Created
October 30, 2019 13:07
-
-
Save BeMg/83845c453e46032bf69ad640ba90df1e to your computer and use it in GitHub Desktop.
rearrange imagenet dataset
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mxnet as mx | |
import numpy as np | |
from mxnet import gluon, nd | |
from mxnet import autograd as ag | |
from mxnet.gluon import nn | |
from mxnet.gluon.model_zoo import vision as models | |
from mxnet.gluon.data import vision | |
from mxnet.gluon.data.vision import transforms | |
import shutil | |
import time | |
import os | |
import pandas as pd | |
val_path = 'val' | |
image_path = '/home/bemg/dataset/imagenet_img' #use absolute address | |
synsets_file = open('./synsets.txt', 'r') | |
val_file = open('./val.txt', 'r') | |
if os.path.exists(val_path): | |
shutil.rmtree(val_path) | |
synsets = [line.rstrip('\n') for line in synsets_file.readlines()] | |
for line in val_file.readlines(): | |
fname, idx = line.split() | |
label_path = '%s/%s' % (val_path, synsets[int(idx)]) | |
if not os.path.exists(label_path): | |
os.makedirs(label_path) | |
os.symlink('%s/%s' % (image_path, fname), '%s/%s' % (label_path, fname)) | |
transform_test = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
batch_size = 1 | |
num_gpus = 8 | |
val_total = 50000 | |
ctx = [mx.cpu()] | |
num_workers = 10 | |
val_dataset = vision.ImageFolderDataset(val_path) | |
val_data = gluon.data.DataLoader( | |
val_dataset.transform_first(transform_test), | |
batch_size=batch_size, shuffle=False, num_workers=num_workers) | |
from mxnet.gluon.model_zoo.model_store import _model_sha1 | |
test_result = [] | |
acc_top1 = mx.metric.Accuracy() | |
acc_top5 = mx.metric.TopKAccuracy(5) | |
cnt = 0 | |
for model in sorted(_model_sha1.keys()): | |
if model == 'inceptionv3': | |
continue | |
net = models.get_model('mobilenetv2_1.0', pretrained=True, ctx=ctx) | |
acc_top1.reset() | |
acc_top5.reset() | |
for _, batch in enumerate(val_data): | |
print(cnt) | |
cnt += 1 | |
# print(batch[0]) | |
# print(batch[1]) | |
data = gluon.utils.split_and_load(batch[0], ctx) | |
label = gluon.utils.split_and_load(batch[1], ctx) | |
outputs = [net(X) for X in data] | |
acc_top1.update(label, outputs) | |
acc_top5.update(label, outputs) | |
# print_str = 'Top 1 Err: %4f \t Top 5 Err: %4f '%(1 - top1, 1 - top5) | |
# pbar.set_description("%s" % print_str) | |
_, top1 = acc_top1.get() | |
_, top5 = acc_top5.get() | |
print('Model: %s \t Top 1 Err: %4f \t Top 5 Err: %4f '%('mobilenetv2_1.0', 1 - top1, 1 - top5)) | |
test_result.append((model, 1 - top1, 1 - top5)) | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment