Last active
May 25, 2020 14:44
-
-
Save Barry1/08c9d5d874bdfd586b311b6a22dd867c to your computer and use it in GitHub Desktop.
some helpful ideas for H2O
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import h2o | |
import pandas | |
Inputdaten = pandas.Dataframe() | |
PREDICT_COL_NAME = 'tbd' | |
def pddf2h2odf(pddf: pandas.DataFrame) -> h2o.H2OFrame: | |
# %% Sometimes, H2O adds duplicated to pandas-dataframes | |
# Solution from https://stackoverflow.com/a/59588925/617339 | |
srcindexnameforlaterdeletion = pddf.index.name | |
h2odf = h2o.H2OFrame(pddf.reset_index()) | |
if len(h2odf) != len(pddf): | |
reimport = h2odf.as_data_frame() | |
h2odf = h2odf.drop(reimport[reimport.duplicated()].index, axis=0) | |
return h2odf.drop(srcindexnameforlaterdeletion) | |
with h2o.backend.H2OLocalServer.start(verbose=__debug__, name="H2O-Cluster") as hs: | |
if __debug__: | |
print("==========SERVER-INFO==========") | |
print(hs) | |
print("===============================") | |
with h2o.connect(server=hs, verbose=__debug__) as hc: | |
if __debug__: | |
print("==========CONNECTION-INFO==========") | |
print(hc) | |
print("===================================") | |
DATA = pddf2h2odf(Inputdaten) | |
# http://archive.is/hBLPg | |
print(DATA.describe()) | |
#FEATURES = DATA.columns.remove(PREDICT_COL_NAME) # : List[Any] | |
# features.remove(PREDICT_COL_NAME) | |
aml = h2o.automl.H2OAutoML(seed=1) # max_models=MAX_MODELS, | |
aml.train(y=PREDICT_COL_NAME, training_frame=DATA)#x=FEATURES, | |
print(aml.leader) | |
Inputdaten['H2O'] = aml.predict(test_data=DATA).as_data_frame().values | |
print(Inputdaten[[PREDICT_COL_NAME, 'H2O']]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment