Last active
July 22, 2017 22:57
-
-
Save BarclayII/ffedd35326727b73bfafa7afff9722f4 to your computer and use it in GitHub Desktop.
GAN generating audio. Probably does not work
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as TF | |
import modeltf as model | |
import numpy as NP | |
import numpy.random as RNG | |
import h5py | |
import argparse | |
from timer import Timer | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--critic_iter', default=5, type=int) | |
parser.add_argument('--cnn', action='store_true') | |
parser.add_argument('modelname', type=str) | |
args = parser.parse_args() | |
print args.modelname | |
batch_size = 32 | |
if args.cnn: | |
g = model.Conv1DGenerator([ | |
(128, 33, 4), | |
(256, 33, 4), | |
(512, 33, 5), | |
# (1024, 33, 2), | |
# (2048, 33, 5), | |
]) | |
z = TF.placeholder(TF.float32, shape=(None, None)) | |
z_fixed = RNG.randn(batch_size, 100) | |
else: | |
g = model.RNNGenerator() | |
z = TF.placeholder(TF.float32, shape=(None, None, None)) | |
z_fixed = RNG.randn(batch_size, 8000 // 200, 100) | |
d = model.Conv1DDiscriminator([ | |
(128, 33, 10), | |
(256, 33, 5), | |
(512, 33, 4), | |
# (1024, 33, 2), | |
# (2048, 33, 2), | |
]) | |
x_real = TF.placeholder(TF.float32, shape=(None, None)) | |
x_fake = g.generate(batch_size=batch_size, length=8000) | |
loss_d = TF.reduce_mean(d.compare(x_real, x_fake)) | |
loss_g = score_fake = TF.reduce_mean(-d.discriminate(x_fake)) | |
score_real = TF.reduce_mean(d.discriminate(x_real)) | |
x = g.generate(z=z) | |
opt_g = TF.train.AdamOptimizer() | |
opt_d = TF.train.AdamOptimizer() | |
train_g = opt_g.apply_gradients(opt_g.compute_gradients(loss_g, var_list=g.model.trainable_weights)) | |
train_d = opt_d.apply_gradients(opt_d.compute_gradients(loss_d, var_list=d.model.trainable_weights)) | |
dataset = h5py.File('dataset.h5') | |
data = dataset['data'] | |
nsamples = data.shape[0] | |
n_train_samples = nsamples // 10 * 9 | |
def _dataloader(batch_size, data, lower, upper): | |
epoch = 1 | |
batch = 0 | |
idx = RNG.permutation(range(lower, upper)) | |
cur = 0 | |
while True: | |
indices = [] | |
for i in range(batch_size): | |
if cur == len(idx): | |
cur = 0 | |
idx = RNG.permutation(range(lower, upper)) | |
epoch += 1 | |
batch = 0 | |
indices.append(idx[cur]) | |
cur += 1 | |
sample = data[sorted(indices)] | |
yield epoch, batch, NP.array(sample) | |
batch += 1 | |
dataloader = _dataloader(batch_size, data, 0, n_train_samples) | |
dataloader_val = _dataloader(batch_size, data, n_train_samples, nsamples) | |
i = 0 | |
epoch = 1 | |
if __name__ == '__main__': | |
s = TF.Session() | |
s.run(TF.global_variables_initializer()) | |
x_gen = s.run(x, feed_dict={z: z_fixed}) | |
assert x_gen.shape[0] == batch_size | |
assert x_gen.shape[1] == 8000 | |
while True: | |
_epoch = epoch | |
i += 1 | |
for _ in range(args.critic_iter): | |
with Timer.new('load', print_=False): | |
epoch, batch_id, real_data = dataloader.next() | |
with Timer.new('train_d', print_=False): | |
_, loss, c_real, c_fake = s.run([train_d, loss_d, score_real, score_fake], feed_dict={x_real: real_data}) | |
print 'D', epoch, batch_id, loss, c_real, c_fake, Timer.get('load'), Timer.get('train_d') | |
_, _, real_data = dataloader_val.next() | |
loss, c_real, c_fake = s.run([loss_d, score_real, score_fake], feed_dict={x_real: real_data}) | |
print 'D-valid', loss, c_real, c_fake | |
with Timer.new('train_g', print_=False): | |
_, loss, c_fake = s.run([train_g, loss_g, score_fake]) | |
print 'G', epoch, loss, c_fake, Timer.get('train_g') | |
if i % 1000 == 0: | |
print 'Saving...' | |
x_gen = s.run(x, feed_dict={z: z_fixed}) | |
NP.save('%s%05d.npy' % (args.modelname, i), x_gen) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
import tensorflow as TF | |
import keras.backend as K | |
import keras.layers as KL | |
import keras.models as KM | |
import utiltf as util | |
class RNNGenerator(util.Component): | |
def __init__(self, frame_size=200, noise_size=100, state_size=100): | |
super(RNNGenerator, self).__init__() | |
self._frame_size = frame_size | |
self._noise_size = noise_size | |
_z = KL.Input(shape=(None, noise_size)) | |
_lstm = KL.Bidirectional(KL.LSTM(units=state_size, activation='tanh', return_sequences=True))(_z) | |
_x = KL.TimeDistributed(KL.Dense(frame_size, activation='tanh'))(_lstm) | |
_x = KL.Lambda(lambda x: K.reshape(x, (K.shape(x)[0], K.shape(x)[1] * K.shape(x)[2])))(_x) | |
self.model = KM.Model(inputs=_z, outputs=_x) | |
def generate(self, batch_size=None, length=None, z=None): | |
if z is None: | |
_len = length // self._frame_size | |
_z0 = K.random_normal((batch_size, 1, self._noise_size)) | |
_z1 = K.random_normal((batch_size, 1, self._noise_size)) | |
z = K.concatenate([_z0, K.zeros((batch_size, _len - 2, self._noise_size)), _z1], axis=1) | |
else: | |
batch_size = K.shape(z)[0] | |
length = K.shape(z)[1] * self._frame_size | |
return self.model(z) | |
class Conv1DGenerator(util.Component): | |
def __init__(self, config, noise_size=100): | |
super(Conv1DGenerator, self).__init__() | |
_x = KL.Input(shape=(None,)) | |
_x1 = KL.Lambda(lambda x: K.expand_dims(K.expand_dims(x, 1), 3))(_x) | |
self._multiplier = 1 | |
self._noise_size = noise_size | |
for num_filters, filter_size, filter_stride in config: | |
_x1 = KL.Conv2DTranspose(filters=num_filters, kernel_size=(1, filter_size), strides=(1, filter_stride), padding='same', activation='relu')(_x1) | |
self._multiplier *= filter_stride | |
_x1 = KL.Conv2DTranspose(filters=1, kernel_size=(1, 1), strides=(1, 1), padding='same', activation='tanh')(_x1) | |
_pooled = KL.Lambda(lambda x: x[:, 0, :, 0])(_x1) | |
self.model = KM.Model(inputs=_x, outputs=_pooled) | |
def generate(self, batch_size=None, length=None, z=None): | |
if z is None: | |
z = K.random_normal((batch_size, self._noise_size)) | |
return self.model(z) | |
class Conv1DDiscriminator(util.Component): | |
def __init__(self, config): | |
super(Conv1DDiscriminator, self).__init__() | |
_x = KL.Input(shape=(None,)) | |
_x1 = KL.Lambda(lambda x: K.expand_dims(x, 2))(_x) | |
for num_filters, filter_size, filter_stride in config: | |
_x1 = KL.Conv1D(filters=num_filters, kernel_size=filter_size, strides=filter_stride, padding='same', activation='relu')(_x1) | |
_pooled = KL.GlobalAvgPool1D()(_x1) | |
_d = KL.Dense(1)(_pooled) | |
self.model = KM.Model(inputs=_x, outputs=_d) | |
def discriminate(self, x): | |
return self.model(x)[:, 0] | |
def compare(self, x_real, x_fake, grad_penalty=True, lambda_=10): | |
d_real = self.discriminate(x_real) | |
d_fake = self.discriminate(x_fake) | |
loss = d_fake - d_real | |
if grad_penalty: | |
eps = K.random_uniform([K.shape(x_real)[0], 1]) | |
x_inter = eps * x_real + (1 - eps) * x_fake | |
d_inter = self.discriminate(x_inter) | |
grads = K.gradients(d_inter, x_inter)[0] | |
grad_norms = K.sqrt(K.sum(K.square(grads), axis=1)) | |
penalty = K.square(grad_norms - 1) | |
loss += lambda_ * penalty | |
return K.mean(loss) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
class Timer(object): | |
timers = {} | |
def __init__(self, name, print_=False): | |
self.start = self.end = 0 | |
self.name = name | |
self.print_ = print_ | |
@classmethod | |
def new(cls, name, print_=False): | |
cls.timers[name] = Timer(name, print_) | |
return cls.timers[name] | |
def __enter__(self): | |
self.start = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end = time.time() | |
if self.print_: | |
print '%s: %.6fs' % (self.name, self.end - self.start) | |
@classmethod | |
def get(cls, name): | |
return ((cls.timers[name].end - cls.timers[name].start) | |
if name in cls.timers else 0) | |
@classmethod | |
def reset(cls): | |
cls.timers = {} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Component(object): | |
def save(self, path): | |
self.model.save_weights(path) | |
def load(self, path): | |
self.model.load_weights(path) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment