Last active
June 1, 2018 15:05
-
-
Save AvantiShri/21ec8de292b9c0c91e4d448b5c02a118 to your computer and use it in GitHub Desktop.
Reverse-complement Weight Sharing Model Setup
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#install keras from https://github.com/kundajelab/keras/tree/keras_1 | |
from __future__ import print_function | |
import keras | |
import numpy as np | |
np.random.seed(1) | |
#build a sample model | |
model = keras.models.Sequential() | |
model.add(keras.layers.convolutional.RevCompConv1D(input_shape=(100,4), | |
nb_filter=10, | |
filter_length=11)) | |
model.add(keras.layers.normalization.RevCompConv1DBatchNorm()) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.convolutional.RevCompConv1D(nb_filter=10, | |
filter_length=11)) | |
model.add(keras.layers.normalization.RevCompConv1DBatchNorm()) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.convolutional.RevCompConv1D(nb_filter=10, | |
filter_length=11)) | |
model.add(keras.layers.normalization.RevCompConv1DBatchNorm()) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.pooling.MaxPooling1D(pool_length=10)) | |
model.add(keras.layers.convolutional.WeightedSum1D(symmetric=False, | |
input_is_revcomp_conv=True, | |
bias=False, | |
init="fanintimesfanouttimestwo")) | |
model.add(keras.layers.core.DenseAfterRevcompWeightedSum(output_dim=10)) | |
model.add(keras.layers.core.Activation("relu")) | |
model.add(keras.layers.core.Dense(output_dim=10)) | |
model.add(keras.layers.core.Activation("sigmoid")) | |
model.compile(optimizer="sgd", loss="binary_crossentropy") | |
#randomly generate some inputs | |
rand_inp = np.random.random((10, 100, 4)) | |
#confirm that forward and reverse-complement versions give same results | |
fwd_predict = model.predict(rand_inp) | |
rev_predict = model.predict(rand_inp[:, ::-1, ::-1]) | |
#print the maximum value of the forward and reverse predictions | |
#should give 0.502919 | |
print("Max prediction on forward seqs",np.max(fwd_predict)) | |
print("Max prediction on revcomps",np.max(rev_predict)) | |
#print the max difference in predictions | |
#should give 0.0 | |
print("Maximum absolute difference:",np.max(np.abs(fwd_predict - rev_predict))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment