Created
April 15, 2023 22:03
-
-
Save Athospd/97f16d5768ef72e87d2840f524597653 to your computer and use it in GitHub Desktop.
Ilustration of the learning rate on a model fit
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model_gen <- function(lr) { | |
lin <- nn_linear(2, 1) #b0 e b1 | |
opt <- torch::optim_adam(lin$parameters, lr = lr) | |
return(list(lin = lin, opt = opt)) | |
} | |
model_fit <- function(model) { | |
model$opt$zero_grad() | |
pred <- model$lin(x) # b0 + b1*x | |
custo <- mse(y, pred) | |
custo$backward() | |
model$opt$step() | |
return(pred) | |
} | |
x <- torch_tensor(cbind(cars$speed, cars$speed^2)) | |
y <- torch_tensor(cars$dist)$unsqueeze(2) | |
mse <- nn_mse_loss() | |
model1 <- model_gen(2) | |
model2 <- model_gen(0.05) | |
model3 <- model_gen(0.001) | |
for(i in 1:100) { | |
pred1 <- model_fit(model1) | |
pred2 <- model_fit(model2) | |
pred3 <- model_fit(model3) | |
Sys.sleep(0.1) | |
plot(cars) | |
lines(x[,1]$unsqueeze(2), pred1, col = "red", lwd = 4) | |
lines(x[,1]$unsqueeze(2), pred2, col = "royalblue", lwd = 4) | |
lines(x[,1]$unsqueeze(2), pred3, col = "orange", lwd = 4) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment