Last active
November 5, 2018 21:36
-
-
Save BarclayII/6cf6c5acf1d4ecf92bbda3dbb4636662 to your computer and use it in GitHub Desktop.
PyTorch gather-scatter/SPMV benchmarks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import time | |
N = 10000 | |
D = 50 | |
E = 500000 | |
T = 10 | |
t_gather = 0 | |
t_scatter = 0 | |
t_out_incident = 0 | |
t_in_incident = 0 | |
t_adjacent = 0 | |
t_time_overhead = 0 | |
for i in range(10000): | |
t0 = time.time() | |
t_time_overhead += time.time() - t0 | |
t_time_overhead /= 10000 | |
for i in range(T): | |
x = torch.randn(N, D).cuda() | |
src = (torch.rand(E).cuda() * N).long() | |
dst = (torch.rand(E).cuda() * N).long() | |
out_degree = torch.zeros(N).cuda().long().scatter_add(0, src, torch.ones_like(src)) | |
in_degree = torch.zeros(N).cuda().long().scatter_add(0, dst, torch.ones_like(dst)) | |
max_in_degree = in_degree.max() | |
t0 = time.time() | |
y = x.gather(0, src[:, None].expand(src.shape[0], *x.shape[1:])) | |
z = torch.zeros_like(x).scatter_add(0, dst[:, None].expand(dst.shape[0], *x.shape[1:]), y) | |
torch.cuda.synchronize() | |
t_scatter += time.time() - t0 | |
t0 = time.time() | |
out_incident_coo = torch.stack([torch.arange(E).cuda(), src], 0) | |
out_incident = torch.cuda.sparse.FloatTensor(out_incident_coo, torch.ones(E).cuda(), (E, N)) | |
y = torch.spmm(out_incident, x) | |
in_incident_coo = torch.stack([dst, torch.arange(E).cuda()], 0) | |
in_incident = torch.cuda.sparse.FloatTensor(in_incident_coo, torch.ones(E).cuda(), (N, E)) | |
z = torch.spmm(in_incident, y) | |
torch.cuda.synchronize() | |
t_in_incident += time.time() - t0 | |
t0 = time.time() | |
adj_coo = torch.stack([dst, src], 0) | |
adj = torch.cuda.sparse.FloatTensor(adj_coo, torch.ones(E).cuda(), (N, N)) | |
z = torch.spmm(adj, x) | |
torch.cuda.synchronize() | |
t_adjacent += time.time() - t0 | |
t_gather /= T | |
t_scatter /= T | |
t_out_incident /= T | |
t_in_incident /= T | |
t_adjacent /= T | |
print(t_scatter, t_in_incident, t_adjacent) | |
# Result: | |
# 0.015599870681762695 0.15931901931762696 0.03305981159210205 | |
# Even if I moved the sparse FloatTensor constructions out completely, the result is | |
# 0.015459918975830078 0.12213940620422363 0.0214599609375 | |
# ???????? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment