Created
February 18, 2020 05:48
-
-
Save AsharFatmi/a97be8d7d2410d935683f336f4095de7 to your computer and use it in GitHub Desktop.
wpodnet lp detector
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cv2 | |
import time | |
from os.path import splitext | |
from src.label import Label | |
from src.utils import getWH, nms | |
from src.projection_utils import getRectPts, find_T_matrix | |
def detect_lp(model,I,max_dim,net_step,out_size,threshold): | |
min_dim_img = min(I.shape[:2]) | |
factor = float(max_dim)/min_dim_img | |
w,h = (np.array(I.shape[1::-1],dtype=float)*factor).astype(int).tolist() | |
w += (w%net_step!=0)*(net_step - w%net_step) | |
h += (h%net_step!=0)*(net_step - h%net_step) | |
Iresized = cv2.resize(I,(600,845)) | |
T = Iresized.copy() | |
T = T.reshape((1,T.shape[1],T.shape[0],T.shape[2])) | |
start = time.time() | |
Yr = model.predict(T) | |
Yr = np.squeeze(Yr) | |
elapsed = (time.time() - start)*1000 | |
with open('/home/kingashar/YOLOV3-LP/wpod_out.txt', 'a') as f: | |
f.write('{}\n\n\n\n\n\n\n'.format(str(Yr))) | |
L,TLps = reconstruct(I,Iresized,Yr,out_size,threshold) | |
return L,TLps,elapsed,w,h | |
def im2single(I): | |
assert(I.dtype == 'uint8') | |
return I.astype('float32')/255. | |
class DLabel (Label): | |
def __init__(self,cl,pts,prob): | |
self.pts = pts | |
tl = np.amin(pts,1) | |
br = np.amax(pts,1) | |
Label.__init__(self,cl,tl,br,prob) | |
def save_model(model,path,verbose=0): | |
path = splitext(path)[0] | |
model_json = model.to_json() | |
with open('%s.json' % path,'w') as json_file: | |
json_file.write(model_json) | |
model.save_weights('%s.h5' % path) | |
if verbose: print ('Saved to %s' % path) | |
def load_model(path,custom_objects={},verbose=0): | |
from keras.models import model_from_json | |
path = splitext(path)[0] | |
with open('%s.json' % path,'r') as json_file: | |
model_json = json_file.read() | |
model = model_from_json(model_json, custom_objects=custom_objects) | |
model.load_weights('%s.h5' % path) | |
if verbose: print ('Loaded from %s' % path) | |
return model | |
def reconstruct(Iorig,I,Y,out_size,threshold=.9): | |
net_stride = 2**4 | |
side = ((208. + 40.)/2.)/net_stride # 7.75 | |
Probs = Y[...,0] | |
Affines = Y[...,2:] | |
rx,ry = Y.shape[:2] | |
ywh = Y.shape[1::-1] | |
iwh = np.array(I.shape[1::-1],dtype=float).reshape((2,1)) | |
xx,yy = np.where(Probs>threshold) | |
WH = getWH(I.shape) | |
MN = WH/net_stride | |
vxx = vyy = 0.5 #alpha | |
base = lambda vx,vy: np.matrix([[-vx,-vy,1.],[vx,-vy,1.],[vx,vy,1.],[-vx,vy,1.]]).T | |
labels = [] | |
for i in range(len(xx)): | |
y,x = xx[i],yy[i] | |
affine = Affines[y,x] | |
prob = Probs[y,x] | |
mn = np.array([float(x) + .5,float(y) + .5]) | |
A = np.reshape(affine,(2,3)) | |
A[0,0] = max(A[0,0],0.) | |
A[1,1] = max(A[1,1],0.) | |
pts = np.array(A*base(vxx,vyy)) #*alpha | |
pts_MN_center_mn = pts*side | |
pts_MN = pts_MN_center_mn + mn.reshape((2,1)) | |
pts_prop = pts_MN/MN.reshape((2,1)) | |
labels.append(DLabel(0,pts_prop,prob)) | |
final_labels = nms(labels,.1) | |
TLps = [] | |
if len(final_labels): | |
final_labels.sort(key=lambda x: x.prob(), reverse=True) | |
for i,label in enumerate(final_labels): | |
t_ptsh = getRectPts(0,0,out_size[0],out_size[1]) | |
ptsh = np.concatenate((label.pts*getWH(Iorig.shape).reshape((2,1)),np.ones((1,4)))) | |
H = find_T_matrix(ptsh,t_ptsh) | |
Ilp = cv2.warpPerspective(Iorig,H,out_size,borderValue=.0) | |
TLps.append(Ilp) | |
return final_labels,TLps | |
if "__name__" == "__main__" : | |
bname = splitext(basename(img_path))[0] | |
Ivehicle = cv2.imread(img_path) | |
ratio = float(max(Ivehicle.shape[:2]))/min(Ivehicle.shape[:2]) | |
side = int(ratio*288.) | |
bound_dim = min(side + (side%(2**4)),608) | |
Llp,LlpImgs,times,w,h = detect_lp(wpod_net,im2single(Ivehicle),bound_dim,2**4,(240,80),lp_threshold) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment