- Use HTML tags to define the table to get the best layout result
- Use either backticks (```) or the HTML
pre
element with attributelang
- Keep a blank line before and after a code block for correct formatting and syntax highlighting
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import asyncio | |
import psycopg2 | |
# dbname should be the same for the notifying process | |
conn = psycopg2.connect(host="localhost", dbname="example", user="example", password="example") | |
conn.set_isolation_level(psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT) | |
cursor = conn.cursor() | |
cursor.execute(f"LISTEN match_updates;") |
As configured in my dotfiles.
start new:
tmux
start new with session name:
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def print_confusion_matrix(confusion_matrix, class_names, figsize = (10,7), fontsize=14): | |
df_cm = pd.DataFrame(confusion_matrix, index=class_names, columns=class_names) | |
fig = plt.figure(figsize=figsize) | |
try: | |
heatmap = sns.heatmap(df_cm, annot=True, fmt="d") | |
except ValueError: | |
raise ValueError("Confusion matrix values must be integers.") | |
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=fontsize) | |
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=fontsize) | |
plt.ylabel('True label') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pathlib | |
import numpy as np | |
import cv2 | |
from tensorboard.backend.event_processing import event_accumulator | |
event_filepath = 'runs/Apr19_11-02-02_RNSCWL0127/events.out.tfevents.1713517322.RNSCWL0127.15332.0' | |
output_dir = 'images/img_train' | |
event_acc = event_accumulator.EventAccumulator(event_filepath, size_guidance={'images': 0}) |