Created
February 3, 2020 12:20
-
-
Save BeMg/7e1ea91c81d85e38b59ad4ce4358f701 to your computer and use it in GitHub Desktop.
AAAAA
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def schedule_conv2d_2(_,outs,target): | |
"""Create schedule for tensors""" | |
s = tvm.create_schedule([x.op for x in outs]) | |
scheduled_ops = [] | |
def traverse(op): | |
"""Traverse operators from computation graph""" | |
# inline all one-to-one-mapping operators except the last stage (output) | |
if 'broadcast' in op.tag: | |
if op not in s.outputs: | |
s[op].compute_inline() | |
for tensor in op.input_tensors: | |
if tensor.op.input_tensors and tensor.op not in scheduled_ops: | |
traverse(tensor.op) | |
#print(op.tag) | |
if 'conv2d_nchw' in op.tag: | |
output = op.output(0) | |
conv_out = op.input_tensors[0] | |
kernel_vec = conv_out.op.input_tensors[1] | |
kernel = kernel_vec.op.input_tensors[0] | |
if isinstance(kernel.op, tvm.tensor.ComputeOp) and "dilate" in kernel.op.tag: | |
s[kernel].compute_inline() | |
data_vec = conv_out.op.input_tensors[0] | |
data = data_vec.op.input_tensors[0] | |
data_pad = None | |
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag: | |
data_pad = data | |
data = data_pad.op.input_tensors[0] | |
C = conv_out | |
n, cc, h, w, cb = C.op.axis | |
print("C shape: {} {} {} {} {}".format(C.shape[0].value, C.shape[1].value, C.shape[2].value, C.shape[3].value, C.shape[4].value)) | |
rc, ry, rx = C.op.reduce_axis | |
s[C].reorder(n, h, w, cc, cb) | |
c = s[C].fuse(h, w) | |
fused = s[C].fuse(n, c) | |
if C.shape[4].value % 8 == 0: | |
cbo, cbi = s[C].split(cb, factor=8) | |
elif C.shape[4].value % 4 == 0: | |
cbo, cbi = s[C].split(cb, factor=4) | |
else: | |
cbo, cbi = s[C].split(cb, factor=1) | |
s[C].reorder(fused, rc, cc, cbo, ry, rx, cbi) # move rc to outer loop | |
s[C].unroll(rx) | |
s[C].unroll(ry) | |
s[C].vectorize(cbi) | |
scheduled_ops.append(op) | |
traverse(outs[0].op) | |
return s |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def schedule_conv2d(cfg, outs): | |
"""Create schedule for tensors""" | |
s = tvm.create_schedule([x.op for x in outs]) | |
scheduled_ops = [] | |
def traverse(op): | |
"""Traverse operators from computation graph""" | |
# inline all one-to-one-mapping operators except the last stage (output) | |
if tag.is_broadcast(op.tag): | |
if op not in s.outputs: | |
s[op].compute_inline() | |
for tensor in op.input_tensors: | |
if tensor.op.input_tensors and tensor.op not in scheduled_ops: | |
traverse(tensor.op) | |
if 'conv2d_nchw' in op.tag: | |
output = op.output(0) | |
conv_out = op.input_tensors[0] | |
kernel_vec = conv_out.op.input_tensors[1] | |
kernel = kernel_vec.op.input_tensors[0] | |
if isinstance(kernel.op, tvm.tensor.ComputeOp) and "dilate" in kernel.op.tag: | |
s[kernel].compute_inline() | |
data_vec = conv_out.op.input_tensors[0] | |
data = data_vec.op.input_tensors[0] | |
data_pad = None | |
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag: | |
data_pad = data | |
data = data_pad.op.input_tensors[0] | |
_, _, kh, kw = get_const_tuple(kernel.shape) | |
is_kernel_1x1 = kh == 1 and kw == 1 | |
args = [s, cfg, data, data_pad, data_vec, kernel_vec, conv_out, output, outs[0]] | |
print("IN X86") | |
if is_kernel_1x1: | |
conv2d_avx_1x1._schedule_conv(*args) | |
else: | |
conv2d_avx_common._schedule_conv(*args) | |
scheduled_ops.append(op) | |
traverse(outs[0].op) | |
return s |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment