Created
January 4, 2018 07:26
-
-
Save ArnoutDevos/fb9654a0e9908f7e320046dfee36791a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
VGG_MODEL = 'model/imagenet-vgg-verydeep-19.mat' | |
MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1,1,3)) | |
def load_vgg_model(path): | |
vgg = scipy.io.loadmat(path) | |
vgg_layers = vgg['layers'] | |
def _weights(layer, expected_layer_name): | |
W = vgg_layers[0][layer][0][0][2][0][0] | |
b = vgg_layers[0][layer][0][0][2][0][1] | |
layer_name = vgg_layers[0][layer][0][0][0] | |
assert layer_name == expected_layer_name | |
return W, b | |
def _relu(conv2d_layer): | |
return tf.nn.relu(conv2d_layer) | |
def _conv2d(prev_layer, layer, layer_name): | |
W, b = _weights(layer, layer_name) | |
W = tf.constant(W) | |
b = tf.constant(np.reshape(b, (b.size))) | |
return tf.nn.conv2d( | |
prev_layer, filter=W, strides=[1, 1, 1, 1], padding='SAME') + b | |
def _conv2d_relu(prev_layer, layer, layer_name): | |
return _relu(_conv2d(prev_layer, layer, layer_name)) | |
def _avgpool(prev_layer): | |
return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | |
# Construct the graph model. | |
graph = {} | |
graph['input'] = tf.Variable(np.zeros((1, IMAGE_HEIGHT, IMAGE_WIDTH, COLOR_CHANNELS)), dtype = 'float32') | |
graph['conv1_1'] = _conv2d_relu(graph['input'], 0, 'conv1_1') | |
graph['conv1_2'] = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2') | |
graph['avgpool1'] = _avgpool(graph['conv1_2']) | |
graph['conv2_1'] = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1') | |
graph['conv2_2'] = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2') | |
graph['avgpool2'] = _avgpool(graph['conv2_2']) | |
graph['conv3_1'] = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1') | |
graph['conv3_2'] = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2') | |
graph['conv3_3'] = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3') | |
graph['conv3_4'] = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4') | |
graph['avgpool3'] = _avgpool(graph['conv3_4']) | |
graph['conv4_1'] = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1') | |
graph['conv4_2'] = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2') | |
graph['conv4_3'] = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3') | |
graph['conv4_4'] = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4') | |
graph['avgpool4'] = _avgpool(graph['conv4_4']) | |
graph['conv5_1'] = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1') | |
graph['conv5_2'] = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2') | |
graph['conv5_3'] = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3') | |
graph['conv5_4'] = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4') | |
graph['avgpool5'] = _avgpool(graph['conv5_4']) | |
return graph |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment