-
-
Save Barabazs/5a9eb21880d271a922d6d38a811a2a66 to your computer and use it in GitHub Desktop.
CFMM Routing Arbitrage Example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cvxpy as cp | |
import itertools | |
# Problem data | |
global_indices = list(range(4)) | |
# 0 = TOKEN-0 | |
# 1 = TOKEN-1 | |
# 2 = TOKEN-2 | |
# 3 = TOKEN-3 | |
local_indices = [ | |
[0, 1, 2, 3], # TOKEN-0/TOKEN-1/TOKEN-2/TOKEN-3 | |
[0, 1], # TOKEN-0/TOKEN-1 | |
[1, 2], # TOKEN-1/TOKEN-2 | |
[2, 3], # TOKEN-2/TOKEN-3 | |
[2, 3] # TOKEN-2/TOKEN-3 | |
] | |
reserves = list(map(np.array, [ | |
[4, 4, 4, 4], # balancer with 4 assets in pool TOKEN-0, TOKEN-1, TOKEN-2, TOKEN-3 (4 TOKEN-0, 4 TOKEN-1, 4 TOKEN-2 & 4 TOKEN-3 IN POOL) | |
[10, 1], # uniswapV2 TOKEN-0/TOKEN-1 (10 TOKEN-0 & 1 TOKEN-1 IN POOL) | |
[1, 5], # uniswapV2 TOKEN-1/TOKEN-2 (1 TOKEN-1 & 5 TOKEN-2 IN POOL) | |
[40, 50], # uniswapV2 TOKEN-2/TOKEN-3 (40 TOKEN-2 & 50 TOKEN-3 IN POOL) | |
[10, 10] # constant_sum TOKEN-2/TOKEN-3 (10 TOKEN-2 & 10 TOKEN-3 IN POOL) | |
])) | |
fees = [ | |
.998, # balancer fees | |
.997, # uniswapV2 fees | |
.997, # uniswapV2 fees | |
.997, # uniswapV2 fees | |
.999 # constant_sum fees | |
] | |
# "Market value" of tokens (say, in a centralized exchange) | |
market_value = [ | |
1.5, # TOKEN-0 | |
10, # TOKEN-1 | |
2, # TOKEN-2 | |
3 # TOKEN-3 | |
] | |
# Build local-global matrices | |
n = len(global_indices) | |
m = len(local_indices) | |
A = [] | |
for l in local_indices: # for each CFMM | |
n_i = len(l) # n_i = number of tokens avaiable for CFMM i | |
A_i = np.zeros((n, n_i)) # Create matrix of 0's | |
for i, idx in enumerate(l): | |
A_i[idx, i] = 1 | |
A.append(A_i) | |
# Build variables | |
# tender delta | |
deltas = [cp.Variable(len(l), nonneg=True) for l in local_indices] | |
# receive lambda | |
lambdas = [cp.Variable(len(l), nonneg=True) for l in local_indices] | |
psi = cp.sum([A_i @ (L - D) for A_i, D, L in zip(A, deltas, lambdas)]) | |
# Objective is to maximize "total market value" of coins out | |
obj = cp.Maximize(market_value @ psi) # matrix multiplication | |
# Reserves after trade | |
new_reserves = [R + gamma_i*D - L for R, gamma_i, D, L in zip(reserves, fees, deltas, lambdas)] | |
# Trading function constraints | |
cons = [ | |
# Balancer pool with weights 4, 3, 2, 1 | |
cp.geo_mean(new_reserves[0], p=np.array([4, 3, 2, 1])) >= cp.geo_mean(reserves[0]), | |
# Uniswap v2 pools | |
cp.geo_mean(new_reserves[1]) >= cp.geo_mean(reserves[1]), | |
cp.geo_mean(new_reserves[2]) >= cp.geo_mean(reserves[2]), | |
cp.geo_mean(new_reserves[3]) >= cp.geo_mean(reserves[3]), | |
# Constant sum pool | |
cp.sum(new_reserves[4]) >= cp.sum(reserves[4]), | |
new_reserves[4] >= 0, | |
# Arbitrage constraint | |
psi >= 0 | |
] | |
# Set up and solve problem | |
prob = cp.Problem(obj, cons) | |
prob.solve() | |
# Trade Execution Ordering | |
current_tokens = [0, 0, 0, 0] | |
new_current_tokens = [0, 0, 0, 0] | |
tokens_required_arr = [] | |
tokens_required_value_arr = [] | |
pool_names = ["BALANCER 0/1/2/3", "UNIV2 0/1", "UNIV2 1/2", "UNIV2 2/3", "CONSTANT SUM 2/3"] | |
permutations = itertools.permutations(list(range(len(local_indices))), len(local_indices)) | |
permutations2 = [] | |
for permutation in permutations: | |
permutations2.append(permutation) | |
current_tokens = [0, 0, 0, 0] | |
new_current_tokens = [0, 0, 0, 0] | |
tokens_required = [0, 0, 0, 0] | |
for pool_id in permutation: | |
pool = local_indices[pool_id] | |
for global_token_id in pool: | |
local_token_index = pool.index(global_token_id) | |
new_current_tokens[global_token_id] = current_tokens[global_token_id] + (lambdas[pool_id].value[local_token_index] - deltas[pool_id].value[local_token_index]) | |
if new_current_tokens[global_token_id] < 0 and new_current_tokens[global_token_id] < current_tokens[global_token_id]: | |
if current_tokens[global_token_id] < 0: | |
tokens_required[global_token_id] += (current_tokens[global_token_id] - new_current_tokens[global_token_id]) | |
new_current_tokens[global_token_id] = 0 | |
else: | |
tokens_required[global_token_id] += (-new_current_tokens[global_token_id]) | |
new_current_tokens[global_token_id] = 0 | |
current_tokens[global_token_id] = new_current_tokens[global_token_id] | |
tokens_required_value = [] | |
for i1, i2 in zip(tokens_required, market_value): | |
tokens_required_value.append(i1*i2) | |
tokens_required_arr.append(tokens_required) | |
tokens_required_value_arr.append(sum(tokens_required_value)) | |
min_value = min(tokens_required_value_arr) | |
min_value_index = tokens_required_value_arr.index(min_value) | |
print("\n-------------------- ARBITRAGE TRADES + EXECUTION ORDER --------------------\n") | |
for pool_id in permutations2[min_value_index]: | |
pool = local_indices[pool_id] | |
print(f"\nTRADE POOL = {pool_names[pool_id]}") | |
for global_token_id in pool: | |
local_token_index = pool.index(global_token_id) | |
if (lambdas[pool_id].value[local_token_index] - deltas[pool_id].value[local_token_index]) < 0: | |
print(f"\tTENDERING {-(lambdas[pool_id].value[local_token_index] - deltas[pool_id].value[local_token_index])} TOKEN {global_token_id}") | |
for global_token_id in pool: | |
local_token_index = pool.index(global_token_id) | |
if (lambdas[pool_id].value[local_token_index] - deltas[pool_id].value[local_token_index]) >= 0: | |
print(f"\tRECEIVEING {(lambdas[pool_id].value[local_token_index] - deltas[pool_id].value[local_token_index])} TOKEN {global_token_id}") | |
print("\n-------------------- REQUIRED TOKENS TO KICK-START ARBITRAGE --------------------\n") | |
print(f"TOKEN-0 = {tokens_required_arr[min_value_index][0]}") | |
print(f"TOKEN-1 = {tokens_required_arr[min_value_index][1]}") | |
print(f"TOKEN-2 = {tokens_required_arr[min_value_index][2]}") | |
print(f"TOKEN-3 = {tokens_required_arr[min_value_index][3]}") | |
print(f"\nUSD VALUE REQUIRED = ${min_value}") | |
print("\n-------------------- TOKENS & VALUE RECEIVED FROM ARBITRAGE --------------------\n") | |
net_network_trade_tokens = [0, 0, 0, 0] | |
net_network_trade_value = [0, 0, 0, 0] | |
for pool_id in permutations2[min_value_index]: | |
pool = local_indices[pool_id] | |
for global_token_id in pool: | |
local_token_index = pool.index(global_token_id) | |
net_network_trade_tokens[global_token_id] += lambdas[pool_id].value[local_token_index] | |
net_network_trade_tokens[global_token_id] -= deltas[pool_id].value[local_token_index] | |
for i in range(0, len(net_network_trade_tokens)): | |
net_network_trade_value[i] = net_network_trade_tokens[i] * market_value[i] | |
print(f"RECEIVED {net_network_trade_tokens[0]} TOKEN-0 = ${net_network_trade_value[0]}") | |
print(f"RECEIVED {net_network_trade_tokens[1]} TOKEN-1 = ${net_network_trade_value[1]}") | |
print(f"RECEIVED {net_network_trade_tokens[2]} TOKEN-2 = ${net_network_trade_value[2]}") | |
print(f"RECEIVED {net_network_trade_tokens[3]} TOKEN-3 = ${net_network_trade_value[3]}") | |
print(f"\nSUM OF RECEIVED TOKENS USD VALUE = ${sum(net_network_trade_value)}") | |
print(f"CONVEX OPTIMISATION SOLVER RESULT: ${prob.value}\n") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment