Created
November 5, 2011 03:17
-
-
Save AnthonyDiGirolamo/1341051 to your computer and use it in GitHub Desktop.
Arduino LCD VU Meter
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <avr/pgmspace.h> | |
#include "fix_fft.h" | |
#include <WProgram.h> | |
/* fix_fft.c - Fixed-point in-place Fast Fourier Transform */ | |
/* | |
All data are fixed-point short integers, in which -32768 | |
to +32768 represent -1.0 to +1.0 respectively. Integer | |
arithmetic is used for speed, instead of the more natural | |
floating-point. | |
For the forward FFT (time -> freq), fixed scaling is | |
performed to prevent arithmetic overflow, and to map a 0dB | |
sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq | |
coefficients. The return value is always 0. | |
For the inverse FFT (freq -> time), fixed scaling cannot be | |
done, as two 0dB coefficients would sum to a peak amplitude | |
of 64K, overflowing the 32k range of the fixed-point integers. | |
Thus, the fix_fft() routine performs variable scaling, and | |
returns a value which is the number of bits LEFT by which | |
the output must be shifted to get the actual amplitude | |
(i.e. if fix_fft() returns 3, each value of fr[] and fi[] | |
must be multiplied by 8 (2**3) for proper scaling. | |
Clearly, this cannot be done within fixed-point short | |
integers. In practice, if the result is to be used as a | |
filter, the scale_shift can usually be ignored, as the | |
result will be approximately correctly normalized as is. | |
Written by: Tom Roberts 11/8/89 | |
Made portable: Malcolm Slaney 12/15/94 [email protected] | |
Enhanced: Dimitrios P. Bouras 14 Jun 2006 [email protected] | |
Modified for 8bit values David Keller 10.10.2010 | |
*/ | |
#define N_WAVE 256 /* full length of Sinewave[] */ | |
#define LOG2_N_WAVE 8 /* log2(N_WAVE) */ | |
/* | |
Since we only use 3/4 of N_WAVE, we define only | |
this many samples, in order to conserve data space. | |
*/ | |
const prog_int8_t Sinewave[N_WAVE-N_WAVE/4] PROGMEM = { | |
0, 3, 6, 9, 12, 15, 18, 21, | |
24, 28, 31, 34, 37, 40, 43, 46, | |
48, 51, 54, 57, 60, 63, 65, 68, | |
71, 73, 76, 78, 81, 83, 85, 88, | |
90, 92, 94, 96, 98, 100, 102, 104, | |
106, 108, 109, 111, 112, 114, 115, 117, | |
118, 119, 120, 121, 122, 123, 124, 124, | |
125, 126, 126, 127, 127, 127, 127, 127, | |
127, 127, 127, 127, 127, 127, 126, 126, | |
125, 124, 124, 123, 122, 121, 120, 119, | |
118, 117, 115, 114, 112, 111, 109, 108, | |
106, 104, 102, 100, 98, 96, 94, 92, | |
90, 88, 85, 83, 81, 78, 76, 73, | |
71, 68, 65, 63, 60, 57, 54, 51, | |
48, 46, 43, 40, 37, 34, 31, 28, | |
24, 21, 18, 15, 12, 9, 6, 3, | |
0, -3, -6, -9, -12, -15, -18, -21, | |
-24, -28, -31, -34, -37, -40, -43, -46, | |
-48, -51, -54, -57, -60, -63, -65, -68, | |
-71, -73, -76, -78, -81, -83, -85, -88, | |
-90, -92, -94, -96, -98, -100, -102, -104, | |
-106, -108, -109, -111, -112, -114, -115, -117, | |
-118, -119, -120, -121, -122, -123, -124, -124, | |
-125, -126, -126, -127, -127, -127, -127, -127, | |
/*-127, -127, -127, -127, -127, -127, -126, -126, | |
-125, -124, -124, -123, -122, -121, -120, -119, | |
-118, -117, -115, -114, -112, -111, -109, -108, | |
-106, -104, -102, -100, -98, -96, -94, -92, | |
-90, -88, -85, -83, -81, -78, -76, -73, | |
-71, -68, -65, -63, -60, -57, -54, -51, | |
-48, -46, -43, -40, -37, -34, -31, -28, | |
-24, -21, -18, -15, -12, -9, -6, -3, */ | |
}; | |
/* | |
FIX_MPY() - fixed-point multiplication & scaling. | |
Substitute inline assembly for hardware-specific | |
optimization suited to a particluar DSP processor. | |
Scaling ensures that result remains 16-bit. | |
*/ | |
inline char FIX_MPY(char a, char b) | |
{ | |
//Serial.println(a); | |
//Serial.println(b); | |
/* shift right one less bit (i.e. 15-1) */ | |
int c = ((int)a * (int)b) >> 6; | |
/* last bit shifted out = rounding-bit */ | |
b = c & 0x01; | |
/* last shift + rounding bit */ | |
a = (c >> 1) + b; | |
/* | |
Serial.println(Sinewave[3]); | |
Serial.println(c); | |
Serial.println(a); | |
while(1);*/ | |
return a; | |
} | |
/* | |
fix_fft() - perform forward/inverse fast Fourier transform. | |
fr[n],fi[n] are real and imaginary arrays, both INPUT AND | |
RESULT (in-place FFT), with 0 <= n < 2**m; set inverse to | |
0 for forward transform (FFT), or 1 for iFFT. | |
*/ | |
int fix_fft(char fr[], char fi[], int m, int inverse) | |
{ | |
int mr, nn, i, j, l, k, istep, n, scale, shift; | |
char qr, qi, tr, ti, wr, wi; | |
n = 1 << m; | |
/* max FFT size = N_WAVE */ | |
if (n > N_WAVE) | |
return -1; | |
mr = 0; | |
nn = n - 1; | |
scale = 0; | |
/* decimation in time - re-order data */ | |
for (m=1; m<=nn; ++m) { | |
l = n; | |
do { | |
l >>= 1; | |
} while (mr+l > nn); | |
mr = (mr & (l-1)) + l; | |
if (mr <= m) | |
continue; | |
tr = fr[m]; | |
fr[m] = fr[mr]; | |
fr[mr] = tr; | |
ti = fi[m]; | |
fi[m] = fi[mr]; | |
fi[mr] = ti; | |
} | |
l = 1; | |
k = LOG2_N_WAVE-1; | |
while (l < n) { | |
if (inverse) { | |
/* variable scaling, depending upon data */ | |
shift = 0; | |
for (i=0; i<n; ++i) { | |
j = fr[i]; | |
if (j < 0) | |
j = -j; | |
m = fi[i]; | |
if (m < 0) | |
m = -m; | |
if (j > 16383 || m > 16383) { | |
shift = 1; | |
break; | |
} | |
} | |
if (shift) | |
++scale; | |
} else { | |
/* | |
fixed scaling, for proper normalization -- | |
there will be log2(n) passes, so this results | |
in an overall factor of 1/n, distributed to | |
maximize arithmetic accuracy. | |
*/ | |
shift = 1; | |
} | |
/* | |
it may not be obvious, but the shift will be | |
performed on each data point exactly once, | |
during this pass. | |
*/ | |
istep = l << 1; | |
for (m=0; m<l; ++m) { | |
j = m << k; | |
/* 0 <= j < N_WAVE/2 */ | |
wr = pgm_read_word_near(Sinewave + j+N_WAVE/4); | |
/*Serial.println("asdfasdf"); | |
Serial.println(wr); | |
Serial.println(j+N_WAVE/4); | |
Serial.println(Sinewave[256]); | |
Serial.println("");*/ | |
wi = -pgm_read_word_near(Sinewave + j); | |
if (inverse) | |
wi = -wi; | |
if (shift) { | |
wr >>= 1; | |
wi >>= 1; | |
} | |
for (i=m; i<n; i+=istep) { | |
j = i + l; | |
tr = FIX_MPY(wr,fr[j]) - FIX_MPY(wi,fi[j]); | |
ti = FIX_MPY(wr,fi[j]) + FIX_MPY(wi,fr[j]); | |
qr = fr[i]; | |
qi = fi[i]; | |
if (shift) { | |
qr >>= 1; | |
qi >>= 1; | |
} | |
fr[j] = qr - tr; | |
fi[j] = qi - ti; | |
fr[i] = qr + tr; | |
fi[i] = qi + ti; | |
} | |
} | |
--k; | |
l = istep; | |
} | |
return scale; | |
} | |
/* | |
fix_fftr() - forward/inverse FFT on array of real numbers. | |
Real FFT/iFFT using half-size complex FFT by distributing | |
even/odd samples into real/imaginary arrays respectively. | |
In order to save data space (i.e. to avoid two arrays, one | |
for real, one for imaginary samples), we proceed in the | |
following two steps: a) samples are rearranged in the real | |
array so that all even samples are in places 0-(N/2-1) and | |
all imaginary samples in places (N/2)-(N-1), and b) fix_fft | |
is called with fr and fi pointing to index 0 and index N/2 | |
respectively in the original array. The above guarantees | |
that fix_fft "sees" consecutive real samples as alternating | |
real and imaginary samples in the complex array. | |
*/ | |
int fix_fftr(char f[], int m, int inverse) | |
{ | |
int i, N = 1<<(m-1), scale = 0; | |
char tt, *fr=f, *fi=&f[N]; | |
if (inverse) | |
scale = fix_fft(fi, fr, m-1, inverse); | |
for (i=1; i<N; i+=2) { | |
tt = f[N+i-1]; | |
f[N+i-1] = f[i]; | |
f[i] = tt; | |
} | |
if (! inverse) | |
scale = fix_fft(fi, fr, m-1, inverse); | |
return scale; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef FIXFFT_H | |
#define FIXFFT_H | |
#include <WProgram.h> | |
/* | |
fix_fft() - perform forward/inverse fast Fourier transform. | |
fr[n],fi[n] are real and imaginary arrays, both INPUT AND | |
RESULT (in-place FFT), with 0 <= n < 2**m; set inverse to | |
0 for forward transform (FFT), or 1 for iFFT. | |
*/ | |
int fix_fft(char fr[], char fi[], int m, int inverse); | |
/* | |
fix_fftr() - forward/inverse FFT on array of real numbers. | |
Real FFT/iFFT using half-size complex FFT by distributing | |
even/odd samples into real/imaginary arrays respectively. | |
In order to save data space (i.e. to avoid two arrays, one | |
for real, one for imaginary samples), we proceed in the | |
following two steps: a) samples are rearranged in the real | |
array so that all even samples are in places 0-(N/2-1) and | |
all imaginary samples in places (N/2)-(N-1), and b) fix_fft | |
is called with fr and fi pointing to index 0 and index N/2 | |
respectively in the original array. The above guarantees | |
that fix_fft "sees" consecutive real samples as alternating | |
real and imaginary samples in the complex array. | |
*/ | |
int fix_fftr(char f[], int m, int inverse); | |
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <fix_fft.h> | |
#include <LiquidCrystal.h> | |
LiquidCrystal lcd(4,5,6,7,8,9); | |
#define AUDIOPIN 5 | |
byte bar2[8] = { | |
B00000, | |
B00000, | |
B00000, | |
B00000, | |
B00000, | |
B11111, | |
B11111, | |
}; | |
byte bar3[8] = { | |
B00000, | |
B00000, | |
B00000, | |
B00000, | |
B11111, | |
B11111, | |
B11111, | |
}; | |
byte bar4[8] = { | |
B00000, | |
B00000, | |
B00000, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
}; | |
byte bar5[8] = { | |
B00000, | |
B00000, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
}; | |
byte bar6[8] = { | |
B00000, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
}; | |
byte bar7[8] = { | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
B11111, | |
}; | |
void setup() { | |
Serial.begin(9600); | |
lcd.createChar(0, bar2); | |
lcd.createChar(1, bar3); | |
lcd.createChar(2, bar4); | |
lcd.createChar(3, bar5); | |
lcd.createChar(4, bar6); | |
lcd.createChar(5, bar7); | |
lcd.begin(16, 2); | |
lcd.noAutoscroll(); | |
lcd.setCursor(0, 0); | |
lcd.print("LCDvu! "); | |
lcd.setCursor(0, 1); | |
lcd.write('_'); | |
lcd.write(0); | |
lcd.write(1); | |
lcd.write(2); | |
lcd.write(3); | |
lcd.write(4); | |
lcd.write(5); | |
lcd.write(5); | |
lcd.write(5); | |
lcd.write(5); | |
lcd.write(5); | |
lcd.write(5); | |
lcd.write(5); | |
lcd.write(5); | |
lcd.setCursor(7, 0); | |
lcd.write('_'); | |
lcd.write(0); | |
lcd.write(1); | |
lcd.write(2); | |
lcd.write(3); | |
lcd.write(4); | |
lcd.write(5); | |
delay(2000); | |
} | |
void display_level(int col, int level) { | |
lcd.setCursor(col,1); | |
switch(level) { | |
case 0: | |
lcd.write(' '); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 1: | |
lcd.write('_'); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 2: | |
lcd.write(0); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 3: | |
lcd.write(1); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 4: | |
lcd.write(2); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 5: | |
lcd.write(3); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 6: | |
lcd.write(4); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 7: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write(' '); | |
break; | |
case 8: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write('_'); | |
break; | |
case 9: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write(0); | |
break; | |
case 10: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write(1); | |
break; | |
case 11: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write(2); | |
break; | |
case 12: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write(3); | |
break; | |
case 13: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write(4); | |
break; | |
case 14: | |
lcd.write(5); | |
lcd.setCursor(col,0); | |
lcd.write(5); | |
break; | |
} | |
} | |
char im[128], data[128]; | |
int data_avgs[16]; | |
int i=0,val; | |
void loop() { | |
for (i=0; i < 128; i++){ | |
val = analogRead(AUDIOPIN); | |
data[i] = val; | |
im[i] = 0; | |
} | |
fix_fft(data,im,7,0); | |
for (i=0; i< 64;i++){ | |
// this gets the absolute value of the values in the array, so we're only dealing with positive numbers | |
data[i] = sqrt(data[i] * data[i] + im[i] * im[i]); | |
} | |
// average bars together | |
for (i=0; i<16; i++) { | |
data_avgs[i] = data[i*4] + data[i*4 + 1] + data[i*4 + 2] + data[i*4 + 3]; // average together | |
data_avgs[i] = map(data_avgs[i], 0, 30, 0, 15); // remap values | |
} | |
for (i=0; i<16; i++) { | |
display_level(i, data_avgs[i]); | |
} | |
delay(25); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment