Last active
January 20, 2020 20:25
-
-
Save Arkoniak/e5937b46ba5f515b357157d11c338578 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using LinearAlgebra | |
########################################### | |
# Types and basis | |
abstract type AbstractCrystalGroup end | |
struct CrystalGroup{K} <: AbstractCrystalGroup | |
R::Array{K, 2} | |
T::Array{K, 1} | |
end | |
CrystalGroup(R::Array{K, 2}) where K = CrystalGroup{K}(R, zeros(K, 3)) | |
CrystalGroup(T::Array{K, 1}) where K = CrystalGroup{K}(Matrix{K}(I, 3, 3), T) | |
Base.:*(g1::CrystalGroup, g2::CrystalGroup) = CrystalGroup(g1.R*g2.R, g1.R*g2.T + g1.T) | |
Base.:*(λ::K1, g::CrystalGroup) where {K1 <: Number} = CrystalGroup(λ * g.R, λ * g.T) | |
Base.:*(g::CrystalGroup, v::Vector) = g.R * v + g.T | |
r1 = CrystalGroup(Matrix{Float64}(I, 3, 3)) | |
r2 = CrystalGroup([0.0 -1 0; 1 -1 0; 0 0 1]) | |
r3 = CrystalGroup([-1.0 1 0; -1 0 0; 0 0 1]) | |
r4 = CrystalGroup([0.0 1 0; 1 0 0; 0 0 -1]) | |
r5 = CrystalGroup([1.0 -1 0; 0 -1 0; 0 0 -1]) | |
r6 = CrystalGroup([-1.0 0 0; -1 1 0; 0 0 -1]) | |
t1 = CrystalGroup([0.0, 0, 0]) | |
t2 = CrystalGroup([0, 0, 0.5]) | |
t3 = CrystalGroup(([0, 0, 0] + [2/3, 1/3, 1/3]) - floor.([0, 0, 0] + [2/3, 1/3, 1/3])) | |
t4 = CrystalGroup(([0, 0, 0.5] + [2/3, 1/3, 1/3]) - floor.([0, 0, 0.5] + [2/3, 1/3, 1/3])) | |
t5 = CrystalGroup(([0, 0, 0] + [1/3, 2/3, 2/3]) - floor.([0, 0, 0] + [1/3, 2/3, 2/3])) | |
t6 = CrystalGroup(([0, 0, 0.5] + [1/3, 2/3, 2/3]) - floor.([0, 0, 0.5] + [1/3, 2/3, 2/3])) | |
rbasis = [[r1, r2, r3], [r4, r5, r6]] | |
tbasis = [[t1, t3, t5], [t2, t4, t6]] | |
basis = [[[t * r, t * (-1 * r)] for (r, t) in Iterators.product(rs, ts)] for (rs, ts) in zip(rbasis, tbasis)] | |
basis = [x for x in Iterators.flatten(basis)] | |
basis = [x for x in Iterators.flatten(basis)] | |
############################################################ | |
# Constants and auxiliary functions | |
is_constrained(v, a, b, c) = (-a < v[1] < a) && (-b < v[2] < b) && (-c < v[3] < c) | |
a = 1 | |
b = 1 | |
c = 1 | |
alpha = 90 | |
beta = alpha | |
gamma = 120 | |
a1 = 4.7606 | |
b1 = a1 | |
c1 = 12.994 | |
abc = [a1 b1 c1] | |
M = [a b*cosd(gamma) c*cosd(beta); 0 b*sind(gamma) (c/sind(gamma))*(cosd(alpha)-cosd(beta)*cosd(gamma)); 0 0 (c*((1-cosd(alpha)^2 - cosd(beta)^2 - cosd(gamma)^2 + (2)*cosd(alpha)* cosd(beta)* cosd(gamma))^0.5))/(sind(gamma))] | |
M1 = M .* abc | |
Al = [0.0 0.0 0.35217] | |
O = [0.69365 0.0 0.25] | |
x = Al[1,1] | |
y = Al[1,2] | |
z = Al[1,3] | |
v = [x, y, z] | |
################################################################# | |
# Calculations | |
function mult_em_all(v, basis, a1, b1, c1, M, n) | |
vs = [M * (g * v) for g in basis] | |
atoms = Set{Vector{Float64}}() | |
for i in -n:n, j in -n:n, k in -n:n | |
for v1 in vs | |
p = v1 + M * [i, j, k] | |
is_constrained(p, a1, b1, c1) && push!(atoms, p) | |
end | |
end | |
atoms | |
end | |
mult_em_all(v, basis, a1, b1, c1, M1, 50) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment