Signal and silence signaling NaNs. | |
/// \param x first half-precision value to check | |
/// \param y second half-precision value to check | |
/// \return quiet NaN | |
/// \exception FE_INVALID if \a x or \a y is signaling NaN | |
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y) | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200))); | |
#endif | |
return ((x&0x7FFF)>0x7C00) ? (x|0x200) : (y|0x200); | |
} | |
/// Signal and silence signaling NaNs. | |
/// \param x first half-precision value to check | |
/// \param y second half-precision value to check | |
/// \param z third half-precision value to check | |
/// \return quiet NaN | |
/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN | |
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y, unsigned int z) | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)) || ((z&0x7FFF)>0x7C00 && !(z&0x200))); | |
#endif | |
return ((x&0x7FFF)>0x7C00) ? (x|0x200) : ((y&0x7FFF)>0x7C00) ? (y|0x200) : (z|0x200); | |
} | |
/// Select value or signaling NaN. | |
/// \param x preferred half-precision value | |
/// \param y ignored half-precision value except for signaling NaN | |
/// \return \a y if signaling NaN, \a x otherwise | |
/// \exception FE_INVALID if \a y is signaling NaN | |
inline HALF_CONSTEXPR_NOERR unsigned int select(unsigned int x, unsigned int HALF_UNUSED_NOERR(y)) | |
{ | |
#if HALF_ERRHANDLING | |
return (((y&0x7FFF)>0x7C00) && !(y&0x200)) ? detail::signal(y) : x; | |
#else | |
return x; | |
#endif | |
} | |
/// Raise domain error and return NaN. | |
/// return quiet NaN | |
/// \exception FE_INVALID | |
inline HALF_CONSTEXPR_NOERR unsigned int invalid() | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_INVALID); | |
#endif | |
return 0x7FFF; | |
} | |
/// Raise pole error and return infinity. | |
/// \param sign half-precision value with sign bit only | |
/// \return half-precision infinity with sign of \a sign | |
/// \exception FE_DIVBYZERO | |
inline HALF_CONSTEXPR_NOERR unsigned int pole(unsigned int sign = 0) | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_DIVBYZERO); | |
#endif | |
return sign | 0x7C00; | |
} | |
/// Check value for underflow. | |
/// \param arg non-zero half-precision value to check | |
/// \return \a arg | |
/// \exception FE_UNDERFLOW if arg is subnormal | |
inline HALF_CONSTEXPR_NOERR unsigned int check_underflow(unsigned int arg) | |
{ | |
#if HALF_ERRHANDLING && !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT | |
detail::raise(FE_UNDERFLOW, !(arg&0x7C00)); | |
#endif | |
return arg; | |
} | |
/// \} | |
/// \name Conversion and rounding | |
/// \{ | |
/// Half-precision overflow. | |
/// \tparam R rounding mode to use | |
/// \param sign half-precision value with sign bit only | |
/// \return rounded overflowing half-precision value | |
/// \exception FE_OVERFLOW | |
template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int overflow(unsigned int sign = 0) | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_OVERFLOW); | |
#endif | |
return (R==std::round_toward_infinity) ? (sign+0x7C00-(sign>>15)) : | |
(R==std::round_toward_neg_infinity) ? (sign+0x7BFF+(sign>>15)) : | |
(R==std::round_toward_zero) ? (sign|0x7BFF) : | |
(sign|0x7C00); | |
} | |
/// Half-precision underflow. | |
/// \tparam R rounding mode to use | |
/// \param sign half-precision value with sign bit only | |
/// \return rounded underflowing half-precision value | |
/// \exception FE_UNDERFLOW | |
template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int underflow(unsigned int sign = 0) | |
{ | |
#if HALF_ERRHANDLING | |
detail::raise(FE_UNDERFLOW); | |
#endif | |
return (R==std::round_toward_infinity) ? (sign+1-(sign>>15)) : | |
(R==std::round_toward_neg_infinity) ? (sign+(sign>>15)) : | |
sign; | |
} | |
/// Round half-precision number. | |
/// \tparam R rounding mode to use | |
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results | |
/// \param value finite half-precision number to round | |
/// \param g guard bit (most significant discarded bit) | |
/// \param s sticky bit (or of all but the most significant discarded bits) | |
/// \return rounded half-precision value | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded or \a I is `true` | |
template<std::float_round_style R,bool I> HALF_CONSTEXPR_NOERR unsigned int rounded(unsigned int value, int g, int s) | |
{ | |
#if HALF_ERRHANDLING | |
value += (R==std::round_to_nearest) ? (g&(s|value)) : | |
(R==std::round_toward_infinity) ? (~(value>>15)&(g|s)) : | |
(R==std::round_toward_neg_infinity) ? ((value>>15)&(g|s)) : 0; | |
if((value&0x7C00) == 0x7C00) | |
detail::raise(FE_OVERFLOW); | |
else if(value & 0x7C00) | |
detail::raise(FE_INEXACT, I || (g|s)!=0); | |
else | |
detail::raise(FE_UNDERFLOW, !(HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT) || I || (g|s)!=0); | |
return value; | |
#else | |
return (R==std::round_to_nearest) ? (value+(g&(s|value))) : | |
(R==std::round_toward_infinity) ? (value+(~(value>>15)&(g|s))) : | |
(R==std::round_toward_neg_infinity) ? (value+((value>>15)&(g|s))) : | |
value; | |
#endif | |
} | |
/// Round half-precision number to nearest integer value. | |
/// \tparam R rounding mode to use | |
/// \tparam E `true` for round to even, `false` for round away from zero | |
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it | |
/// \param value half-precision value to round | |
/// \return nearest integral half-precision value | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_INEXACT if value had to be rounded and \a I is `true` | |
template<std::float_round_style R,bool E,bool I> unsigned int integral(unsigned int value) | |
{ | |
unsigned int abs = value & 0x7FFF; | |
if(abs < 0x3C00) | |
{ | |
detail::raise(FE_INEXACT, I); | |
return ((R==std::round_to_nearest) ? (0x3C00&-static_cast<unsigned>(abs>=(0x3800+E))) : | |
(R==std::round_toward_infinity) ? (0x3C00&-(~(value>>15)&(abs!=0))) : | |
(R==std::round_toward_neg_infinity) ? (0x3C00&-static_cast<unsigned>(value>0x8000)) : | |
0) | (value&0x8000); | |
} | |
if(abs >= 0x6400) | |
return (abs>0x7C00) ? detail::signal(value) : value; | |
unsigned int exp = 25 - (abs>>10), mask = (1<<exp) - 1; | |
detail::raise(FE_INEXACT, I && (value&mask)); | |
return (( (R==std::round_to_nearest) ? ((1<<(exp-1))-(~(value>>exp)&E)) : | |
(R==std::round_toward_infinity) ? (mask&((value>>15)-1)) : | |
(R==std::round_toward_neg_infinity) ? (mask&-(value>>15)) : | |
0) + value) & ~mask; | |
} | |
/// Convert fixed point to half-precision floating-point. | |
/// \tparam R rounding mode to use | |
/// \tparam F number of fractional bits in [11,31] | |
/// \tparam S `true` for signed, `false` for unsigned | |
/// \tparam N `true` for additional normalization step, `false` if already normalized to 1.F | |
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results | |
/// \param m mantissa in Q1.F fixed point format | |
/// \param exp biased exponent - 1 | |
/// \param sign half-precision value with sign bit only | |
/// \param s sticky bit (or of all but the most significant already discarded bits) | |
/// \return value converted to half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded or \a I is `true` | |
template<std::float_round_style R,unsigned int F,bool S,bool N,bool I> unsigned int fixed2half(uint32 m, int exp = 14, unsigned int sign = 0, int s = 0) | |
{ | |
if(S) | |
{ | |
uint32 msign = sign_mask(m); | |
m = (m^msign) - msign; | |
sign = msign & 0x8000; | |
} | |
if(N) | |
for(; m<(static_cast<uint32>(1)<<F) && exp; m<<=1,--exp) ; | |
else if(exp < 0) | |
return rounded<R,I>(sign+static_cast<unsigned int>(m>>(F-10-exp)), static_cast<int>((m>>(F-11-exp))&1), s|((m&((static_cast<uint32>(1)<<(F-11-exp))-1))!=0)); | |
return rounded<R,I>(sign+(exp<<10)+static_cast<unsigned int>(m>>(F-10)), static_cast<int>((m>>(F-11))&1), s|((m&((static_cast<uint32>(1)<<(F-11))-1))!=0)); | |
} | |
/// Convert IEEE single-precision to half-precision. | |
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). | |
/// \tparam R rounding mode to use | |
/// \param value single-precision value to convert | |
/// \return rounded half-precision value | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded | |
template<std::float_round_style R> unsigned int float2half_impl(float value, true_type) | |
{ | |
#if HALF_ENABLE_F16C_INTRINSICS | |
return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(value), | |
(R==std::round_to_nearest) ? _MM_FROUND_TO_NEAREST_INT : | |
(R==std::round_toward_zero) ? _MM_FROUND_TO_ZERO : | |
(R==std::round_toward_infinity) ? _MM_FROUND_TO_POS_INF : | |
(R==std::round_toward_neg_infinity) ? _MM_FROUND_TO_NEG_INF : | |
_MM_FROUND_CUR_DIRECTION)); | |
#else | |
bits<float>::type fbits; | |
std::memcpy(&fbits, &value, sizeof(float)); | |
#if 1 | |
unsigned int sign = (fbits>>16) & 0x8000; | |
fbits &= 0x7FFFFFFF; | |
if(fbits >= 0x7F800000) | |
return sign | 0x7C00 | ((fbits>0x7F800000) ? (0x200|((fbits>>13)&0x3FF)) : 0); | |
if(fbits >= 0x47800000) | |
return overflow<R>(sign); | |
if(fbits >= 0x38800000) | |
return rounded<R,false>(sign|(((fbits>>23)-112)<<10)|((fbits>>13)&0x3FF), (fbits>>12)&1, (fbits&0xFFF)!=0); | |
if(fbits >= 0x33000000) | |
{ | |
int i = 125 - (fbits>>23); | |
fbits = (fbits&0x7FFFFF) | 0x800000; | |
return rounded<R,false>(sign|(fbits>>(i+1)), (fbits>>i)&1, (fbits&((static_cast<uint32>(1)<<i)-1))!=0); | |
} | |
if(fbits != 0) | |
return underflow<R>(sign); | |
return sign; | |
#else | |
static const uint16 base_table[512] = { | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, | |
0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00, | |
0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7BFF, | |
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, | |
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, | |
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, | |
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, | |
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, | |
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, | |
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7C00, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, | |
0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, | |
0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFBFF, | |
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, | |
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, | |
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, | |
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, | |
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, | |
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, | |
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFC00 }; | |
static const unsigned char shift_table[256] = { | |
24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, | |
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, | |
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, | |
25, 25, 25, 25, 25, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, | |
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 }; | |
int sexp = fbits >> 23, exp = sexp & 0xFF, i = shift_table[exp]; | |
fbits &= 0x7FFFFF; | |
uint32 m = (fbits|((exp!=0)<<23)) & -static_cast<uint32>(exp!=0xFF); | |
return rounded<R,false>(base_table[sexp]+(fbits>>i), (m>>(i-1))&1, (((static_cast<uint32>(1)<<(i-1))-1)&m)!=0); | |
#endif | |
#endif | |
} | |
/// Convert IEEE double-precision to half-precision. | |
/// \tparam R rounding mode to use | |
/// \param value double-precision value to convert | |
/// \return rounded half-precision value | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded | |
template<std::float_round_style R> unsigned int float2half_impl(double value, true_type) | |
{ | |
#if HALF_ENABLE_F16C_INTRINSICS | |
if(R == std::round_indeterminate) | |
return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_cvtpd_ps(_mm_set_sd(value)), _MM_FROUND_CUR_DIRECTION)); | |
#endif | |
bits<double>::type dbits; | |
std::memcpy(&dbits, &value, sizeof(double)); | |
uint32 hi = dbits >> 32, lo = dbits & 0xFFFFFFFF; | |
unsigned int sign = (hi>>16) & 0x8000; | |
hi &= 0x7FFFFFFF; | |
if(hi >= 0x7FF00000) | |
return sign | 0x7C00 | ((dbits&0xFFFFFFFFFFFFF) ? (0x200|((hi>>10)&0x3FF)) : 0); | |
if(hi >= 0x40F00000) | |
return overflow<R>(sign); | |
if(hi >= 0x3F100000) | |
return rounded<R,false>(sign|static_cast<unsigned int>(((hi>>20)-1008)<<10)|static_cast<unsigned int>((hi>>10)&0x3FF), static_cast<unsigned int>((hi>>9)&1), ((hi&0x1FF)|lo)!=0); | |
if(hi >= 0x3E600000) | |
{ | |
int i = static_cast<int>(1018 - (hi>>20)); | |
hi = (hi&0xFFFFF) | 0x100000; | |
return rounded<R,false>(sign|static_cast<unsigned int>(hi>>(i+1)), static_cast<unsigned int>((hi>>i)&1), ((hi&((static_cast<uint32>(1)<<i)-1))|lo)!=0); | |
} | |
if((hi|lo) != 0) | |
return underflow<R>(sign); | |
return sign; | |
} | |
/// Convert non-IEEE floating-point to half-precision. | |
/// \tparam R rounding mode to use | |
/// \tparam T source type (builtin floating-point type) | |
/// \param value floating-point value to convert | |
/// \return rounded half-precision value | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded | |
template<std::float_round_style R,typename T> unsigned int float2half_impl(T value, ...) | |
{ | |
unsigned int hbits = static_cast<unsigned>(builtin_signbit(value)) << 15; | |
if(value == T()) | |
return hbits; | |
if(builtin_isnan(value)) | |
return hbits | 0x7FFF; | |
if(builtin_isinf(value)) | |
return hbits | 0x7C00; | |
int exp; | |
std::frexp(value, &exp); | |
if(exp > 16) | |
return overflow<R>(hbits); | |
if(exp < -13) | |
value = std::ldexp(value, 25); | |
else | |
{ | |
value = std::ldexp(value, 12-exp); | |
hbits |= ((exp+13)<<10); | |
} | |
T ival, frac = std::modf(value, &ival); | |
int m = std::abs(static_cast<int>(ival)); | |
return rounded<R,false>(hbits+(m>>1), m&1, frac!=T()); | |
} | |
/// Convert floating-point to half-precision. | |
/// \tparam R rounding mode to use | |
/// \tparam T source type (builtin floating-point type) | |
/// \param value floating-point value to convert | |
/// \return rounded half-precision value | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded | |
template<std::float_round_style R,typename T> unsigned int float2half(T value) | |
{ | |
return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>()); | |
} | |
/// Convert integer to half-precision floating-point. | |
/// \tparam R rounding mode to use | |
/// \tparam T type to convert (builtin integer type) | |
/// \param value integral value to convert | |
/// \return rounded half-precision value | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_INEXACT if value had to be rounded | |
template<std::float_round_style R,typename T> unsigned int int2half(T value) | |
{ | |
unsigned int bits = static_cast<unsigned>(value<0) << 15; | |
if(!value) | |
return bits; | |
if(bits) | |
value = -value; | |
if(value > 0xFFFF) | |
return overflow<R>(bits); | |
unsigned int m = static_cast<unsigned int>(value), exp = 24; | |
for(; m<0x400; m<<=1,--exp) ; | |
for(; m>0x7FF; m>>=1,++exp) ; | |
bits |= (exp<<10) + m; | |
return (exp>24) ? rounded<R,false>(bits, (value>>(exp-25))&1, (((1<<(exp-25))-1)&value)!=0) : bits; | |
} | |
/// Convert half-precision to IEEE single-precision. | |
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). | |
/// \param value half-precision value to convert | |
/// \return single-precision value | |
inline float half2float_impl(unsigned int value, float, true_type) | |
{ | |
#if HALF_ENABLE_F16C_INTRINSICS | |
return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(value))); | |
#else | |
#if 0 | |
bits<float>::type fbits = static_cast<bits<float>::type>(value&0x8000) << 16; | |
int abs = value & 0x7FFF; | |
if(abs) | |
{ | |
fbits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00); | |
for(; abs<0x400; abs<<=1,fbits-=0x800000) ; | |
fbits += static_cast<bits<float>::type>(abs) << 13; | |
} | |
#else | |
static const bits<float>::type mantissa_table[2048] = { | |
0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000, | |
0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000, | |
0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000, | |
0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000, | |
0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000, | |
0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000, | |
0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000, | |
0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000, | |
0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000, | |
0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000, | |
0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000, | |
0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000, | |
0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000, | |
0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000, | |
0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000, | |
0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000, | |
0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000, | |
0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000, | |
0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000, | |
0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000, | |
0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000, | |
0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000, | |
0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000, | |
0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000, | |
0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000, | |
0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000, | |
0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000, | |
0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000, | |
0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000, | |
0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000, | |
0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000, | |
0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000, | |
0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000, | |
0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000, | |
0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000, | |
0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000, | |
0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000, | |
0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000, | |
0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000, | |
0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000, | |
0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000, | |
0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000, | |
0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000, | |
0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000, | |
0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000, | |
0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000, | |
0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000, | |
0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000, | |
0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000, | |
0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000, | |
0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000, | |
0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000, | |
0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000, | |
0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000, | |
0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000, | |
0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000, | |
0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000, | |
0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000, | |
0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000, | |
0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000, | |
0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000, | |
0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000, | |
0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000, | |
0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000, | |
0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000, | |
0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000, | |
0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000, | |
0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000, | |
0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000, | |
0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000, | |
0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000, | |
0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000, | |
0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000, | |
0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000, | |
0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000, | |
0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000, | |
0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000, | |
0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000, | |
0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000, | |
0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000, | |
0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000, | |
0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000, | |
0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000, | |
0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000, | |
0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000, | |
0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000, | |
0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000, | |
0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000, | |
0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000, | |
0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000, | |
0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000, | |
0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000, | |
0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000, | |
0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000, | |
0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000, | |
0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000, | |
0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000, | |
0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000, | |
0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000, | |
0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000, | |
0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000, | |
0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000, | |
0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000, | |
0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000, | |
0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000, | |
0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000, | |
0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000, | |
0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000, | |
0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000, | |
0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000, | |
0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000, | |
0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000, | |
0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000, | |
0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000, | |
0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000, | |
0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000, | |
0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000, | |
0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000, | |
0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000, | |
0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000, | |
0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000, | |
0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000, | |
0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000, | |
0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000, | |
0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000, | |
0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000, | |
0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000, | |
0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 }; | |
static const bits<float>::type exponent_table[64] = { | |
0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000, | |
0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000, | |
0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000, | |
0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 }; | |
static const unsigned short offset_table[64] = { | |
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, | |
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 }; | |
bits<float>::type fbits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10]; | |
#endif | |
float out; | |
std::memcpy(&out, &fbits, sizeof(float)); | |
return out; | |
#endif | |
} | |
/// Convert half-precision to IEEE double-precision. | |
/// \param value half-precision value to convert | |
/// \return double-precision value | |
inline double half2float_impl(unsigned int value, double, true_type) | |
{ | |
#if HALF_ENABLE_F16C_INTRINSICS | |
return _mm_cvtsd_f64(_mm_cvtps_pd(_mm_cvtph_ps(_mm_cvtsi32_si128(value)))); | |
#else | |
uint32 hi = static_cast<uint32>(value&0x8000) << 16; | |
unsigned int abs = value & 0x7FFF; | |
if(abs) | |
{ | |
hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00); | |
for(; abs<0x400; abs<<=1,hi-=0x100000) ; | |
hi += static_cast<uint32>(abs) << 10; | |
} | |
bits<double>::type dbits = static_cast<bits<double>::type>(hi) << 32; | |
double out; | |
std::memcpy(&out, &dbits, sizeof(double)); | |
return out; | |
#endif | |
} | |
/// Convert half-precision to non-IEEE floating-point. | |
/// \tparam T type to convert to (builtin integer type) | |
/// \param value half-precision value to convert | |
/// \return floating-point value | |
template<typename T> T half2float_impl(unsigned int value, T, ...) | |
{ | |
T out; | |
unsigned int abs = value & 0x7FFF; | |
if(abs > 0x7C00) | |
out = (std::numeric_limits<T>::has_signaling_NaN && !(abs&0x200)) ? std::numeric_limits<T>::signaling_NaN() : | |
std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T(); | |
else if(abs == 0x7C00) | |
out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max(); | |
else if(abs > 0x3FF) | |
out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25); | |
else | |
out = std::ldexp(static_cast<T>(abs), -24); | |
return (value&0x8000) ? -out : out; | |
} | |
/// Convert half-precision to floating-point. | |
/// \tparam T type to convert to (builtin integer type) | |
/// \param value half-precision value to convert | |
/// \return floating-point value | |
template<typename T> T half2float(unsigned int value) | |
{ | |
return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>()); | |
} | |
/// Convert half-precision floating-point to integer. | |
/// \tparam R rounding mode to use | |
/// \tparam E `true` for round to even, `false` for round away from zero | |
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it | |
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits) | |
/// \param value half-precision value to convert | |
/// \return rounded integer value | |
/// \exception FE_INVALID if value is not representable in type \a T | |
/// \exception FE_INEXACT if value had to be rounded and \a I is `true` | |
template<std::float_round_style R,bool E,bool I,typename T> T half2int(unsigned int value) | |
{ | |
unsigned int abs = value & 0x7FFF; | |
if(abs >= 0x7C00) | |
{ | |
detail::raise(FE_INVALID); | |
return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max(); | |
} | |
if(abs < 0x3800) | |
{ | |
detail::raise(FE_INEXACT, I); | |
return (R==std::round_toward_infinity) ? T(~(value>>15)&(abs!=0)) : | |
(R==std::round_toward_neg_infinity) ? -T(value>0x8000) : | |
T(); | |
} | |
int exp = 25 - (abs>>10); | |
unsigned int m = (value&0x3FF) | 0x400; | |
int32 i = static_cast<int32>((exp<=0) ? (m<<-exp) : ((m+( | |
(R==std::round_to_nearest) ? ((1<<(exp-1))-(~(m>>exp)&E)) : | |
(R==std::round_toward_infinity) ? (((1<<exp)-1)&((value>>15)-1)) : | |
(R==std::round_toward_neg_infinity) ? (((1<<exp)-1)&-(value>>15)) : 0))>>exp)); | |
if((!std::numeric_limits<T>::is_signed && (value&0x8000)) || (std::numeric_limits<T>::digits<16 && | |
((value&0x8000) ? (-i<std::numeric_limits<T>::min()) : (i>std::numeric_limits<T>::max())))) | |
detail::raise(FE_INVALID); | |
else if(I && exp > 0 && (m&((1<<exp)-1))) | |
detail::raise(FE_INEXACT); | |
return static_cast<T>((value&0x8000) ? -i : i); | |
} | |
/// \} | |
/// \name Mathematics | |
/// \{ | |
/// upper part of 64-bit multiplication. | |
/// \tparam R rounding mode to use | |
/// \param x first factor | |
/// \param y second factor | |
/// \return upper 32 bit of \a x * \a y | |
template<std::float_round_style R> uint32 mulhi(uint32 x, uint32 y) | |
{ | |
uint32 xy = (x>>16) * (y&0xFFFF), yx = (x&0xFFFF) * (y>>16), c = (xy&0xFFFF) + (yx&0xFFFF) + (((x&0xFFFF)*(y&0xFFFF))>>16); | |
return (x>>16)*(y>>16) + (xy>>16) + (yx>>16) + (c>>16) + | |
((R==std::round_to_nearest) ? ((c>>15)&1) : (R==std::round_toward_infinity) ? ((c&0xFFFF)!=0) : 0); | |
} | |
/// 64-bit multiplication. | |
/// \param x first factor | |
/// \param y second factor | |
/// \return upper 32 bit of \a x * \a y rounded to nearest | |
inline uint32 multiply64(uint32 x, uint32 y) | |
{ | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
return static_cast<uint32>((static_cast<unsigned long long>(x)*static_cast<unsigned long long>(y)+0x80000000)>>32); | |
#else | |
return mulhi<std::round_to_nearest>(x, y); | |
#endif | |
} | |
/// 64-bit division. | |
/// \param x upper 32 bit of dividend | |
/// \param y divisor | |
/// \param s variable to store sticky bit for rounding | |
/// \return (\a x << 32) / \a y | |
inline uint32 divide64(uint32 x, uint32 y, int &s) | |
{ | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
unsigned long long xx = static_cast<unsigned long long>(x) << 32; | |
return s = (xx%y!=0), static_cast<uint32>(xx/y); | |
#else | |
y >>= 1; | |
uint32 rem = x, div = 0; | |
for(unsigned int i=0; i<32; ++i) | |
{ | |
div <<= 1; | |
if(rem >= y) | |
{ | |
rem -= y; | |
div |= 1; | |
} | |
rem <<= 1; | |
} | |
return s = rem > 1, div; | |
#endif | |
} | |
/// Half precision positive modulus. | |
/// \tparam Q `true` to compute full quotient, `false` else | |
/// \tparam R `true` to compute signed remainder, `false` for positive remainder | |
/// \param x first operand as positive finite half-precision value | |
/// \param y second operand as positive finite half-precision value | |
/// \param quo adress to store quotient at, `nullptr` if \a Q `false` | |
/// \return modulus of \a x / \a y | |
template<bool Q,bool R> unsigned int mod(unsigned int x, unsigned int y, int *quo = NULL) | |
{ | |
unsigned int q = 0; | |
if(x > y) | |
{ | |
int absx = x, absy = y, expx = 0, expy = 0; | |
for(; absx<0x400; absx<<=1,--expx) ; | |
for(; absy<0x400; absy<<=1,--expy) ; | |
expx += absx >> 10; | |
expy += absy >> 10; | |
int mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400; | |
for(int d=expx-expy; d; --d) | |
{ | |
if(!Q && mx == my) | |
return 0; | |
if(mx >= my) | |
{ | |
mx -= my; | |
q += Q; | |
} | |
mx <<= 1; | |
q <<= static_cast<int>(Q); | |
} | |
if(!Q && mx == my) | |
return 0; | |
if(mx >= my) | |
{ | |
mx -= my; | |
++q; | |
} | |
if(Q) | |
{ | |
q &= (1<<(std::numeric_limits<int>::digits-1)) - 1; | |
if(!mx) | |
return *quo = q, 0; | |
} | |
for(; mx<0x400; mx<<=1,--expy) ; | |
x = (expy>0) ? ((expy<<10)|(mx&0x3FF)) : (mx>>(1-expy)); | |
} | |
if(R) | |
{ | |
unsigned int a, b; | |
if(y < 0x800) | |
{ | |
a = (x<0x400) ? (x<<1) : (x+0x400); | |
b = y; | |
} | |
else | |
{ | |
a = x; | |
b = y - 0x400; | |
} | |
if(a > b || (a == b && (q&1))) | |
{ | |
int exp = (y>>10) + (y<=0x3FF), d = exp - (x>>10) - (x<=0x3FF); | |
int m = (((y&0x3FF)|((y>0x3FF)<<10))<<1) - (((x&0x3FF)|((x>0x3FF)<<10))<<(1-d)); | |
for(; m<0x800 && exp>1; m<<=1,--exp) ; | |
x = 0x8000 + ((exp-1)<<10) + (m>>1); | |
q += Q; | |
} | |
} | |
if(Q) | |
*quo = q; | |
return x; | |
} | |
/// Fixed point square root. | |
/// \tparam F number of fractional bits | |
/// \param r radicand in Q1.F fixed point format | |
/// \param exp exponent | |
/// \return square root as Q1.F/2 | |
template<unsigned int F> uint32 sqrt(uint32 &r, int &exp) | |
{ | |
int i = exp & 1; | |
r <<= i; | |
exp = (exp-i) / 2; | |
uint32 m = 0; | |
for(uint32 bit=static_cast<uint32>(1)<<F; bit; bit>>=2) | |
{ | |
if(r < m+bit) | |
m >>= 1; | |
else | |
{ | |
r -= m + bit; | |
m = (m>>1) + bit; | |
} | |
} | |
return m; | |
} | |
/// Fixed point binary exponential. | |
/// This uses the BKM algorithm in E-mode. | |
/// \param m exponent in [0,1) as Q0.31 | |
/// \param n number of iterations (at most 32) | |
/// \return 2 ^ \a m as Q1.31 | |
inline uint32 exp2(uint32 m, unsigned int n = 32) | |
{ | |
static const uint32 logs[] = { | |
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B, | |
0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153, | |
0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171, | |
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 }; | |
if(!m) | |
return 0x80000000; | |
uint32 mx = 0x80000000, my = 0; | |
for(unsigned int i=1; i<n; ++i) | |
{ | |
uint32 mz = my + logs[i]; | |
if(mz <= m) | |
{ | |
my = mz; | |
mx += mx >> i; | |
} | |
} | |
return mx; | |
} | |
/// Fixed point binary logarithm. | |
/// This uses the BKM algorithm in L-mode. | |
/// \param m mantissa in [1,2) as Q1.30 | |
/// \param n number of iterations (at most 32) | |
/// \return log2(\a m) as Q0.31 | |
inline uint32 log2(uint32 m, unsigned int n = 32) | |
{ | |
static const uint32 logs[] = { | |
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B, | |
0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153, | |
0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171, | |
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 }; | |
if(m == 0x40000000) | |
return 0; | |
uint32 mx = 0x40000000, my = 0; | |
for(unsigned int i=1; i<n; ++i) | |
{ | |
uint32 mz = mx + (mx>>i); | |
if(mz <= m) | |
{ | |
mx = mz; | |
my += logs[i]; | |
} | |
} | |
return my; | |
} | |
/// Fixed point sine and cosine. | |
/// This uses the CORDIC algorithm in rotation mode. | |
/// \param mz angle in [-pi/2,pi/2] as Q1.30 | |
/// \param n number of iterations (at most 31) | |
/// \return sine and cosine of \a mz as Q1.30 | |
inline std::pair<uint32,uint32> sincos(uint32 mz, unsigned int n = 31) | |
{ | |
static const uint32 angles[] = { | |
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55, | |
0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, | |
0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, | |
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; | |
uint32 mx = 0x26DD3B6A, my = 0; | |
for(unsigned int i=0; i<n; ++i) | |
{ | |
uint32 sign = sign_mask(mz); | |
uint32 tx = mx - (arithmetic_shift(my, i)^sign) + sign; | |
uint32 ty = my + (arithmetic_shift(mx, i)^sign) - sign; | |
mx = tx; my = ty; mz -= (angles[i]^sign) - sign; | |
} | |
return std::make_pair(my, mx); | |
} | |
/// Fixed point arc tangent. | |
/// This uses the CORDIC algorithm in vectoring mode. | |
/// \param my y coordinate as Q0.30 | |
/// \param mx x coordinate as Q0.30 | |
/// \param n number of iterations (at most 31) | |
/// \return arc tangent of \a my / \a mx as Q1.30 | |
inline uint32 atan2(uint32 my, uint32 mx, unsigned int n = 31) | |
{ | |
static const uint32 angles[] = { | |
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55, | |
0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, | |
0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, | |
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; | |
uint32 mz = 0; | |
for(unsigned int i=0; i<n; ++i) | |
{ | |
uint32 sign = sign_mask(my); | |
uint32 tx = mx + (arithmetic_shift(my, i)^sign) - sign; | |
uint32 ty = my - (arithmetic_shift(mx, i)^sign) + sign; | |
mx = tx; my = ty; mz += (angles[i]^sign) - sign; | |
} | |
return mz; | |
} | |
/// Reduce argument for trigonometric functions. | |
/// \param abs half-precision floating-point value | |
/// \param k value to take quarter period | |
/// \return \a abs reduced to [-pi/4,pi/4] as Q0.30 | |
inline uint32 angle_arg(unsigned int abs, int &k) | |
{ | |
uint32 m = (abs&0x3FF) | ((abs>0x3FF)<<10); | |
int exp = (abs>>10) + (abs<=0x3FF) - 15; | |
if(abs < 0x3A48) | |
return k = 0, m << (exp+20); | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
unsigned long long y = m * 0xA2F9836E4E442, mask = (1ULL<<(62-exp)) - 1, yi = (y+(mask>>1)) & ~mask, f = y - yi; | |
uint32 sign = -static_cast<uint32>(f>>63); | |
k = static_cast<int>(yi>>(62-exp)); | |
return (multiply64(static_cast<uint32>((sign ? -f : f)>>(31-exp)), 0xC90FDAA2)^sign) - sign; | |
#else | |
uint32 yh = m*0xA2F98 + mulhi<std::round_toward_zero>(m, 0x36E4E442), yl = (m*0x36E4E442) & 0xFFFFFFFF; | |
uint32 mask = (static_cast<uint32>(1)<<(30-exp)) - 1, yi = (yh+(mask>>1)) & ~mask, sign = -static_cast<uint32>(yi>yh); | |
k = static_cast<int>(yi>>(30-exp)); | |
uint32 fh = (yh^sign) + (yi^~sign) - ~sign, fl = (yl^sign) - sign; | |
return (multiply64((exp>-1) ? (((fh<<(1+exp))&0xFFFFFFFF)|((fl&0xFFFFFFFF)>>(31-exp))) : fh, 0xC90FDAA2)^sign) - sign; | |
#endif | |
} | |
/// Get arguments for atan2 function. | |
/// \param abs half-precision floating-point value | |
/// \return \a abs and sqrt(1 - \a abs^2) as Q0.30 | |
inline std::pair<uint32,uint32> atan2_args(unsigned int abs) | |
{ | |
int exp = -15; | |
for(; abs<0x400; abs<<=1,--exp) ; | |
exp += abs >> 10; | |
uint32 my = ((abs&0x3FF)|0x400) << 5, r = my * my; | |
int rexp = 2 * exp; | |
r = 0x40000000 - ((rexp>-31) ? ((r>>-rexp)|((r&((static_cast<uint32>(1)<<-rexp)-1))!=0)) : 1); | |
for(rexp=0; r<0x40000000; r<<=1,--rexp) ; | |
uint32 mx = sqrt<30>(r, rexp); | |
int d = exp - rexp; | |
if(d < 0) | |
return std::make_pair((d<-14) ? ((my>>(-d-14))+((my>>(-d-15))&1)) : (my<<(14+d)), (mx<<14)+(r<<13)/mx); | |
if(d > 0) | |
return std::make_pair(my<<14, (d>14) ? ((mx>>(d-14))+((mx>>(d-15))&1)) : ((d==14) ? mx : ((mx<<(14-d))+(r<<(13-d))/mx))); | |
return std::make_pair(my<<13, (mx<<13)+(r<<12)/mx); | |
} | |
/// Get exponentials for hyperbolic computation | |
/// \param abs half-precision floating-point value | |
/// \param exp variable to take unbiased exponent of larger result | |
/// \param n number of BKM iterations (at most 32) | |
/// \return exp(abs) and exp(-\a abs) as Q1.31 with same exponent | |
inline std::pair<uint32,uint32> hyperbolic_args(unsigned int abs, int &exp, unsigned int n = 32) | |
{ | |
uint32 mx = detail::multiply64(static_cast<uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29), my; | |
int e = (abs>>10) + (abs<=0x3FF); | |
if(e < 14) | |
{ | |
exp = 0; | |
mx >>= 14 - e; | |
} | |
else | |
{ | |
exp = static_cast<int>(mx >> (45-e)); | |
mx = (mx<<(e-14)) & 0x7FFFFFFF; | |
} | |
mx = exp2(mx, n); | |
int d = exp << 1, s; | |
if(mx > 0x80000000) | |
{ | |
my = divide64(0x80000000, mx, s); | |
my |= s; | |
++d; | |
} | |
else | |
my = mx; | |
return std::make_pair(mx, (d<31) ? ((my>>d)|((my&((static_cast<uint32>(1)<<d)-1))!=0)) : 1); | |
} | |
/// Postprocessing for binary exponential. | |
/// \tparam R rounding mode to use | |
/// \param m fractional part of exponent as Q0.31 | |
/// \param exp absolute value of unbiased exponent | |
/// \param esign sign of actual exponent | |
/// \param sign sign bit of result | |
/// \param n number of BKM iterations (at most 32) | |
/// \return value converted to half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded or \a I is `true` | |
template<std::float_round_style R> unsigned int exp2_post(uint32 m, int exp, bool esign, unsigned int sign = 0, unsigned int n = 32) | |
{ | |
if(esign) | |
{ | |
exp = -exp - (m!=0); | |
if(exp < -25) | |
return underflow<R>(sign); | |
else if(exp == -25) | |
return rounded<R,false>(sign, 1, m!=0); | |
} | |
else if(exp > 15) | |
return overflow<R>(sign); | |
if(!m) | |
return sign | (((exp+=15)>0) ? (exp<<10) : check_underflow(0x200>>-exp)); | |
m = exp2(m, n); | |
int s = 0; | |
if(esign) | |
m = divide64(0x80000000, m, s); | |
return fixed2half<R,31,false,false,true>(m, exp+14, sign, s); | |
} | |
/// Postprocessing for binary logarithm. | |
/// \tparam R rounding mode to use | |
/// \tparam L logarithm for base transformation as Q1.31 | |
/// \param m fractional part of logarithm as Q0.31 | |
/// \param ilog signed integer part of logarithm | |
/// \param exp biased exponent of result | |
/// \param sign sign bit of result | |
/// \return value base-transformed and converted to half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if no other exception occurred | |
template<std::float_round_style R,uint32 L> unsigned int log2_post(uint32 m, int ilog, int exp, unsigned int sign = 0) | |
{ | |
uint32 msign = sign_mask(ilog); | |
m = (((static_cast<uint32>(ilog)<<27)+(m>>4))^msign) - msign; | |
if(!m) | |
return 0; | |
for(; m<0x80000000; m<<=1,--exp) ; | |
int i = m >= L, s; | |
exp += i; | |
m >>= 1 + i; | |
sign ^= msign & 0x8000; | |
if(exp < -11) | |
return underflow<R>(sign); | |
m = divide64(m, L, s); | |
return fixed2half<R,30,false,false,true>(m, exp, sign, 1); | |
} | |
/// Hypotenuse square root and postprocessing. | |
/// \tparam R rounding mode to use | |
/// \param r mantissa as Q2.30 | |
/// \param exp biased exponent | |
/// \return square root converted to half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if value had to be rounded | |
template<std::float_round_style R> unsigned int hypot_post(uint32 r, int exp) | |
{ | |
int i = static_cast<int>(r >> 31); | |
if((exp+=i) > 46) | |
return overflow<R>(); | |
if(exp < -34) | |
return underflow<R>(); | |
r = (r>>i) | (r&i); | |
uint32 m = sqrt<30>(r, exp+=15); | |
return fixed2half<R,15,false,false,false>(m, exp-1, 0, r!=0); | |
} | |
/// Division and postprocessing for tangents. | |
/// \tparam R rounding mode to use | |
/// \param my dividend as Q1.31 | |
/// \param mx divisor as Q1.31 | |
/// \param exp biased exponent of result | |
/// \param sign sign bit of result | |
/// \return quotient converted to half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if no other exception occurred | |
template<std::float_round_style R> unsigned int tangent_post(uint32 my, uint32 mx, int exp, unsigned int sign = 0) | |
{ | |
int i = my >= mx, s; | |
exp += i; | |
if(exp > 29) | |
return overflow<R>(sign); | |
if(exp < -11) | |
return underflow<R>(sign); | |
uint32 m = divide64(my>>(i+1), mx, s); | |
return fixed2half<R,30,false,false,true>(m, exp, sign, s); | |
} | |
/// Area function and postprocessing. | |
/// This computes the value directly in Q2.30 using the representation `asinh|acosh(x) = log(x+sqrt(x^2+|-1))`. | |
/// \tparam R rounding mode to use | |
/// \tparam S `true` for asinh, `false` for acosh | |
/// \param arg half-precision argument | |
/// \return asinh|acosh(\a arg) converted to half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if no other exception occurred | |
template<std::float_round_style R,bool S> unsigned int area(unsigned int arg) | |
{ | |
int abs = arg & 0x7FFF, expx = (abs>>10) + (abs<=0x3FF) - 15, expy = -15, ilog; | |
uint32 mx = static_cast<uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << 20, my, r; | |
for(; abs<0x400; abs<<=1,--expy) ; | |
expy += abs >> 10; | |
r = ((abs&0x3FF)|0x400) << 5; | |
r *= r; | |
int i = static_cast<int>(r >> 31); | |
expy = 2*expy + i; | |
r >>= i; | |
if(S) | |
{ | |
if(expy < 0) | |
{ | |
r = 0x40000000 + ((expy>-30) ? ((r>>-expy)|((r&((static_cast<uint32>(1)<<-expy)-1))!=0)) : 1); | |
expy = 0; | |
} | |
else | |
{ | |
r += 0x40000000 >> expy; | |
i = static_cast<int>(r >> 31); | |
r = (r>>i) | (r&i); | |
expy += i; | |
} | |
} | |
else | |
{ | |
r -= 0x40000000 >> expy; | |
for(; r<0x40000000; r<<=1,--expy) ; | |
} | |
my = sqrt<30>(r, expy); | |
my = (my<<15) + (r<<14)/my; | |
if(S) | |
{ | |
mx >>= expy - expx; | |
ilog = expy; | |
} | |
else | |
{ | |
my >>= expx - expy; | |
ilog = expx; | |
} | |
my += mx; | |
i = static_cast<int>(my >> 31); | |
static const int G = S && (R==std::round_to_nearest); | |
return log2_post<R,0xB8AA3B2A>(log2(my>>i, 26+S+G)+(G<<3), ilog+i, 17, arg&(static_cast<unsigned>(S)<<15)); | |
} | |
/// Class for 1.31 unsigned floating-point computation | |
struct f31 | |
{ | |
/// Constructor. | |
/// \param mant mantissa as 1.31 | |
/// \param e exponent | |
HALF_CONSTEXPR f31(uint32 mant, int e) : m(mant), exp(e) {} | |
/// Constructor. | |
/// \param abs unsigned half-precision value | |
f31(unsigned int abs) : exp(-15) | |
{ | |
for(; abs<0x400; abs<<=1,--exp) ; | |
m = static_cast<uint32>((abs&0x3FF)|0x400) << 21; | |
exp += (abs>>10); | |
} | |
/// Addition operator. | |
/// \param a first operand | |
/// \param b second operand | |
/// \return \a a + \a b | |
friend f31 operator+(f31 a, f31 b) | |
{ | |
if(b.exp > a.exp) | |
std::swap(a, b); | |
int d = a.exp - b.exp; | |
uint32 m = a.m + ((d<32) ? (b.m>>d) : 0); | |
int i = (m&0xFFFFFFFF) < a.m; | |
return f31(((m+i)>>i)|0x80000000, a.exp+i); | |
} | |
/// Subtraction operator. | |
/// \param a first operand | |
/// \param b second operand | |
/// \return \a a - \a b | |
friend f31 operator-(f31 a, f31 b) | |
{ | |
int d = a.exp - b.exp, exp = a.exp; | |
uint32 m = a.m - ((d<32) ? (b.m>>d) : 0); | |
if(!m) | |
return f31(0, -32); | |
for(; m<0x80000000; m<<=1,--exp) ; | |
return f31(m, exp); | |
} | |
/// Multiplication operator. | |
/// \param a first operand | |
/// \param b second operand | |
/// \return \a a * \a b | |
friend f31 operator*(f31 a, f31 b) | |
{ | |
uint32 m = multiply64(a.m, b.m); | |
int i = static_cast<int>(m >> 31); | |
return f31(m<<(1-i), a.exp + b.exp + i); | |
} | |
/// Division operator. | |
/// \param a first operand | |
/// \param b second operand | |
/// \return \a a / \a b | |
friend f31 operator/(f31 a, f31 b) | |
{ | |
int i = a.m >= b.m, s; | |
uint32 m = divide64((a.m+i)>>i, b.m, s); | |
return f31(m, a.exp - b.exp + i - 1); | |
} | |
uint32 m; ///< mantissa as 1.31. | |
int exp; ///< exponent. | |
}; | |
/// Error function and postprocessing. | |
/// This computes the value directly in Q1.31 using the approximations given | |
/// [here](https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions). | |
/// \tparam R rounding mode to use | |
/// \tparam C `true` for comlementary error function, `false` else | |
/// \param arg half-precision function argument | |
/// \return approximated value of error function in half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if no other exception occurred | |
template<std::float_round_style R,bool C> unsigned int erf(unsigned int arg) | |
{ | |
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000; | |
f31 x(abs), x2 = x * x * f31(0xB8AA3B29, 0), t = f31(0x80000000, 0) / (f31(0x80000000, 0)+f31(0xA7BA054A, -2)*x), t2 = t * t; | |
f31 e = ((f31(0x87DC2213, 0)*t2+f31(0xB5F0E2AE, 0))*t2+f31(0x82790637, -2)-(f31(0xBA00E2B8, 0)*t2+f31(0x91A98E62, -2))*t) * t / | |
((x2.exp<0) ? f31(exp2((x2.exp>-32) ? (x2.m>>-x2.exp) : 0, 30), 0) : f31(exp2((x2.m<<x2.exp)&0x7FFFFFFF, 22), static_cast<int>(x2.m>>(31-x2.exp)))); | |
return (!C || sign) ? fixed2half<R,31,false,true,true>(0x80000000-(e.m>>(C-e.exp)), 14+C, sign&(C-1U)) : | |
(e.exp<-25) ? underflow<R>() : fixed2half<R,30,false,false,true>(e.m>>1, e.exp+14, 0, e.m&1); | |
} | |
/// Gamma function and postprocessing. | |
/// This approximates the value of either the gamma function or its logarithm directly in Q1.31. | |
/// \tparam R rounding mode to use | |
/// \tparam L `true` for lograithm of gamma function, `false` for gamma function | |
/// \param arg half-precision floating-point value | |
/// \return lgamma/tgamma(\a arg) in half-precision | |
/// \exception FE_OVERFLOW on overflows | |
/// \exception FE_UNDERFLOW on underflows | |
/// \exception FE_INEXACT if \a arg is not a positive integer | |
template<std::float_round_style R,bool L> unsigned int gamma(unsigned int arg) | |
{ | |
/* static const double p[] ={ 2.50662827563479526904, 225.525584619175212544, -268.295973841304927459, 80.9030806934622512966, -5.00757863970517583837, 0.0114684895434781459556 }; | |
double t = arg + 4.65, s = p[0]; | |
for(unsigned int i=0; i<5; ++i) | |
s += p[i+1] / (arg+i); | |
return std::log(s) + (arg-0.5)*std::log(t) - t; | |
*/ static const f31 pi(0xC90FDAA2, 1), lbe(0xB8AA3B29, 0); | |
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000; | |
bool bsign = sign != 0; | |
f31 z(abs), x = sign ? (z+f31(0x80000000, 0)) : z, t = x + f31(0x94CCCCCD, 2), s = | |
f31(0xA06C9901, 1) + f31(0xBBE654E2, -7)/(x+f31(0x80000000, 2)) + f31(0xA1CE6098, 6)/(x+f31(0x80000000, 1)) | |
+ f31(0xE1868CB7, 7)/x - f31(0x8625E279, 8)/(x+f31(0x80000000, 0)) - f31(0xA03E158F, 2)/(x+f31(0xC0000000, 1)); | |
int i = (s.exp>=2) + (s.exp>=4) + (s.exp>=8) + (s.exp>=16); | |
s = f31((static_cast<uint32>(s.exp)<<(31-i))+(log2(s.m>>1, 28)>>i), i) / lbe; | |
if(x.exp != -1 || x.m != 0x80000000) | |
{ | |
i = (t.exp>=2) + (t.exp>=4) + (t.exp>=8); | |
f31 l = f31((static_cast<uint32>(t.exp)<<(31-i))+(log2(t.m>>1, 30)>>i), i) / lbe; | |
s = (x.exp<-1) ? (s-(f31(0x80000000, -1)-x)*l) : (s+(x-f31(0x80000000, -1))*l); | |
} | |
s = x.exp ? (s-t) : (t-s); | |
if(bsign) | |
{ | |
if(z.exp >= 0) | |
{ | |
sign &= (L|((z.m>>(31-z.exp))&1)) - 1; | |
for(z=f31((z.m<<(1+z.exp))&0xFFFFFFFF, -1); z.m<0x80000000; z.m<<=1,--z.exp) ; | |
} | |
if(z.exp == -1) | |
z = f31(0x80000000, 0) - z; | |
if(z.exp < -1) | |
{ | |
z = z * pi; | |
z.m = sincos(z.m>>(1-z.exp), 30).first; | |
for(z.exp=1; z.m<0x80000000; z.m<<=1,--z.exp) ; | |
} | |
else | |
z = f31(0x80000000, 0); | |
} | |
if(L) | |
{ | |
if(bsign) | |
{ | |
f31 l(0x92868247, 0); | |
if(z.exp < 0) | |
{ | |
uint32 m = log2((z.m+1)>>1, 27); | |
z = f31(-((static_cast<uint32>(z.exp)<<26)+(m>>5)), 5); | |
for(; z.m<0x80000000; z.m<<=1,--z.exp) ; | |
l = l + z / lbe; | |
} | |
sign = static_cast<unsigned>(x.exp&&(l.exp<s.exp||(l.exp==s.exp&&l.m<s.m))) << 15; | |
s = sign ? (s-l) : x.exp ? (l-s) : (l+s); | |
} | |
else | |
{ | |
sign = static_cast<unsigned>(x.exp==0) << 15; | |
if(s.exp < -24) | |
return underflow<R>(sign); | |
if(s.exp > 15) | |
return overflow<R>(sign); | |
} | |
} | |
else | |
{ | |
s = s * lbe; | |
uint32 m; | |
if(s.exp < 0) | |
{ | |
m = s.m >> -s.exp; | |
s.exp = 0; | |
} | |
else | |
{ | |
m = (s.m<<s.exp) & 0x7FFFFFFF; | |
s.exp = static_cast<int>(s.m>>(31-s.exp)); | |
} | |
s.m = exp2(m, 27); | |
if(!x.exp) | |
s = f31(0x80000000, 0) / s; | |
if(bsign) | |
{ | |
if(z.exp < 0) | |
s = s * z; | |
s = pi / s; | |
if(s.exp < -24) | |
return underflow<R>(sign); | |
} | |
else if(z.exp > 0 && !(z.m&((1<<(31-z.exp))-1))) | |
return ((s.exp+14)<<10) + static_cast<unsigned int>(s.m>>21); | |
if(s.exp > 15) | |
return overflow<R>(sign); | |
} | |
return fixed2half<R,31,false,false,true>(s.m, s.exp+14, sign); | |
} | |
/// \} | |
template<typename,typename,std::float_round_style> struct half_caster; | |
} | |
/// Half-precision floating-point type. | |
/// This class implements an IEEE-conformant half-precision floating-point type with the usual arithmetic | |
/// operators and conversions. It is implicitly convertible to single-precision floating-point, which makes artihmetic | |
/// expressions and functions with mixed-type operands to be of the most precise operand type. | |
/// | |
/// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and | |
/// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which | |
/// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the | |
/// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of | |
/// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most | |
/// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit | |
/// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if | |
/// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on | |
/// nearly any reasonable platform. | |
/// | |
/// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable | |
/// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation. | |
class half | |
{ | |
public: | |
/// \name Construction and assignment | |
/// \{ | |
/// Default constructor. | |
/// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics | |
/// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics. | |
HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {} | |
/// Conversion constructor. | |
/// \param rhs float to convert | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
explicit half(float rhs) : data_(static_cast<detail::uint16>(detail::float2half<round_style>(rhs))) {} | |
/// Conversion to single-precision. | |
/// \return single precision value representing expression value | |
operator float() const { return detail::half2float<float>(data_); } | |
/// Assignment operator. | |
/// \param rhs single-precision value to copy from | |
/// \return reference to this half | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
half& operator=(float rhs) { data_ = static_cast<detail::uint16>(detail::float2half<round_style>(rhs)); return *this; } | |
/// \} | |
/// \name Arithmetic updates | |
/// \{ | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to add | |
/// \return reference to this half | |
/// \exception FE_... according to operator+(half,half) | |
half& operator+=(half rhs) { return *this = *this + rhs; } | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to subtract | |
/// \return reference to this half | |
/// \exception FE_... according to operator-(half,half) | |
half& operator-=(half rhs) { return *this = *this - rhs; } | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to multiply with | |
/// \return reference to this half | |
/// \exception FE_... according to operator*(half,half) | |
half& operator*=(half rhs) { return *this = *this * rhs; } | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to divide by | |
/// \return reference to this half | |
/// \exception FE_... according to operator/(half,half) | |
half& operator/=(half rhs) { return *this = *this / rhs; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to add | |
/// \return reference to this half | |
/// \exception FE_... according to operator=() | |
half& operator+=(float rhs) { return *this = *this + rhs; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to subtract | |
/// \return reference to this half | |
/// \exception FE_... according to operator=() | |
half& operator-=(float rhs) { return *this = *this - rhs; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to multiply with | |
/// \return reference to this half | |
/// \exception FE_... according to operator=() | |
half& operator*=(float rhs) { return *this = *this * rhs; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to divide by | |
/// \return reference to this half | |
/// \exception FE_... according to operator=() | |
half& operator/=(float rhs) { return *this = *this / rhs; } | |
/// \} | |
/// \name Increment and decrement | |
/// \{ | |
/// Prefix increment. | |
/// \return incremented half value | |
/// \exception FE_... according to operator+(half,half) | |
half& operator++() { return *this = *this + half(detail::binary, 0x3C00); } | |
/// Prefix decrement. | |
/// \return decremented half value | |
/// \exception FE_... according to operator-(half,half) | |
half& operator--() { return *this = *this + half(detail::binary, 0xBC00); } | |
/// Postfix increment. | |
/// \return non-incremented half value | |
/// \exception FE_... according to operator+(half,half) | |
half operator++(int) { half out(*this); ++*this; return out; } | |
/// Postfix decrement. | |
/// \return non-decremented half value | |
/// \exception FE_... according to operator-(half,half) | |
half operator--(int) { half out(*this); --*this; return out; } | |
/// \} | |
private: | |
/// Rounding mode to use | |
static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE); | |
/// Constructor. | |
/// \param bits binary representation to set half to | |
HALF_CONSTEXPR half(detail::binary_t, unsigned int bits) HALF_NOEXCEPT : data_(static_cast<detail::uint16>(bits)) {} | |
/// Internal binary representation | |
detail::uint16 data_; | |
#ifndef HALF_DOXYGEN_ONLY | |
friend HALF_CONSTEXPR_NOERR bool operator==(half, half); | |
friend HALF_CONSTEXPR_NOERR bool operator!=(half, half); | |
friend HALF_CONSTEXPR_NOERR bool operator<(half, half); | |
friend HALF_CONSTEXPR_NOERR bool operator>(half, half); | |
friend HALF_CONSTEXPR_NOERR bool operator<=(half, half); | |
friend HALF_CONSTEXPR_NOERR bool operator>=(half, half); | |
friend HALF_CONSTEXPR half operator-(half); | |
friend half operator+(half, half); | |
friend half operator-(half, half); | |
friend half operator*(half, half); | |
friend half operator/(half, half); | |
template<typename charT,typename traits> friend std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits>&, half); | |
template<typename charT,typename traits> friend std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits>&, half&); | |
friend HALF_CONSTEXPR half fabs(half); | |
friend half fmod(half, half); | |
friend half remainder(half, half); | |
friend half remquo(half, half, int*); | |
friend half fma(half, half, half); | |
friend HALF_CONSTEXPR_NOERR half fmax(half, half); | |
friend HALF_CONSTEXPR_NOERR half fmin(half, half); | |
friend half fdim(half, half); | |
friend half nanh(const char*); | |
friend half exp(half); | |
friend half exp2(half); | |
friend half expm1(half); | |
friend half log(half); | |
friend half log10(half); | |
friend half log2(half); | |
friend half log1p(half); | |
friend half sqrt(half); | |
friend half rsqrt(half); | |
friend half cbrt(half); | |
friend half hypot(half, half); | |
friend half hypot(half, half, half); | |
friend half pow(half, half); | |
friend void sincos(half, half*, half*); | |
friend half sin(half); | |
friend half cos(half); | |
friend half tan(half); | |
friend half asin(half); | |
friend half acos(half); | |
friend half atan(half); | |
friend half atan2(half, half); | |
friend half sinh(half); | |
friend half cosh(half); | |
friend half tanh(half); | |
friend half asinh(half); | |
friend half acosh(half); | |
friend half atanh(half); | |
friend half erf(half); | |
friend half erfc(half); | |
friend half lgamma(half); | |
friend half tgamma(half); | |
friend half ceil(half); | |
friend half floor(half); | |
friend half trunc(half); | |
friend half round(half); | |
friend long lround(half); | |
friend half rint(half); | |
friend long lrint(half); | |
friend half nearbyint(half); | |
#ifdef HALF_ENABLE_CPP11_LONG_LONG | |
friend long long llround(half); | |
friend long long llrint(half); | |
#endif | |
friend half frexp(half, int*); | |
friend half scalbln(half, long); | |
friend half modf(half, half*); | |
friend int ilogb(half); | |
friend half logb(half); | |
friend half nextafter(half, half); | |
friend half nexttoward(half, long double); | |
friend HALF_CONSTEXPR half copysign(half, half); | |
friend HALF_CONSTEXPR int fpclassify(half); | |
friend HALF_CONSTEXPR bool isfinite(half); | |
friend HALF_CONSTEXPR bool isinf(half); | |
friend HALF_CONSTEXPR bool isnan(half); | |
friend HALF_CONSTEXPR bool isnormal(half); | |
friend HALF_CONSTEXPR bool signbit(half); | |
friend HALF_CONSTEXPR bool isgreater(half, half); | |
friend HALF_CONSTEXPR bool isgreaterequal(half, half); | |
friend HALF_CONSTEXPR bool isless(half, half); | |
friend HALF_CONSTEXPR bool islessequal(half, half); | |
friend HALF_CONSTEXPR bool islessgreater(half, half); | |
template<typename,typename,std::float_round_style> friend struct detail::half_caster; | |
friend class std::numeric_limits<half>; | |
#if HALF_ENABLE_CPP11_HASH | |
friend struct std::hash<half>; | |
#endif | |
#if HALF_ENABLE_CPP11_USER_LITERALS | |
friend half literal::operator "" _h(long double); | |
#endif | |
#endif | |
}; | |
#if HALF_ENABLE_CPP11_USER_LITERALS | |
namespace literal | |
{ | |
/// Half literal. | |
/// While this returns a properly rounded half-precision value, half literals can unfortunately not be constant | |
/// expressions due to rather involved conversions. So don't expect this to be a literal literal without involving | |
/// conversion operations at runtime. It is a convenience feature, not a performance optimization. | |
/// \param value literal value | |
/// \return half with of given value (possibly rounded) | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half operator "" _h(long double value) { return half(detail::binary, detail::float2half<half::round_style>(value)); } | |
} | |
#endif | |
namespace detail | |
{ | |
/// Helper class for half casts. | |
/// This class template has to be specialized for all valid cast arguments to define an appropriate static | |
/// `cast` member function and a corresponding `type` member denoting its return type. | |
/// \tparam T destination type | |
/// \tparam U source type | |
/// \tparam R rounding mode to use | |
template<typename T,typename U,std::float_round_style R=(std::float_round_style)(HALF_ROUND_STYLE)> struct half_caster {}; | |
template<typename U,std::float_round_style R> struct half_caster<half,U,R> | |
{ | |
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS | |
static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type not supported"); | |
#endif | |
static half cast(U arg) { return cast_impl(arg, is_float<U>()); }; | |
private: | |
static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(arg)); } | |
static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); } | |
}; | |
template<typename T,std::float_round_style R> struct half_caster<T,half,R> | |
{ | |
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS | |
static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type not supported"); | |
#endif | |
static T cast(half arg) { return cast_impl(arg, is_float<T>()); } | |
private: | |
static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); } | |
static T cast_impl(half arg, false_type) { return half2int<R,true,true,T>(arg.data_); } | |
}; | |
template<std::float_round_style R> struct half_caster<half,half,R> | |
{ | |
static half cast(half arg) { return arg; } | |
}; | |
} | |
} | |
/// Extensions to the C++ standard library. | |
namespace std | |
{ | |
/// Numeric limits for half-precision floats. | |
/// **See also:** Documentation for [std::numeric_limits](https://en.cppreference.com/w/cpp/types/numeric_limits) | |
template<> class numeric_limits<half_float::half> | |
{ | |
public: | |
/// Is template specialization. | |
static HALF_CONSTEXPR_CONST bool is_specialized = true; | |
/// Supports signed values. | |
static HALF_CONSTEXPR_CONST bool is_signed = true; | |
/// Is not an integer type. | |
static HALF_CONSTEXPR_CONST bool is_integer = false; | |
/// Is not exact. | |
static HALF_CONSTEXPR_CONST bool is_exact = false; | |
/// Doesn't provide modulo arithmetic. | |
static HALF_CONSTEXPR_CONST bool is_modulo = false; | |
/// Has a finite set of values. | |
static HALF_CONSTEXPR_CONST bool is_bounded = true; | |
/// IEEE conformant. | |
static HALF_CONSTEXPR_CONST bool is_iec559 = true; | |
/// Supports infinity. | |
static HALF_CONSTEXPR_CONST bool has_infinity = true; | |
/// Supports quiet NaNs. | |
static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true; | |
/// Supports signaling NaNs. | |
static HALF_CONSTEXPR_CONST bool has_signaling_NaN = true; | |
/// Supports subnormal values. | |
static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present; | |
/// Does not support denormalization detection. | |
static HALF_CONSTEXPR_CONST bool has_denorm_loss = false; | |
#if HALF_ERRHANDLING_THROWS | |
static HALF_CONSTEXPR_CONST bool traps = true; | |
#else | |
/// Traps only if [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID) is acitvated. | |
static HALF_CONSTEXPR_CONST bool traps = false; | |
#endif | |
/// Does not support pre-rounding underflow detection. | |
static HALF_CONSTEXPR_CONST bool tinyness_before = false; | |
/// Rounding mode. | |
static HALF_CONSTEXPR_CONST float_round_style round_style = half_float::half::round_style; | |
/// Significant digits. | |
static HALF_CONSTEXPR_CONST int digits = 11; | |
/// Significant decimal digits. | |
static HALF_CONSTEXPR_CONST int digits10 = 3; | |
/// Required decimal digits to represent all possible values. | |
static HALF_CONSTEXPR_CONST int max_digits10 = 5; | |
/// Number base. | |
static HALF_CONSTEXPR_CONST int radix = 2; | |
/// One more than smallest exponent. | |
static HALF_CONSTEXPR_CONST int min_exponent = -13; | |
/// Smallest normalized representable power of 10. | |
static HALF_CONSTEXPR_CONST int min_exponent10 = -4; | |
/// One more than largest exponent | |
static HALF_CONSTEXPR_CONST int max_exponent = 16; | |
/// Largest finitely representable power of 10. | |
static HALF_CONSTEXPR_CONST int max_exponent10 = 4; | |
/// Smallest positive normal value. | |
static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); } | |
/// Smallest finite value. | |
static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); } | |
/// Largest finite value. | |
static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); } | |
/// Difference between 1 and next representable value. | |
static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); } | |
/// Maximum rounding error in ULP (units in the last place). | |
static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW | |
{ return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); } | |
/// Positive infinity. | |
static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); } | |
/// Quiet NaN. | |
static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); } | |
/// Signaling NaN. | |
static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); } | |
/// Smallest positive subnormal value. | |
static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); } | |
}; | |
#if HALF_ENABLE_CPP11_HASH | |
/// Hash function for half-precision floats. | |
/// This is only defined if C++11 `std::hash` is supported and enabled. | |
/// | |
/// **See also:** Documentation for [std::hash](https://en.cppreference.com/w/cpp/utility/hash) | |
template<> struct hash<half_float::half> | |
{ | |
/// Type of function argument. | |
typedef half_float::half argument_type; | |
/// Function return type. | |
typedef size_t result_type; | |
/// Compute hash function. | |
/// \param arg half to hash | |
/// \return hash value | |
result_type operator()(argument_type arg) const { return hash<half_float::detail::uint16>()(arg.data_&-static_cast<unsigned>(arg.data_!=0x8000)); } | |
}; | |
#endif | |
} | |
namespace half_float | |
{ | |
/// \anchor compop | |
/// \name Comparison operators | |
/// \{ | |
/// Comparison for equality. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if operands equal | |
/// \retval false else | |
/// \exception FE_INVALID if \a x or \a y is NaN | |
inline HALF_CONSTEXPR_NOERR bool operator==(half x, half y) | |
{ | |
return !detail::compsignal(x.data_, y.data_) && (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)); | |
} | |
/// Comparison for inequality. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if operands not equal | |
/// \retval false else | |
/// \exception FE_INVALID if \a x or \a y is NaN | |
inline HALF_CONSTEXPR_NOERR bool operator!=(half x, half y) | |
{ | |
return detail::compsignal(x.data_, y.data_) || (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)); | |
} | |
/// Comparison for less than. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less than \a y | |
/// \retval false else | |
/// \exception FE_INVALID if \a x or \a y is NaN | |
inline HALF_CONSTEXPR_NOERR bool operator<(half x, half y) | |
{ | |
return !detail::compsignal(x.data_, y.data_) && | |
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); | |
} | |
/// Comparison for greater than. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater than \a y | |
/// \retval false else | |
/// \exception FE_INVALID if \a x or \a y is NaN | |
inline HALF_CONSTEXPR_NOERR bool operator>(half x, half y) | |
{ | |
return !detail::compsignal(x.data_, y.data_) && | |
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); | |
} | |
/// Comparison for less equal. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less equal \a y | |
/// \retval false else | |
/// \exception FE_INVALID if \a x or \a y is NaN | |
inline HALF_CONSTEXPR_NOERR bool operator<=(half x, half y) | |
{ | |
return !detail::compsignal(x.data_, y.data_) && | |
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); | |
} | |
/// Comparison for greater equal. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater equal \a y | |
/// \retval false else | |
/// \exception FE_INVALID if \a x or \a y is NaN | |
inline HALF_CONSTEXPR_NOERR bool operator>=(half x, half y) | |
{ | |
return !detail::compsignal(x.data_, y.data_) && | |
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); | |
} | |
/// \} | |
/// \anchor arithmetics | |
/// \name Arithmetic operators | |
/// \{ | |
/// Identity. | |
/// \param arg operand | |
/// \return unchanged operand | |
inline HALF_CONSTEXPR half operator+(half arg) { return arg; } | |
/// Negation. | |
/// \param arg operand | |
/// \return negated operand | |
inline HALF_CONSTEXPR half operator-(half arg) { return half(detail::binary, arg.data_^0x8000); } | |
/// Addition. | |
/// This operation is exact to rounding for all rounding modes. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return sum of half expressions | |
/// \exception FE_INVALID if \a x and \a y are infinities with different signs or signaling NaNs | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half operator+(half x, half y) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)+detail::half2float<detail::internal_t>(y.data_))); | |
#else | |
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF; | |
bool sub = ((x.data_^y.data_)&0x8000) != 0; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : (absy!=0x7C00) ? x.data_ : | |
(sub && absx==0x7C00) ? detail::invalid() : y.data_); | |
if(!absx) | |
return absy ? y : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (x.data_|y.data_) : (x.data_&y.data_)); | |
if(!absy) | |
return x; | |
unsigned int sign = ((sub && absy>absx) ? y.data_ : x.data_) & 0x8000; | |
if(absy > absx) | |
std::swap(absx, absy); | |
int exp = (absx>>10) + (absx<=0x3FF), d = exp - (absy>>10) - (absy<=0x3FF), mx = ((absx&0x3FF)|((absx>0x3FF)<<10)) << 3, my; | |
if(d < 13) | |
{ | |
my = ((absy&0x3FF)|((absy>0x3FF)<<10)) << 3; | |
my = (my>>d) | ((my&((1<<d)-1))!=0); | |
} | |
else | |
my = 1; | |
if(sub) | |
{ | |
if(!(mx-=my)) | |
return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15); | |
for(; mx<0x2000 && exp>1; mx<<=1,--exp) ; | |
} | |
else | |
{ | |
mx += my; | |
int i = mx >> 14; | |
if((exp+=i) > 30) | |
return half(detail::binary, detail::overflow<half::round_style>(sign)); | |
mx = (mx>>i) | (mx&i); | |
} | |
return half(detail::binary, detail::rounded<half::round_style,false>(sign+((exp-1)<<10)+(mx>>3), (mx>>2)&1, (mx&0x3)!=0)); | |
#endif | |
} | |
/// Subtraction. | |
/// This operation is exact to rounding for all rounding modes. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return difference of half expressions | |
/// \exception FE_INVALID if \a x and \a y are infinities with equal signs or signaling NaNs | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half operator-(half x, half y) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)-detail::half2float<detail::internal_t>(y.data_))); | |
#else | |
return x + -y; | |
#endif | |
} | |
/// Multiplication. | |
/// This operation is exact to rounding for all rounding modes. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return product of half expressions | |
/// \exception FE_INVALID if multiplying 0 with infinity or if \a x or \a y is signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half operator*(half x, half y) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)*detail::half2float<detail::internal_t>(y.data_))); | |
#else | |
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -16; | |
unsigned int sign = (x.data_^y.data_) & 0x8000; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : | |
((absx==0x7C00 && !absy)||(absy==0x7C00 && !absx)) ? detail::invalid() : (sign|0x7C00)); | |
if(!absx || !absy) | |
return half(detail::binary, sign); | |
for(; absx<0x400; absx<<=1,--exp) ; | |
for(; absy<0x400; absy<<=1,--exp) ; | |
detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400); | |
int i = static_cast<int>(m >> 21), s = static_cast<int>(m & i); | |
exp += (absx>>10) + (absy>>10) + i; | |
if(exp > 29) | |
return half(detail::binary, detail::overflow<half::round_style>(sign)); | |
else if(exp < -11) | |
return half(detail::binary, detail::underflow<half::round_style>(sign)); | |
return half(detail::binary, detail::fixed2half<half::round_style,20,false,false,false>(m>>i, exp, sign, s)); | |
#endif | |
} | |
/// Division. | |
/// This operation is exact to rounding for all rounding modes. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return quotient of half expressions | |
/// \exception FE_INVALID if dividing 0s or infinities with each other or if \a x or \a y is signaling NaN | |
/// \exception FE_DIVBYZERO if dividing finite value by 0 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half operator/(half x, half y) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)/detail::half2float<detail::internal_t>(y.data_))); | |
#else | |
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = 14; | |
unsigned int sign = (x.data_^y.data_) & 0x8000; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : | |
(absx==absy) ? detail::invalid() : (sign|((absx==0x7C00) ? 0x7C00 : 0))); | |
if(!absx) | |
return half(detail::binary, absy ? sign : detail::invalid()); | |
if(!absy) | |
return half(detail::binary, detail::pole(sign)); | |
for(; absx<0x400; absx<<=1,--exp) ; | |
for(; absy<0x400; absy<<=1,++exp) ; | |
detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400; | |
int i = mx < my; | |
exp += (absx>>10) - (absy>>10) - i; | |
if(exp > 29) | |
return half(detail::binary, detail::overflow<half::round_style>(sign)); | |
else if(exp < -11) | |
return half(detail::binary, detail::underflow<half::round_style>(sign)); | |
mx <<= 12 + i; | |
my <<= 1; | |
return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,false>(mx/my, exp, sign, mx%my!=0)); | |
#endif | |
} | |
/// \} | |
/// \anchor streaming | |
/// \name Input and output | |
/// \{ | |
/// Output operator. | |
/// This uses the built-in functionality for streaming out floating-point numbers. | |
/// \param out output stream to write into | |
/// \param arg half expression to write | |
/// \return reference to output stream | |
template<typename charT,typename traits> std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits> &out, half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return out << detail::half2float<detail::internal_t>(arg.data_); | |
#else | |
return out << detail::half2float<float>(arg.data_); | |
#endif | |
} | |
/// Input operator. | |
/// This uses the built-in functionality for streaming in floating-point numbers, specifically double precision floating | |
/// point numbers (unless overridden with [HALF_ARITHMETIC_TYPE](\ref HALF_ARITHMETIC_TYPE)). So the input string is first | |
/// rounded to double precision using the underlying platform's current floating-point rounding mode before being rounded | |
/// to half-precision using the library's half-precision rounding mode. | |
/// \param in input stream to read from | |
/// \param arg half to read into | |
/// \return reference to input stream | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
template<typename charT,typename traits> std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits> &in, half &arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
detail::internal_t f; | |
#else | |
double f; | |
#endif | |
if(in >> f) | |
arg.data_ = detail::float2half<half::round_style>(f); | |
return in; | |
} | |
/// \} | |
/// \anchor basic | |
/// \name Basic mathematical operations | |
/// \{ | |
/// Absolute value. | |
/// **See also:** Documentation for [std::fabs](https://en.cppreference.com/w/cpp/numeric/math/fabs). | |
/// \param arg operand | |
/// \return absolute value of \a arg | |
inline HALF_CONSTEXPR half fabs(half arg) { return half(detail::binary, arg.data_&0x7FFF); } | |
/// Absolute value. | |
/// **See also:** Documentation for [std::abs](https://en.cppreference.com/w/cpp/numeric/math/fabs). | |
/// \param arg operand | |
/// \return absolute value of \a arg | |
inline HALF_CONSTEXPR half abs(half arg) { return fabs(arg); } | |
/// Remainder of division. | |
/// **See also:** Documentation for [std::fmod](https://en.cppreference.com/w/cpp/numeric/math/fmod). | |
/// \param x first operand | |
/// \param y second operand | |
/// \return remainder of floating-point division. | |
/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN | |
inline half fmod(half x, half y) | |
{ | |
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : | |
(absx==0x7C00) ? detail::invalid() : x.data_); | |
if(!absy) | |
return half(detail::binary, detail::invalid()); | |
if(!absx) | |
return x; | |
if(absx == absy) | |
return half(detail::binary, sign); | |
return half(detail::binary, sign|detail::mod<false,false>(absx, absy)); | |
} | |
/// Remainder of division. | |
/// **See also:** Documentation for [std::remainder](https://en.cppreference.com/w/cpp/numeric/math/remainder). | |
/// \param x first operand | |
/// \param y second operand | |
/// \return remainder of floating-point division. | |
/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN | |
inline half remainder(half x, half y) | |
{ | |
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : | |
(absx==0x7C00) ? detail::invalid() : x.data_); | |
if(!absy) | |
return half(detail::binary, detail::invalid()); | |
if(absx == absy) | |
return half(detail::binary, sign); | |
return half(detail::binary, sign^detail::mod<false,true>(absx, absy)); | |
} | |
/// Remainder of division. | |
/// **See also:** Documentation for [std::remquo](https://en.cppreference.com/w/cpp/numeric/math/remquo). | |
/// \param x first operand | |
/// \param y second operand | |
/// \param quo address to store some bits of quotient at | |
/// \return remainder of floating-point division. | |
/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN | |
inline half remquo(half x, half y, int *quo) | |
{ | |
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, value = x.data_ & 0x8000; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : | |
(absx==0x7C00) ? detail::invalid() : (*quo = 0, x.data_)); | |
if(!absy) | |
return half(detail::binary, detail::invalid()); | |
bool qsign = ((value^y.data_)&0x8000) != 0; | |
int q = 1; | |
if(absx != absy) | |
value ^= detail::mod<true, true>(absx, absy, &q); | |
return *quo = qsign ? -q : q, half(detail::binary, value); | |
} | |
/// Fused multiply add. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::fma](https://en.cppreference.com/w/cpp/numeric/math/fma). | |
/// \param x first operand | |
/// \param y second operand | |
/// \param z third operand | |
/// \return ( \a x * \a y ) + \a z rounded as one operation. | |
/// \exception FE_INVALID according to operator*() and operator+() unless any argument is a quiet NaN and no argument is a signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding the final addition | |
inline half fma(half x, half y, half z) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_); | |
#if HALF_ENABLE_CPP11_CMATH && FP_FAST_FMA | |
return half(detail::binary, detail::float2half<half::round_style>(std::fma(fx, fy, fz))); | |
#else | |
return half(detail::binary, detail::float2half<half::round_style>(fx*fy+fz)); | |
#endif | |
#else | |
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, exp = -15; | |
unsigned int sign = (x.data_^y.data_) & 0x8000; | |
bool sub = ((sign^z.data_)&0x8000) != 0; | |
if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00) | |
return (absx>0x7C00 || absy>0x7C00 || absz>0x7C00) ? half(detail::binary, detail::signal(x.data_, y.data_, z.data_)) : | |
(absx==0x7C00) ? half(detail::binary, (!absy || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) : | |
(absy==0x7C00) ? half(detail::binary, (!absx || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) : z; | |
if(!absx || !absy) | |
return absz ? z : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (z.data_|sign) : (z.data_&sign)); | |
for(; absx<0x400; absx<<=1,--exp) ; | |
for(; absy<0x400; absy<<=1,--exp) ; | |
detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400); | |
int i = static_cast<int>(m >> 21); | |
exp += (absx>>10) + (absy>>10) + i; | |
m <<= 3 - i; | |
if(absz) | |
{ | |
int expz = 0; | |
for(; absz<0x400; absz<<=1,--expz) ; | |
expz += absz >> 10; | |
detail::uint32 mz = static_cast<detail::uint32>((absz&0x3FF)|0x400) << 13; | |
if(expz > exp || (expz == exp && mz > m)) | |
{ | |
std::swap(m, mz); | |
std::swap(exp, expz); | |
if(sub) | |
sign = z.data_ & 0x8000; | |
} | |
int d = exp - expz; | |
mz = (d<23) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1; | |
if(sub) | |
{ | |
m = m - mz; | |
if(!m) | |
return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15); | |
for(; m<0x800000; m<<=1,--exp) ; | |
} | |
else | |
{ | |
m += mz; | |
i = static_cast<int>(m >> 24); | |
m = (m>>i) | (m&i); | |
exp += i; | |
} | |
} | |
if(exp > 30) | |
return half(detail::binary, detail::overflow<half::round_style>(sign)); | |
else if(exp < -10) | |
return half(detail::binary, detail::underflow<half::round_style>(sign)); | |
return half(detail::binary, detail::fixed2half<half::round_style,23,false,false,false>(m, exp-1, sign)); | |
#endif | |
} | |
/// Maximum of half expressions. | |
/// **See also:** Documentation for [std::fmax](https://en.cppreference.com/w/cpp/numeric/math/fmax). | |
/// \param x first operand | |
/// \param y second operand | |
/// \return maximum of operands, ignoring quiet NaNs | |
/// \exception FE_INVALID if \a x or \a y is signaling NaN | |
inline HALF_CONSTEXPR_NOERR half fmax(half x, half y) | |
{ | |
return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) < | |
(y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_)); | |
} | |
/// Minimum of half expressions. | |
/// **See also:** Documentation for [std::fmin](https://en.cppreference.com/w/cpp/numeric/math/fmin). | |
/// \param x first operand | |
/// \param y second operand | |
/// \return minimum of operands, ignoring quiet NaNs | |
/// \exception FE_INVALID if \a x or \a y is signaling NaN | |
inline HALF_CONSTEXPR_NOERR half fmin(half x, half y) | |
{ | |
return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) > | |
(y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_)); | |
} | |
/// Positive difference. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::fdim](https://en.cppreference.com/w/cpp/numeric/math/fdim). | |
/// \param x first operand | |
/// \param y second operand | |
/// \return \a x - \a y or 0 if difference negative | |
/// \exception FE_... according to operator-(half,half) | |
inline half fdim(half x, half y) | |
{ | |
if(isnan(x) || isnan(y)) | |
return half(detail::binary, detail::signal(x.data_, y.data_)); | |
return (x.data_^(0x8000|(0x8000-(x.data_>>15)))) <= (y.data_^(0x8000|(0x8000-(y.data_>>15)))) ? half(detail::binary, 0) : (x-y); | |
} | |
/// Get NaN value. | |
/// **See also:** Documentation for [std::nan](https://en.cppreference.com/w/cpp/numeric/math/nan). | |
/// \param arg string code | |
/// \return quiet NaN | |
inline half nanh(const char *arg) | |
{ | |
unsigned int value = 0x7FFF; | |
while(*arg) | |
value ^= static_cast<unsigned>(*arg++) & 0xFF; | |
return half(detail::binary, value); | |
} | |
/// \} | |
/// \anchor exponential | |
/// \name Exponential functions | |
/// \{ | |
/// Exponential function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::exp](https://en.cppreference.com/w/cpp/numeric/math/exp). | |
/// \param arg function argument | |
/// \return e raised to \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half exp(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::exp(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, e = (abs>>10) + (abs<=0x3FF), exp; | |
if(!abs) | |
return half(detail::binary, 0x3C00); | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_)); | |
if(abs >= 0x4C80) | |
return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>()); | |
detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29); | |
if(e < 14) | |
{ | |
exp = 0; | |
m >>= 14 - e; | |
} | |
else | |
{ | |
exp = static_cast<int>(m >> (45-e)); | |
m = (m<<(e-14)) & 0x7FFFFFFF; | |
} | |
return half(detail::binary, detail::exp2_post<half::round_style>(m, exp, (arg.data_&0x8000)!=0, 0, 26)); | |
#endif | |
} | |
/// Binary exponential. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::exp2](https://en.cppreference.com/w/cpp/numeric/math/exp2). | |
/// \param arg function argument | |
/// \return 2 raised to \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half exp2(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::exp2(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, e = (abs>>10) + (abs<=0x3FF), exp = (abs&0x3FF) + ((abs>0x3FF)<<10); | |
if(!abs) | |
return half(detail::binary, 0x3C00); | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_)); | |
if(abs >= 0x4E40) | |
return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>()); | |
return half(detail::binary, detail::exp2_post<half::round_style>( | |
(static_cast<detail::uint32>(exp)<<(6+e))&0x7FFFFFFF, exp>>(25-e), (arg.data_&0x8000)!=0, 0, 28)); | |
#endif | |
} | |
/// Exponential minus one. | |
/// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest` | |
/// and in <1% of inputs for any other rounding mode. | |
/// | |
/// **See also:** Documentation for [std::expm1](https://en.cppreference.com/w/cpp/numeric/math/expm1). | |
/// \param arg function argument | |
/// \return e raised to \a arg and subtracted by 1 | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half expm1(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::expm1(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000, e = (abs>>10) + (abs<=0x3FF), exp; | |
if(!abs) | |
return arg; | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? (0x7C00+(sign>>1)) : detail::signal(arg.data_)); | |
if(abs >= 0x4A00) | |
return half(detail::binary, (arg.data_&0x8000) ? detail::rounded<half::round_style,true>(0xBBFF, 1, 1) : detail::overflow<half::round_style>()); | |
detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29); | |
if(e < 14) | |
{ | |
exp = 0; | |
m >>= 14 - e; | |
} | |
else | |
{ | |
exp = static_cast<unsigned int>(m >> (45-e)); | |
m = (m<<(e-14)) & 0x7FFFFFFF; | |
} | |
m = detail::exp2(m); | |
if(sign) | |
{ | |
int s = 0; | |
if(m > 0x80000000) | |
{ | |
++exp; | |
m = detail::divide64(0x80000000, m, s); | |
} | |
m = 0x80000000 - ((m>>exp)|((m&((static_cast<detail::uint32>(1)<<exp)-1))!=0)|s); | |
exp = 0; | |
} | |
else | |
m -= (exp<31) ? (0x80000000>>exp) : 1; | |
for(exp+=14; m<0x80000000 && exp; m<<=1,--exp) ; | |
if(exp > 29) | |
return half(detail::binary, detail::overflow<half::round_style>()); | |
return half(detail::binary, detail::rounded<half::round_style,true>(sign+(exp<<10)+static_cast<unsigned int>(m>>21), static_cast<int>((m>>20)&1), (m&0xFFFFF)!=0)); | |
#endif | |
} | |
/// Natural logarithm. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::log](https://en.cppreference.com/w/cpp/numeric/math/log). | |
/// \param arg function argument | |
/// \return logarithm of \a arg to base e | |
/// \exception FE_INVALID for signaling NaN or negative argument | |
/// \exception FE_DIVBYZERO for 0 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half log(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::log(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp = -15; | |
if(!abs) | |
return half(detail::binary, detail::pole(0x8000)); | |
if(arg.data_ & 0x8000) | |
return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs >= 0x7C00) | |
return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); | |
for(; abs<0x400; abs<<=1,--exp) ; | |
exp += abs >> 10; | |
return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>( | |
detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 17)); | |
#endif | |
} | |
/// Common logarithm. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::log10](https://en.cppreference.com/w/cpp/numeric/math/log10). | |
/// \param arg function argument | |
/// \return logarithm of \a arg to base 10 | |
/// \exception FE_INVALID for signaling NaN or negative argument | |
/// \exception FE_DIVBYZERO for 0 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half log10(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::log10(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp = -15; | |
if(!abs) | |
return half(detail::binary, detail::pole(0x8000)); | |
if(arg.data_ & 0x8000) | |
return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs >= 0x7C00) | |
return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); | |
switch(abs) | |
{ | |
case 0x4900: return half(detail::binary, 0x3C00); | |
case 0x5640: return half(detail::binary, 0x4000); | |
case 0x63D0: return half(detail::binary, 0x4200); | |
case 0x70E2: return half(detail::binary, 0x4400); | |
} | |
for(; abs<0x400; abs<<=1,--exp) ; | |
exp += abs >> 10; | |
return half(detail::binary, detail::log2_post<half::round_style,0xD49A784C>( | |
detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 16)); | |
#endif | |
} | |
/// Binary logarithm. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::log2](https://en.cppreference.com/w/cpp/numeric/math/log2). | |
/// \param arg function argument | |
/// \return logarithm of \a arg to base 2 | |
/// \exception FE_INVALID for signaling NaN or negative argument | |
/// \exception FE_DIVBYZERO for 0 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half log2(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::log2(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp = -15, s = 0; | |
if(!abs) | |
return half(detail::binary, detail::pole(0x8000)); | |
if(arg.data_ & 0x8000) | |
return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs >= 0x7C00) | |
return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); | |
if(abs == 0x3C00) | |
return half(detail::binary, 0); | |
for(; abs<0x400; abs<<=1,--exp) ; | |
exp += (abs>>10); | |
if(!(abs&0x3FF)) | |
{ | |
unsigned int value = static_cast<unsigned>(exp<0) << 15, m = std::abs(exp) << 6; | |
for(exp=18; m<0x400; m<<=1,--exp) ; | |
return half(detail::binary, value+(exp<<10)+m); | |
} | |
detail::uint32 ilog = exp, sign = detail::sign_mask(ilog), m = | |
(((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 28)>>4))^sign) - sign; | |
if(!m) | |
return half(detail::binary, 0); | |
for(exp=14; m<0x8000000 && exp; m<<=1,--exp) ; | |
for(; m>0xFFFFFFF; m>>=1,++exp) | |
s |= m & 1; | |
return half(detail::binary, detail::fixed2half<half::round_style,27,false,false,true>(m, exp, sign&0x8000, s)); | |
#endif | |
} | |
/// Natural logarithm plus one. | |
/// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest` | |
/// and in ~1% of inputs for any other rounding mode. | |
/// | |
/// **See also:** Documentation for [std::log1p](https://en.cppreference.com/w/cpp/numeric/math/log1p). | |
/// \param arg function argument | |
/// \return logarithm of \a arg plus 1 to base e | |
/// \exception FE_INVALID for signaling NaN or argument <-1 | |
/// \exception FE_DIVBYZERO for -1 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half log1p(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::log1p(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
if(arg.data_ >= 0xBC00) | |
return half(detail::binary, (arg.data_==0xBC00) ? detail::pole(0x8000) : (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); | |
int abs = arg.data_ & 0x7FFF, exp = -15; | |
if(!abs || abs >= 0x7C00) | |
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; | |
for(; abs<0x400; abs<<=1,--exp) ; | |
exp += abs >> 10; | |
detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 20; | |
if(arg.data_ & 0x8000) | |
{ | |
m = 0x40000000 - (m>>-exp); | |
for(exp=0; m<0x40000000; m<<=1,--exp) ; | |
} | |
else | |
{ | |
if(exp < 0) | |
{ | |
m = 0x40000000 + (m>>-exp); | |
exp = 0; | |
} | |
else | |
{ | |
m += 0x40000000 >> exp; | |
int i = static_cast<int>(m >> 31); | |
m >>= i; | |
exp += i; | |
} | |
} | |
return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2(m), exp, 17)); | |
#endif | |
} | |
/// \} | |
/// \anchor power | |
/// \name Power functions | |
/// \{ | |
/// Square root. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::sqrt](https://en.cppreference.com/w/cpp/numeric/math/sqrt). | |
/// \param arg function argument | |
/// \return square root of \a arg | |
/// \exception FE_INVALID for signaling NaN and negative arguments | |
/// \exception FE_INEXACT according to rounding | |
inline half sqrt(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp = 15; | |
if(!abs || arg.data_ >= 0x7C00) | |
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ? detail::invalid() : arg.data_); | |
for(; abs<0x400; abs<<=1,--exp) ; | |
detail::uint32 r = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 10, m = detail::sqrt<20>(r, exp+=abs>>10); | |
return half(detail::binary, detail::rounded<half::round_style,false>((exp<<10)+(m&0x3FF), r>m, r!=0)); | |
#endif | |
} | |
/// Inverse square root. | |
/// This function is exact to rounding for all rounding modes and thus generally more accurate than directly computing | |
/// 1 / sqrt(\a arg) in half-precision, in addition to also being faster. | |
/// \param arg function argument | |
/// \return reciprocal of square root of \a arg | |
/// \exception FE_INVALID for signaling NaN and negative arguments | |
/// \exception FE_INEXACT according to rounding | |
inline half rsqrt(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(detail::internal_t(1)/std::sqrt(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF, bias = 0x4000; | |
if(!abs || arg.data_ >= 0x7C00) | |
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ? | |
detail::invalid() : !abs ? detail::pole(arg.data_&0x8000) : 0); | |
for(; abs<0x400; abs<<=1,bias-=0x400) ; | |
unsigned int frac = (abs+=bias) & 0x7FF; | |
if(frac == 0x400) | |
return half(detail::binary, 0x7A00-(abs>>1)); | |
if((half::round_style == std::round_to_nearest && (frac == 0x3FE || frac == 0x76C)) || | |
(half::round_style != std::round_to_nearest && (frac == 0x15A || frac == 0x3FC || frac == 0x401 || frac == 0x402 || frac == 0x67B))) | |
return pow(arg, half(detail::binary, 0xB800)); | |
detail::uint32 f = 0x17376 - abs, mx = (abs&0x3FF) | 0x400, my = ((f>>1)&0x3FF) | 0x400, mz = my * my; | |
int expy = static_cast<int>(f>>11) - 31, expx = 32 - (abs>>10), i = static_cast<int>(mz >> 21); | |
for(mz=0x60000000-(((mz>>i)*mx)>>(expx-2*expy-i)); mz<0x40000000; mz<<=1,--expy) ; | |
i = static_cast<int>((my*=mz>>10) >> 31); | |
expy += i; | |
my = (my>>(20+i)) + 1; | |
i = static_cast<int>((mz=my*my) >> 21); | |
for(mz=0x60000000-(((mz>>i)*mx)>>(expx-2*expy-i)); mz<0x40000000; mz<<=1,--expy) ; | |
i = static_cast<int>((my*=(mz>>10)+1) >> 31); | |
return half(detail::binary, detail::fixed2half<half::round_style,30,false,false,true>(my>>i, expy+i+14)); | |
#endif | |
} | |
/// Cubic root. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::cbrt](https://en.cppreference.com/w/cpp/numeric/math/cbrt). | |
/// \param arg function argument | |
/// \return cubic root of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_INEXACT according to rounding | |
inline half cbrt(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::cbrt(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp = -15; | |
if(!abs || abs == 0x3C00 || abs >= 0x7C00) | |
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; | |
for(; abs<0x400; abs<<=1, --exp); | |
detail::uint32 ilog = exp + (abs>>10), sign = detail::sign_mask(ilog), f, m = | |
(((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 24)>>4))^sign) - sign; | |
for(exp=2; m<0x80000000; m<<=1,--exp) ; | |
m = detail::multiply64(m, 0xAAAAAAAB); | |
int i = static_cast<int>(m >> 31), s; | |
exp += i; | |
m <<= 1 - i; | |
if(exp < 0) | |
{ | |
f = m >> -exp; | |
exp = 0; | |
} | |
else | |
{ | |
f = (m<<exp) & 0x7FFFFFFF; | |
exp = static_cast<int>(m >> (31-exp)); | |
} | |
m = detail::exp2(f, (half::round_style==std::round_to_nearest) ? 29 : 26); | |
if(sign) | |
{ | |
if(m > 0x80000000) | |
{ | |
m = detail::divide64(0x80000000, m, s); | |
++exp; | |
} | |
exp = -exp; | |
} | |
return half(detail::binary, (half::round_style==std::round_to_nearest) ? | |
detail::fixed2half<half::round_style,31,false,false,false>(m, exp+14, arg.data_&0x8000) : | |
detail::fixed2half<half::round_style,23,false,false,false>((m+0x80)>>8, exp+14, arg.data_&0x8000)); | |
#endif | |
} | |
/// Hypotenuse function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot). | |
/// \param x first argument | |
/// \param y second argument | |
/// \return square root of sum of squares without internal over- or underflows | |
/// \exception FE_INVALID if \a x or \a y is signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root | |
inline half hypot(half x, half y) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_); | |
#if HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::hypot(fx, fy))); | |
#else | |
return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy))); | |
#endif | |
#else | |
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, expx = 0, expy = 0; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, y.data_) : | |
(absy==0x7C00) ? detail::select(0x7C00, x.data_) : detail::signal(x.data_, y.data_)); | |
if(!absx) | |
return half(detail::binary, absy ? detail::check_underflow(absy) : 0); | |
if(!absy) | |
return half(detail::binary, detail::check_underflow(absx)); | |
if(absy > absx) | |
std::swap(absx, absy); | |
for(; absx<0x400; absx<<=1,--expx) ; | |
for(; absy<0x400; absy<<=1,--expy) ; | |
detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400; | |
mx *= mx; | |
my *= my; | |
int ix = static_cast<int>(mx >> 21), iy = static_cast<int>(my >> 21); | |
expx = 2*(expx+(absx>>10)) - 15 + ix; | |
expy = 2*(expy+(absy>>10)) - 15 + iy; | |
mx <<= 10 - ix; | |
my <<= 10 - iy; | |
int d = expx - expy; | |
my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1; | |
return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx)); | |
#endif | |
} | |
/// Hypotenuse function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot). | |
/// \param x first argument | |
/// \param y second argument | |
/// \param z third argument | |
/// \return square root of sum of squares without internal over- or underflows | |
/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root | |
inline half hypot(half x, half y, half z) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_); | |
return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy+fz*fz))); | |
#else | |
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, expx = 0, expy = 0, expz = 0; | |
if(!absx) | |
return hypot(y, z); | |
if(!absy) | |
return hypot(x, z); | |
if(!absz) | |
return hypot(x, y); | |
if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00) | |
return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, detail::select(y.data_, z.data_)) : | |
(absy==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, z.data_)) : | |
(absz==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, y.data_)) : | |
detail::signal(x.data_, y.data_, z.data_)); | |
if(absz > absy) | |
std::swap(absy, absz); | |
if(absy > absx) | |
std::swap(absx, absy); | |
if(absz > absy) | |
std::swap(absy, absz); | |
for(; absx<0x400; absx<<=1,--expx) ; | |
for(; absy<0x400; absy<<=1,--expy) ; | |
for(; absz<0x400; absz<<=1,--expz) ; | |
detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400, mz = (absz&0x3FF) | 0x400; | |
mx *= mx; | |
my *= my; | |
mz *= mz; | |
int ix = static_cast<int>(mx >> 21), iy = static_cast<int>(my >> 21), iz = static_cast<int>(mz >> 21); | |
expx = 2*(expx+(absx>>10)) - 15 + ix; | |
expy = 2*(expy+(absy>>10)) - 15 + iy; | |
expz = 2*(expz+(absz>>10)) - 15 + iz; | |
mx <<= 10 - ix; | |
my <<= 10 - iy; | |
mz <<= 10 - iz; | |
int d = expy - expz; | |
mz = (d<30) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1; | |
my += mz; | |
if(my & 0x80000000) | |
{ | |
my = (my>>1) | (my&1); | |
if(++expy > expx) | |
{ | |
std::swap(mx, my); | |
std::swap(expx, expy); | |
} | |
} | |
d = expx - expy; | |
my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1; | |
return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx)); | |
#endif | |
} | |
/// Power function. | |
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.00025% of inputs. | |
/// | |
/// **See also:** Documentation for [std::pow](https://en.cppreference.com/w/cpp/numeric/math/pow). | |
/// \param x base | |
/// \param y exponent | |
/// \return \a x raised to \a y | |
/// \exception FE_INVALID if \a x or \a y is signaling NaN or if \a x is finite an negative and \a y is finite and not integral | |
/// \exception FE_DIVBYZERO if \a x is 0 and \a y is negative | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half pow(half x, half y) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::pow(detail::half2float<detail::internal_t>(x.data_), detail::half2float<detail::internal_t>(y.data_)))); | |
#else | |
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -15; | |
if(!absy || x.data_ == 0x3C00) | |
return half(detail::binary, detail::select(0x3C00, (x.data_==0x3C00) ? y.data_ : x.data_)); | |
bool is_int = absy >= 0x6400 || (absy>=0x3C00 && !(absy&((1<<(25-(absy>>10)))-1))); | |
unsigned int sign = x.data_ & (static_cast<unsigned>((absy<0x6800)&&is_int&&((absy>>(25-(absy>>10)))&1))<<15); | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : | |
(absy==0x7C00) ? ((absx==0x3C00) ? 0x3C00 : (!absx && y.data_==0xFC00) ? detail::pole() : | |
(0x7C00&-((y.data_>>15)^(absx>0x3C00)))) : (sign|(0x7C00&((y.data_>>15)-1U)))); | |
if(!absx) | |
return half(detail::binary, (y.data_&0x8000) ? detail::pole(sign) : sign); | |
if((x.data_&0x8000) && !is_int) | |
return half(detail::binary, detail::invalid()); | |
if(x.data_ == 0xBC00) | |
return half(detail::binary, sign|0x3C00); | |
switch(y.data_) | |
{ | |
case 0x3800: return sqrt(x); | |
case 0x3C00: return half(detail::binary, detail::check_underflow(x.data_)); | |
case 0x4000: return x * x; | |
case 0xBC00: return half(detail::binary, 0x3C00) / x; | |
} | |
for(; absx<0x400; absx<<=1,--exp) ; | |
detail::uint32 ilog = exp + (absx>>10), msign = detail::sign_mask(ilog), f, m = | |
(((ilog<<27)+((detail::log2(static_cast<detail::uint32>((absx&0x3FF)|0x400)<<20)+8)>>4))^msign) - msign; | |
for(exp=-11; m<0x80000000; m<<=1,--exp) ; | |
for(; absy<0x400; absy<<=1,--exp) ; | |
m = detail::multiply64(m, static_cast<detail::uint32>((absy&0x3FF)|0x400)<<21); | |
int i = static_cast<int>(m >> 31); | |
exp += (absy>>10) + i; | |
m <<= 1 - i; | |
if(exp < 0) | |
{ | |
f = m >> -exp; | |
exp = 0; | |
} | |
else | |
{ | |
f = (m<<exp) & 0x7FFFFFFF; | |
exp = static_cast<int>(m >> (31-exp)); | |
} | |
return half(detail::binary, detail::exp2_post<half::round_style>(f, exp, ((msign&1)^(y.data_>>15))!=0, sign)); | |
#endif | |
} | |
/// \} | |
/// \anchor trigonometric | |
/// \name Trigonometric functions | |
/// \{ | |
/// Compute sine and cosine simultaneously. | |
/// This returns the same results as sin() and cos() but is faster than calling each function individually. | |
/// | |
/// This function is exact to rounding for all rounding modes. | |
/// \param arg function argument | |
/// \param sin variable to take sine of \a arg | |
/// \param cos variable to take cosine of \a arg | |
/// \exception FE_INVALID for signaling NaN or infinity | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline void sincos(half arg, half *sin, half *cos) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
detail::internal_t f = detail::half2float<detail::internal_t>(arg.data_); | |
*sin = half(detail::binary, detail::float2half<half::round_style>(std::sin(f))); | |
*cos = half(detail::binary, detail::float2half<half::round_style>(std::cos(f))); | |
#else | |
int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15, k; | |
if(abs >= 0x7C00) | |
*sin = *cos = half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); | |
else if(!abs) | |
{ | |
*sin = arg; | |
*cos = half(detail::binary, 0x3C00); | |
} | |
else if(abs < 0x2500) | |
{ | |
*sin = half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1)); | |
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1)); | |
} | |
else | |
{ | |
if(half::round_style != std::round_to_nearest) | |
{ | |
switch(abs) | |
{ | |
case 0x48B7: | |
*sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1)); | |
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0xBBFF, 1, 1)); | |
return; | |
case 0x598C: | |
*sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1)); | |
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1)); | |
return; | |
case 0x6A64: | |
*sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1)); | |
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x27FF, 1, 1)); | |
return; | |
case 0x6D8C: | |
*sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1)); | |
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1)); | |
return; | |
} | |
} | |
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28); | |
switch(k & 3) | |
{ | |
case 1: sc = std::make_pair(sc.second, -sc.first); break; | |
case 2: sc = std::make_pair(-sc.first, -sc.second); break; | |
case 3: sc = std::make_pair(-sc.second, sc.first); break; | |
} | |
*sin = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((sc.first^-static_cast<detail::uint32>(sign))+sign)); | |
*cos = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>(sc.second)); | |
} | |
#endif | |
} | |
/// Sine function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::sin](https://en.cppreference.com/w/cpp/numeric/math/sin). | |
/// \param arg function argument | |
/// \return sine value of \a arg | |
/// \exception FE_INVALID for signaling NaN or infinity | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half sin(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::sin(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, k; | |
if(!abs) | |
return arg; | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs < 0x2900) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1)); | |
if(half::round_style != std::round_to_nearest) | |
switch(abs) | |
{ | |
case 0x48B7: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1)); | |
case 0x6A64: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1)); | |
case 0x6D8C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1)); | |
} | |
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28); | |
detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)&1)^(arg.data_>>15)); | |
return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.second : sc.first)^sign) - sign)); | |
#endif | |
} | |
/// Cosine function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::cos](https://en.cppreference.com/w/cpp/numeric/math/cos). | |
/// \param arg function argument | |
/// \return cosine value of \a arg | |
/// \exception FE_INVALID for signaling NaN or infinity | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half cos(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::cos(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, k; | |
if(!abs) | |
return half(detail::binary, 0x3C00); | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs < 0x2500) | |
return half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1)); | |
if(half::round_style != std::round_to_nearest && abs == 0x598C) | |
return half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1)); | |
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28); | |
detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)^k)&1); | |
return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.first : sc.second)^sign) - sign)); | |
#endif | |
} | |
/// Tangent function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::tan](https://en.cppreference.com/w/cpp/numeric/math/tan). | |
/// \param arg function argument | |
/// \return tangent value of \a arg | |
/// \exception FE_INVALID for signaling NaN or infinity | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half tan(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::tan(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp = 13, k; | |
if(!abs) | |
return arg; | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs < 0x2700) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1)); | |
if(half::round_style != std::round_to_nearest) | |
switch(abs) | |
{ | |
case 0x658C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x07E6, 1, 1)); | |
case 0x7330: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x4B62, 1, 1)); | |
} | |
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 30); | |
if(k & 1) | |
sc = std::make_pair(-sc.second, sc.first); | |
detail::uint32 signy = detail::sign_mask(sc.first), signx = detail::sign_mask(sc.second); | |
detail::uint32 my = (sc.first^signy) - signy, mx = (sc.second^signx) - signx; | |
for(; my<0x80000000; my<<=1,--exp) ; | |
for(; mx<0x80000000; mx<<=1,++exp) ; | |
return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp, (signy^signx^arg.data_)&0x8000)); | |
#endif | |
} | |
/// Arc sine. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::asin](https://en.cppreference.com/w/cpp/numeric/math/asin). | |
/// \param arg function argument | |
/// \return arc sine value of \a arg | |
/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half asin(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::asin(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; | |
if(!abs) | |
return arg; | |
if(abs >= 0x3C00) | |
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() : | |
detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1)); | |
if(abs < 0x2900) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1)); | |
if(half::round_style != std::round_to_nearest && (abs == 0x2B44 || abs == 0x2DC3)) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_+1, 1, 1)); | |
std::pair<detail::uint32,detail::uint32> sc = detail::atan2_args(abs); | |
detail::uint32 m = detail::atan2(sc.first, sc.second, (half::round_style==std::round_to_nearest) ? 27 : 26); | |
return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign)); | |
#endif | |
} | |
/// Arc cosine function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::acos](https://en.cppreference.com/w/cpp/numeric/math/acos). | |
/// \param arg function argument | |
/// \return arc cosine value of \a arg | |
/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half acos(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::acos(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15; | |
if(!abs) | |
return half(detail::binary, detail::rounded<half::round_style,true>(0x3E48, 0, 1)); | |
if(abs >= 0x3C00) | |
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() : | |
sign ? detail::rounded<half::round_style,true>(0x4248, 0, 1) : 0); | |
std::pair<detail::uint32,detail::uint32> cs = detail::atan2_args(abs); | |
detail::uint32 m = detail::atan2(cs.second, cs.first, 28); | |
return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(sign ? (0xC90FDAA2-m) : m, 15, 0, sign)); | |
#endif | |
} | |
/// Arc tangent function. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::atan](https://en.cppreference.com/w/cpp/numeric/math/atan). | |
/// \param arg function argument | |
/// \return arc tangent value of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half atan(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::atan(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; | |
if(!abs) | |
return arg; | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1) : detail::signal(arg.data_)); | |
if(abs <= 0x2700) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1)); | |
int exp = (abs>>10) + (abs<=0x3FF); | |
detail::uint32 my = (abs&0x3FF) | ((abs>0x3FF)<<10); | |
detail::uint32 m = (exp>15) ? detail::atan2(my<<19, 0x20000000>>(exp-15), (half::round_style==std::round_to_nearest) ? 26 : 24) : | |
detail::atan2(my<<(exp+4), 0x20000000, (half::round_style==std::round_to_nearest) ? 30 : 28); | |
return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign)); | |
#endif | |
} | |
/// Arc tangent function. | |
/// This function may be 1 ULP off the correctly rounded exact result in ~0.005% of inputs for `std::round_to_nearest`, | |
/// in ~0.1% of inputs for `std::round_toward_zero` and in ~0.02% of inputs for any other rounding mode. | |
/// | |
/// **See also:** Documentation for [std::atan2](https://en.cppreference.com/w/cpp/numeric/math/atan2). | |
/// \param y numerator | |
/// \param x denominator | |
/// \return arc tangent value | |
/// \exception FE_INVALID if \a x or \a y is signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half atan2(half y, half x) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::atan2(detail::half2float<detail::internal_t>(y.data_), detail::half2float<detail::internal_t>(x.data_)))); | |
#else | |
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, signx = x.data_ >> 15, signy = y.data_ & 0x8000; | |
if(absx >= 0x7C00 || absy >= 0x7C00) | |
{ | |
if(absx > 0x7C00 || absy > 0x7C00) | |
return half(detail::binary, detail::signal(x.data_, y.data_)); | |
if(absy == 0x7C00) | |
return half(detail::binary, (absx<0x7C00) ? detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1) : | |
signx ? detail::rounded<half::round_style,true>(signy|0x40B6, 0, 1) : | |
detail::rounded<half::round_style,true>(signy|0x3A48, 0, 1)); | |
return (x.data_==0x7C00) ? half(detail::binary, signy) : half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1)); | |
} | |
if(!absy) | |
return signx ? half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1)) : y; | |
if(!absx) | |
return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1)); | |
int d = (absy>>10) + (absy<=0x3FF) - (absx>>10) - (absx<=0x3FF); | |
if(d > (signx ? 18 : 12)) | |
return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1)); | |
if(signx && d < -11) | |
return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1)); | |
if(!signx && d < ((half::round_style==std::round_toward_zero) ? -15 : -9)) | |
{ | |
for(; absy<0x400; absy<<=1,--d) ; | |
detail::uint32 mx = ((absx<<1)&0x7FF) | 0x800, my = ((absy<<1)&0x7FF) | 0x800; | |
int i = my < mx; | |
d -= i; | |
if(d < -25) | |
return half(detail::binary, detail::underflow<half::round_style>(signy)); | |
my <<= 11 + i; | |
return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,true>(my/mx, d+14, signy, my%mx!=0)); | |
} | |
detail::uint32 m = detail::atan2( ((absy&0x3FF)|((absy>0x3FF)<<10))<<(19+((d<0) ? d : (d>0) ? 0 : -1)), | |
((absx&0x3FF)|((absx>0x3FF)<<10))<<(19-((d>0) ? d : (d<0) ? 0 : 1))); | |
return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(signx ? (0xC90FDAA2-m) : m, 15, signy, signx)); | |
#endif | |
} | |
/// \} | |
/// \anchor hyperbolic | |
/// \name Hyperbolic functions | |
/// \{ | |
/// Hyperbolic sine. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::sinh](https://en.cppreference.com/w/cpp/numeric/math/sinh). | |
/// \param arg function argument | |
/// \return hyperbolic sine value of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half sinh(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::sinh(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp; | |
if(!abs || abs >= 0x7C00) | |
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; | |
if(abs <= 0x2900) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1)); | |
std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 29 : 27); | |
detail::uint32 m = mm.first - mm.second; | |
for(exp+=13; m<0x80000000 && exp; m<<=1,--exp) ; | |
unsigned int sign = arg.data_ & 0x8000; | |
if(exp > 29) | |
return half(detail::binary, detail::overflow<half::round_style>(sign)); | |
return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp, sign)); | |
#endif | |
} | |
/// Hyperbolic cosine. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::cosh](https://en.cppreference.com/w/cpp/numeric/math/cosh). | |
/// \param arg function argument | |
/// \return hyperbolic cosine value of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half cosh(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::cosh(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp; | |
if(!abs) | |
return half(detail::binary, 0x3C00); | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : 0x7C00); | |
std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 23 : 26); | |
detail::uint32 m = mm.first + mm.second; | |
int i = static_cast<int>((~m & 0xFFFFFFFF) >> 31); | |
m = (m>>i) | (m&i) | 0x80000000; | |
if((exp+=13+i) > 29) | |
return half(detail::binary, detail::overflow<half::round_style>()); | |
return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp)); | |
#endif | |
} | |
/// Hyperbolic tangent. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::tanh](https://en.cppreference.com/w/cpp/numeric/math/tanh). | |
/// \param arg function argument | |
/// \return hyperbolic tangent value of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half tanh(half arg) | |
{ | |
#ifdef HALF_ARITHMETIC_TYPE | |
return half(detail::binary, detail::float2half<half::round_style>(std::tanh(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp; | |
if(!abs) | |
return arg; | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_-0x4000)); | |
if(abs >= 0x4500) | |
return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1)); | |
if(abs < 0x2700) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1)); | |
if(half::round_style != std::round_to_nearest && abs == 0x2D3F) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-3, 0, 1)); | |
std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, 27); | |
detail::uint32 my = mm.first - mm.second - (half::round_style!=std::round_to_nearest), mx = mm.first + mm.second; | |
int i = static_cast<int>((~mx&0xFFFFFFFF) >> 31); | |
for(exp=13; my<0x80000000; my<<=1,--exp) ; | |
mx = (mx>>i) | 0x80000000; | |
return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp-i, arg.data_&0x8000)); | |
#endif | |
} | |
/// Hyperbolic area sine. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::asinh](https://en.cppreference.com/w/cpp/numeric/math/asinh). | |
/// \param arg function argument | |
/// \return area sine value of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half asinh(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::asinh(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF; | |
if(!abs || abs >= 0x7C00) | |
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; | |
if(abs <= 0x2900) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1)); | |
if(half::round_style != std::round_to_nearest) | |
switch(abs) | |
{ | |
case 0x32D4: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-13, 1, 1)); | |
case 0x3B5B: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-197, 1, 1)); | |
} | |
return half(detail::binary, detail::area<half::round_style,true>(arg.data_)); | |
#endif | |
} | |
/// Hyperbolic area cosine. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::acosh](https://en.cppreference.com/w/cpp/numeric/math/acosh). | |
/// \param arg function argument | |
/// \return area cosine value of \a arg | |
/// \exception FE_INVALID for signaling NaN or arguments <1 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half acosh(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::acosh(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF; | |
if((arg.data_&0x8000) || abs < 0x3C00) | |
return half(detail::binary, (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs == 0x3C00) | |
return half(detail::binary, 0); | |
if(arg.data_ >= 0x7C00) | |
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; | |
return half(detail::binary, detail::area<half::round_style,false>(arg.data_)); | |
#endif | |
} | |
/// Hyperbolic area tangent. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::atanh](https://en.cppreference.com/w/cpp/numeric/math/atanh). | |
/// \param arg function argument | |
/// \return area tangent value of \a arg | |
/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1 | |
/// \exception FE_DIVBYZERO for +/-1 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half atanh(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::atanh(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF, exp = 0; | |
if(!abs) | |
return arg; | |
if(abs >= 0x3C00) | |
return half(detail::binary, (abs==0x3C00) ? detail::pole(arg.data_&0x8000) : (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_)); | |
if(abs < 0x2700) | |
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1)); | |
detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << ((abs>>10)+(abs<=0x3FF)+6), my = 0x80000000 + m, mx = 0x80000000 - m; | |
for(; mx<0x80000000; mx<<=1,++exp) ; | |
int i = my >= mx, s; | |
return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2( | |
(detail::divide64(my>>i, mx, s)+1)>>1, 27)+0x10, exp+i-1, 16, arg.data_&0x8000)); | |
#endif | |
} | |
/// \} | |
/// \anchor special | |
/// \name Error and gamma functions | |
/// \{ | |
/// Error function. | |
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs. | |
/// | |
/// **See also:** Documentation for [std::erf](https://en.cppreference.com/w/cpp/numeric/math/erf). | |
/// \param arg function argument | |
/// \return error function value of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half erf(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::erf(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF; | |
if(!abs || abs >= 0x7C00) | |
return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (arg.data_-0x4000) : detail::signal(arg.data_)) : arg; | |
if(abs >= 0x4200) | |
return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1)); | |
return half(detail::binary, detail::erf<half::round_style,false>(arg.data_)); | |
#endif | |
} | |
/// Complementary error function. | |
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs. | |
/// | |
/// **See also:** Documentation for [std::erfc](https://en.cppreference.com/w/cpp/numeric/math/erfc). | |
/// \param arg function argument | |
/// \return 1 minus error function value of \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half erfc(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::erfc(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; | |
if(abs >= 0x7C00) | |
return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (sign>>1) : detail::signal(arg.data_)) : arg; | |
if(!abs) | |
return half(detail::binary, 0x3C00); | |
if(abs >= 0x4400) | |
return half(detail::binary, detail::rounded<half::round_style,true>((sign>>1)-(sign>>15), sign>>15, 1)); | |
return half(detail::binary, detail::erf<half::round_style,true>(arg.data_)); | |
#endif | |
} | |
/// Natural logarithm of gamma function. | |
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.025% of inputs. | |
/// | |
/// **See also:** Documentation for [std::lgamma](https://en.cppreference.com/w/cpp/numeric/math/lgamma). | |
/// \param arg function argument | |
/// \return natural logarith of gamma function for \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_DIVBYZERO for 0 or negative integer arguments | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half lgamma(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::lgamma(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
int abs = arg.data_ & 0x7FFF; | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_)); | |
if(!abs || arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1)))) | |
return half(detail::binary, detail::pole()); | |
if(arg.data_ == 0x3C00 || arg.data_ == 0x4000) | |
return half(detail::binary, 0); | |
return half(detail::binary, detail::gamma<half::round_style,true>(arg.data_)); | |
#endif | |
} | |
/// Gamma function. | |
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.25% of inputs. | |
/// | |
/// **See also:** Documentation for [std::tgamma](https://en.cppreference.com/w/cpp/numeric/math/tgamma). | |
/// \param arg function argument | |
/// \return gamma function value of \a arg | |
/// \exception FE_INVALID for signaling NaN, negative infinity or negative integer arguments | |
/// \exception FE_DIVBYZERO for 0 | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half tgamma(half arg) | |
{ | |
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH | |
return half(detail::binary, detail::float2half<half::round_style>(std::tgamma(detail::half2float<detail::internal_t>(arg.data_)))); | |
#else | |
unsigned int abs = arg.data_ & 0x7FFF; | |
if(!abs) | |
return half(detail::binary, detail::pole(arg.data_)); | |
if(abs >= 0x7C00) | |
return (arg.data_==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); | |
if(arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1)))) | |
return half(detail::binary, detail::invalid()); | |
if(arg.data_ >= 0xCA80) | |
return half(detail::binary, detail::underflow<half::round_style>((1-((abs>>(25-(abs>>10)))&1))<<15)); | |
if(arg.data_ <= 0x100 || (arg.data_ >= 0x4900 && arg.data_ < 0x8000)) | |
return half(detail::binary, detail::overflow<half::round_style>()); | |
if(arg.data_ == 0x3C00) | |
return arg; | |
return half(detail::binary, detail::gamma<half::round_style,false>(arg.data_)); | |
#endif | |
} | |
/// \} | |
/// \anchor rounding | |
/// \name Rounding | |
/// \{ | |
/// Nearest integer not less than half value. | |
/// **See also:** Documentation for [std::ceil](https://en.cppreference.com/w/cpp/numeric/math/ceil). | |
/// \param arg half to round | |
/// \return nearest integer not less than \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_INEXACT if value had to be rounded | |
inline half ceil(half arg) { return half(detail::binary, detail::integral<std::round_toward_infinity,true,true>(arg.data_)); } | |
/// Nearest integer not greater than half value. | |
/// **See also:** Documentation for [std::floor](https://en.cppreference.com/w/cpp/numeric/math/floor). | |
/// \param arg half to round | |
/// \return nearest integer not greater than \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_INEXACT if value had to be rounded | |
inline half floor(half arg) { return half(detail::binary, detail::integral<std::round_toward_neg_infinity,true,true>(arg.data_)); } | |
/// Nearest integer not greater in magnitude than half value. | |
/// **See also:** Documentation for [std::trunc](https://en.cppreference.com/w/cpp/numeric/math/trunc). | |
/// \param arg half to round | |
/// \return nearest integer not greater in magnitude than \a arg | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_INEXACT if value had to be rounded | |
inline half trunc(half arg) { return half(detail::binary, detail::integral<std::round_toward_zero,true,true>(arg.data_)); } | |
/// Nearest integer. | |
/// **See also:** Documentation for [std::round](https://en.cppreference.com/w/cpp/numeric/math/round). | |
/// \param arg half to round | |
/// \return nearest integer, rounded away from zero in half-way cases | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_INEXACT if value had to be rounded | |
inline half round(half arg) { return half(detail::binary, detail::integral<std::round_to_nearest,false,true>(arg.data_)); } | |
/// Nearest integer. | |
/// **See also:** Documentation for [std::lround](https://en.cppreference.com/w/cpp/numeric/math/round). | |
/// \param arg half to round | |
/// \return nearest integer, rounded away from zero in half-way cases | |
/// \exception FE_INVALID if value is not representable as `long` | |
inline long lround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long>(arg.data_); } | |
/// Nearest integer using half's internal rounding mode. | |
/// **See also:** Documentation for [std::rint](https://en.cppreference.com/w/cpp/numeric/math/rint). | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_INEXACT if value had to be rounded | |
inline half rint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,true>(arg.data_)); } | |
/// Nearest integer using half's internal rounding mode. | |
/// **See also:** Documentation for [std::lrint](https://en.cppreference.com/w/cpp/numeric/math/rint). | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
/// \exception FE_INVALID if value is not representable as `long` | |
/// \exception FE_INEXACT if value had to be rounded | |
inline long lrint(half arg) { return detail::half2int<half::round_style,true,true,long>(arg.data_); } | |
/// Nearest integer using half's internal rounding mode. | |
/// **See also:** Documentation for [std::nearbyint](https://en.cppreference.com/w/cpp/numeric/math/nearbyint). | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
/// \exception FE_INVALID for signaling NaN | |
inline half nearbyint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,false>(arg.data_)); } | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
/// Nearest integer. | |
/// **See also:** Documentation for [std::llround](https://en.cppreference.com/w/cpp/numeric/math/round). | |
/// \param arg half to round | |
/// \return nearest integer, rounded away from zero in half-way cases | |
/// \exception FE_INVALID if value is not representable as `long long` | |
inline long long llround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long long>(arg.data_); } | |
/// Nearest integer using half's internal rounding mode. | |
/// **See also:** Documentation for [std::llrint](https://en.cppreference.com/w/cpp/numeric/math/rint). | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
/// \exception FE_INVALID if value is not representable as `long long` | |
/// \exception FE_INEXACT if value had to be rounded | |
inline long long llrint(half arg) { return detail::half2int<half::round_style,true,true,long long>(arg.data_); } | |
#endif | |
/// \} | |
/// \anchor float | |
/// \name Floating point manipulation | |
/// \{ | |
/// Decompress floating-point number. | |
/// **See also:** Documentation for [std::frexp](https://en.cppreference.com/w/cpp/numeric/math/frexp). | |
/// \param arg number to decompress | |
/// \param exp address to store exponent at | |
/// \return significant in range [0.5, 1) | |
/// \exception FE_INVALID for signaling NaN | |
inline half frexp(half arg, int *exp) | |
{ | |
*exp = 0; | |
unsigned int abs = arg.data_ & 0x7FFF; | |
if(abs >= 0x7C00 || !abs) | |
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; | |
for(; abs<0x400; abs<<=1,--*exp) ; | |
*exp += (abs>>10) - 14; | |
return half(detail::binary, (arg.data_&0x8000)|0x3800|(abs&0x3FF)); | |
} | |
/// Multiply by power of two. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::scalbln](https://en.cppreference.com/w/cpp/numeric/math/scalbn). | |
/// \param arg number to modify | |
/// \param exp power of two to multiply with | |
/// \return \a arg multplied by 2 raised to \a exp | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half scalbln(half arg, long exp) | |
{ | |
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; | |
if(abs >= 0x7C00 || !abs) | |
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; | |
for(; abs<0x400; abs<<=1,--exp) ; | |
exp += abs >> 10; | |
if(exp > 30) | |
return half(detail::binary, detail::overflow<half::round_style>(sign)); | |
else if(exp < -10) | |
return half(detail::binary, detail::underflow<half::round_style>(sign)); | |
else if(exp > 0) | |
return half(detail::binary, sign|(exp<<10)|(abs&0x3FF)); | |
unsigned int m = (abs&0x3FF) | 0x400; | |
return half(detail::binary, detail::rounded<half::round_style,false>(sign|(m>>(1-exp)), (m>>-exp)&1, (m&((1<<-exp)-1))!=0)); | |
} | |
/// Multiply by power of two. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::scalbn](https://en.cppreference.com/w/cpp/numeric/math/scalbn). | |
/// \param arg number to modify | |
/// \param exp power of two to multiply with | |
/// \return \a arg multplied by 2 raised to \a exp | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half scalbn(half arg, int exp) { return scalbln(arg, exp); } | |
/// Multiply by power of two. | |
/// This function is exact to rounding for all rounding modes. | |
/// | |
/// **See also:** Documentation for [std::ldexp](https://en.cppreference.com/w/cpp/numeric/math/ldexp). | |
/// \param arg number to modify | |
/// \param exp power of two to multiply with | |
/// \return \a arg multplied by 2 raised to \a exp | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
inline half ldexp(half arg, int exp) { return scalbln(arg, exp); } | |
/// Extract integer and fractional parts. | |
/// **See also:** Documentation for [std::modf](https://en.cppreference.com/w/cpp/numeric/math/modf). | |
/// \param arg number to decompress | |
/// \param iptr address to store integer part at | |
/// \return fractional part | |
/// \exception FE_INVALID for signaling NaN | |
inline half modf(half arg, half *iptr) | |
{ | |
unsigned int abs = arg.data_ & 0x7FFF; | |
if(abs > 0x7C00) | |
{ | |
arg = half(detail::binary, detail::signal(arg.data_)); | |
return *iptr = arg, arg; | |
} | |
if(abs >= 0x6400) | |
return *iptr = arg, half(detail::binary, arg.data_&0x8000); | |
if(abs < 0x3C00) | |
return iptr->data_ = arg.data_ & 0x8000, arg; | |
unsigned int exp = abs >> 10, mask = (1<<(25-exp)) - 1, m = arg.data_ & mask; | |
iptr->data_ = arg.data_ & ~mask; | |
if(!m) | |
return half(detail::binary, arg.data_&0x8000); | |
for(; m<0x400; m<<=1,--exp) ; | |
return half(detail::binary, (arg.data_&0x8000)|(exp<<10)|(m&0x3FF)); | |
} | |
/// Extract exponent. | |
/// **See also:** Documentation for [std::ilogb](https://en.cppreference.com/w/cpp/numeric/math/ilogb). | |
/// \param arg number to query | |
/// \return floating-point exponent | |
/// \retval FP_ILOGB0 for zero | |
/// \retval FP_ILOGBNAN for NaN | |
/// \retval INT_MAX for infinity | |
/// \exception FE_INVALID for 0 or infinite values | |
inline int ilogb(half arg) | |
{ | |
int abs = arg.data_ & 0x7FFF, exp; | |
if(!abs || abs >= 0x7C00) | |
{ | |
detail::raise(FE_INVALID); | |
return !abs ? FP_ILOGB0 : (abs==0x7C00) ? INT_MAX : FP_ILOGBNAN; | |
} | |
for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ; | |
return exp; | |
} | |
/// Extract exponent. | |
/// **See also:** Documentation for [std::logb](https://en.cppreference.com/w/cpp/numeric/math/logb). | |
/// \param arg number to query | |
/// \return floating-point exponent | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_DIVBYZERO for 0 | |
inline half logb(half arg) | |
{ | |
int abs = arg.data_ & 0x7FFF, exp; | |
if(!abs) | |
return half(detail::binary, detail::pole(0x8000)); | |
if(abs >= 0x7C00) | |
return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_)); | |
for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ; | |
unsigned int value = static_cast<unsigned>(exp<0) << 15; | |
if(exp) | |
{ | |
unsigned int m = std::abs(exp) << 6; | |
for(exp=18; m<0x400; m<<=1,--exp) ; | |
value |= (exp<<10) + m; | |
} | |
return half(detail::binary, value); | |
} | |
/// Next representable value. | |
/// **See also:** Documentation for [std::nextafter](https://en.cppreference.com/w/cpp/numeric/math/nextafter). | |
/// \param from value to compute next representable value for | |
/// \param to direction towards which to compute next value | |
/// \return next representable value after \a from in direction towards \a to | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW for infinite result from finite argument | |
/// \exception FE_UNDERFLOW for subnormal result | |
inline half nextafter(half from, half to) | |
{ | |
int fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF; | |
if(fabs > 0x7C00 || tabs > 0x7C00) | |
return half(detail::binary, detail::signal(from.data_, to.data_)); | |
if(from.data_ == to.data_ || !(fabs|tabs)) | |
return to; | |
if(!fabs) | |
{ | |
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT); | |
return half(detail::binary, (to.data_&0x8000)+1); | |
} | |
unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>( | |
(from.data_^(0x8000|(0x8000-(from.data_>>15))))<(to.data_^(0x8000|(0x8000-(to.data_>>15))))))<<1) - 1; | |
detail::raise(FE_OVERFLOW, fabs<0x7C00 && (out&0x7C00)==0x7C00); | |
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7C00)<0x400); | |
return half(detail::binary, out); | |
} | |
/// Next representable value. | |
/// **See also:** Documentation for [std::nexttoward](https://en.cppreference.com/w/cpp/numeric/math/nexttoward). | |
/// \param from value to compute next representable value for | |
/// \param to direction towards which to compute next value | |
/// \return next representable value after \a from in direction towards \a to | |
/// \exception FE_INVALID for signaling NaN | |
/// \exception FE_OVERFLOW for infinite result from finite argument | |
/// \exception FE_UNDERFLOW for subnormal result | |
inline half nexttoward(half from, long double to) | |
{ | |
int fabs = from.data_ & 0x7FFF; | |
if(fabs > 0x7C00) | |
return half(detail::binary, detail::signal(from.data_)); | |
long double lfrom = static_cast<long double>(from); | |
if(detail::builtin_isnan(to) || lfrom == to) | |
return half(static_cast<float>(to)); | |
if(!fabs) | |
{ | |
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT); | |
return half(detail::binary, (static_cast<unsigned>(detail::builtin_signbit(to))<<15)+1); | |
} | |
unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>(lfrom<to))<<1) - 1; | |
detail::raise(FE_OVERFLOW, (out&0x7FFF)==0x7C00); | |
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7FFF)<0x400); | |
return half(detail::binary, out); | |
} | |
/// Take sign. | |
/// **See also:** Documentation for [std::copysign](https://en.cppreference.com/w/cpp/numeric/math/copysign). | |
/// \param x value to change sign for | |
/// \param y value to take sign from | |
/// \return value equal to \a x in magnitude and to \a y in sign | |
inline HALF_CONSTEXPR half copysign(half x, half y) { return half(detail::binary, x.data_^((x.data_^y.data_)&0x8000)); } | |
/// \} | |
/// \anchor classification | |
/// \name Floating point classification | |
/// \{ | |
/// Classify floating-point value. | |
/// **See also:** Documentation for [std::fpclassify](https://en.cppreference.com/w/cpp/numeric/math/fpclassify). | |
/// \param arg number to classify | |
/// \retval FP_ZERO for positive and negative zero | |
/// \retval FP_SUBNORMAL for subnormal numbers | |
/// \retval FP_INFINITY for positive and negative infinity | |
/// \retval FP_NAN for NaNs | |
/// \retval FP_NORMAL for all other (normal) values | |
inline HALF_CONSTEXPR int fpclassify(half arg) | |
{ | |
return !(arg.data_&0x7FFF) ? FP_ZERO : | |
((arg.data_&0x7FFF)<0x400) ? FP_SUBNORMAL : | |
((arg.data_&0x7FFF)<0x7C00) ? FP_NORMAL : | |
((arg.data_&0x7FFF)==0x7C00) ? FP_INFINITE : | |
FP_NAN; | |
} | |
/// Check if finite number. | |
/// **See also:** Documentation for [std::isfinite](https://en.cppreference.com/w/cpp/numeric/math/isfinite). | |
/// \param arg number to check | |
/// \retval true if neither infinity nor NaN | |
/// \retval false else | |
inline HALF_CONSTEXPR bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; } | |
/// Check for infinity. | |
/// **See also:** Documentation for [std::isinf](https://en.cppreference.com/w/cpp/numeric/math/isinf). | |
/// \param arg number to check | |
/// \retval true for positive or negative infinity | |
/// \retval false else | |
inline HALF_CONSTEXPR bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; } | |
/// Check for NaN. | |
/// **See also:** Documentation for [std::isnan](https://en.cppreference.com/w/cpp/numeric/math/isnan). | |
/// \param arg number to check | |
/// \retval true for NaNs | |
/// \retval false else | |
inline HALF_CONSTEXPR bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; } | |
/// Check if normal number. | |
/// **See also:** Documentation for [std::isnormal](https://en.cppreference.com/w/cpp/numeric/math/isnormal). | |
/// \param arg number to check | |
/// \retval true if normal number | |
/// \retval false if either subnormal, zero, infinity or NaN | |
inline HALF_CONSTEXPR bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); } | |
/// Check sign. | |
/// **See also:** Documentation for [std::signbit](https://en.cppreference.com/w/cpp/numeric/math/signbit). | |
/// \param arg number to check | |
/// \retval true for negative number | |
/// \retval false for positive number | |
inline HALF_CONSTEXPR bool signbit(half arg) { return (arg.data_&0x8000) != 0; } | |
/// \} | |
/// \anchor compfunc | |
/// \name Comparison | |
/// \{ | |
/// Quiet comparison for greater than. | |
/// **See also:** Documentation for [std::isgreater](https://en.cppreference.com/w/cpp/numeric/math/isgreater). | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater than \a y | |
/// \retval false else | |
inline HALF_CONSTEXPR bool isgreater(half x, half y) | |
{ | |
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); | |
} | |
/// Quiet comparison for greater equal. | |
/// **See also:** Documentation for [std::isgreaterequal](https://en.cppreference.com/w/cpp/numeric/math/isgreaterequal). | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater equal \a y | |
/// \retval false else | |
inline HALF_CONSTEXPR bool isgreaterequal(half x, half y) | |
{ | |
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); | |
} | |
/// Quiet comparison for less than. | |
/// **See also:** Documentation for [std::isless](https://en.cppreference.com/w/cpp/numeric/math/isless). | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less than \a y | |
/// \retval false else | |
inline HALF_CONSTEXPR bool isless(half x, half y) | |
{ | |
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); | |
} | |
/// Quiet comparison for less equal. | |
/// **See also:** Documentation for [std::islessequal](https://en.cppreference.com/w/cpp/numeric/math/islessequal). | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less equal \a y | |
/// \retval false else | |
inline HALF_CONSTEXPR bool islessequal(half x, half y) | |
{ | |
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); | |
} | |
/// Quiet comarison for less or greater. | |
/// **See also:** Documentation for [std::islessgreater](https://en.cppreference.com/w/cpp/numeric/math/islessgreater). | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if either less or greater | |
/// \retval false else | |
inline HALF_CONSTEXPR bool islessgreater(half x, half y) | |
{ | |
return x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF) && !isnan(x) && !isnan(y); | |
} | |
/// Quiet check if unordered. | |
/// **See also:** Documentation for [std::isunordered](https://en.cppreference.com/w/cpp/numeric/math/isunordered). | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if unordered (one or two NaN operands) | |
/// \retval false else | |
inline HALF_CONSTEXPR bool isunordered(half x, half y) { return isnan(x) || isnan(y); } | |
/// \} | |
/// \anchor casting | |
/// \name Casting | |
/// \{ | |
/// Cast to or from half-precision floating-point number. | |
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted | |
/// directly using the default rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do. | |
/// | |
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types | |
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler | |
/// error and casting between [half](\ref half_float::half)s returns the argument unmodified. | |
/// \tparam T destination type (half or built-in arithmetic type) | |
/// \tparam U source type (half or built-in arithmetic type) | |
/// \param arg value to cast | |
/// \return \a arg converted to destination type | |
/// \exception FE_INVALID if \a T is integer type and result is not representable as \a T | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
template<typename T,typename U> T half_cast(U arg) { return detail::half_caster<T,U>::cast(arg); } | |
/// Cast to or from half-precision floating-point number. | |
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted | |
/// directly using the specified rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do. | |
/// | |
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types | |
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler | |
/// error and casting between [half](\ref half_float::half)s returns the argument unmodified. | |
/// \tparam T destination type (half or built-in arithmetic type) | |
/// \tparam R rounding mode to use. | |
/// \tparam U source type (half or built-in arithmetic type) | |
/// \param arg value to cast | |
/// \return \a arg converted to destination type | |
/// \exception FE_INVALID if \a T is integer type and result is not representable as \a T | |
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding | |
template<typename T,std::float_round_style R,typename U> T half_cast(U arg) { return detail::half_caster<T,U,R>::cast(arg); } | |
/// \} | |
/// \} | |
/// \anchor errors | |
/// \name Error handling | |
/// \{ | |
/// Clear exception flags. | |
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, | |
/// but in that case manual flag management is the only way to raise flags. | |
/// | |
/// **See also:** Documentation for [std::feclearexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feclearexcept). | |
/// \param excepts OR of exceptions to clear | |
/// \retval 0 all selected flags cleared successfully | |
inline int feclearexcept(int excepts) { detail::errflags() &= ~excepts; return 0; } | |
/// Test exception flags. | |
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, | |
/// but in that case manual flag management is the only way to raise flags. | |
/// | |
/// **See also:** Documentation for [std::fetestexcept](https://en.cppreference.com/w/cpp/numeric/fenv/fetestexcept). | |
/// \param excepts OR of exceptions to test | |
/// \return OR of selected exceptions if raised | |
inline int fetestexcept(int excepts) { return detail::errflags() & excepts; } | |
/// Raise exception flags. | |
/// This raises the specified floating point exceptions and also invokes any additional automatic exception handling as | |
/// configured with the [HALF_ERRHANDLIG_...](\ref HALF_ERRHANDLING_ERRNO) preprocessor symbols. | |
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, | |
/// but in that case manual flag management is the only way to raise flags. | |
/// | |
/// **See also:** Documentation for [std::feraiseexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feraiseexcept). | |
/// \param excepts OR of exceptions to raise | |
/// \retval 0 all selected exceptions raised successfully | |
inline int feraiseexcept(int excepts) { detail::errflags() |= excepts; detail::raise(excepts); return 0; } | |
/// Save exception flags. | |
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, | |
/// but in that case manual flag management is the only way to raise flags. | |
/// | |
/// **See also:** Documentation for [std::fegetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag). | |
/// \param flagp adress to store flag state at | |
/// \param excepts OR of flags to save | |
/// \retval 0 for success | |
inline int fegetexceptflag(int *flagp, int excepts) { *flagp = detail::errflags() & excepts; return 0; } | |
/// Restore exception flags. | |
/// This only copies the specified exception state (including unset flags) without incurring any additional exception handling. | |
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, | |
/// but in that case manual flag management is the only way to raise flags. | |
/// | |
/// **See also:** Documentation for [std::fesetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag). | |
/// \param flagp adress to take flag state from | |
/// \param excepts OR of flags to restore | |
/// \retval 0 for success | |
inline int fesetexceptflag(const int *flagp, int excepts) { detail::errflags() = (detail::errflags()|(*flagp&excepts)) & (*flagp|~excepts); return 0; } | |
/// Throw C++ exceptions based on set exception flags. | |
/// This function manually throws a corresponding C++ exception if one of the specified flags is set, | |
/// no matter if automatic throwing (via [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID)) is enabled or not. | |
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, | |
/// but in that case manual flag management is the only way to raise flags. | |
/// \param excepts OR of exceptions to test | |
/// \param msg error message to use for exception description | |
/// \throw std::domain_error if `FE_INVALID` or `FE_DIVBYZERO` is selected and set | |
/// \throw std::overflow_error if `FE_OVERFLOW` is selected and set | |
/// \throw std::underflow_error if `FE_UNDERFLOW` is selected and set | |
/// \throw std::range_error if `FE_INEXACT` is selected and set | |
inline void fethrowexcept(int excepts, const char *msg = "") | |
{ | |
excepts &= detail::errflags(); | |
if(excepts & (FE_INVALID|FE_DIVBYZERO)) | |
throw std::domain_error(msg); | |
if(excepts & FE_OVERFLOW) | |
throw std::overflow_error(msg); | |
if(excepts & FE_UNDERFLOW) | |
throw std::underflow_error(msg); | |
if(excepts & FE_INEXACT) | |
throw std::range_error(msg); | |
} | |
/// \} | |
} | |
#undef HALF_UNUSED_NOERR | |
#undef HALF_CONSTEXPR | |
#undef HALF_CONSTEXPR_CONST | |
#undef HALF_CONSTEXPR_NOERR | |
#undef HALF_NOEXCEPT | |
#undef HALF_NOTHROW | |
#undef HALF_THREAD_LOCAL | |
#undef HALF_TWOS_COMPLEMENT_INT | |
#ifdef HALF_POP_WARNINGS | |
#pragma warning(pop) | |
#undef HALF_POP_WARNINGS | |
#endif | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment