Created
April 29, 2020 00:29
-
-
Save BeiZero/2a7c3daca9bd89dddae6d9c82c3f5596 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Lecture-2 where | |
data ⊤ : Set where --\top | |
tt : ⊤ | |
data ⊥ : Set where --\bot | |
⊥-elim : {A : Set} → ⊥ → A | |
⊥-elim = λ () | |
implies₁ : ⊤ → ⊤ | |
implies₁ x = x | |
implies₂ : ⊥ → ⊥ | |
implies₂ x = x | |
implies₃ : ⊥ → ⊤ | |
implies₃ x = ⊥-elim x | |
-- implies₄ : ⊤ → ⊥ | |
-- implies₄ x = ? | |
proof₁ : {A : Set} → A → A | |
proof₁ a = a | |
-- !proof₁ : {A B : Set} → A → B | |
-- !proof₁ = ? | |
proof₂ : {A B : Set} → A → (B → B) | |
proof₂ _ = λ x → x | |
axiom₁ : {A B : Set} → A → (B → A) | |
axiom₁ a = λ _ → a | |
axiom₂ : {A B C : Set} → (A → B) → ((B → C) → (A → C)) | |
axiom₂ f g h = g (f h) | |
data _×_ (A : Set) (B : Set) : Set where --\x | |
<_,_> : A → B → (A × B) | |
axiom₃ : {A B : Set} → A → (B → A × B) | |
axiom₃ a b = < a , b > | |
axiom₄ : {A B : Set} → (A × B) → A | |
axiom₄ < a , b > = a | |
axiom₅ : {A B : Set} → (A × B) → B | |
axiom₅ < a , b > = b | |
data _∣_ (A B : Set) : Set where --\| | |
Left : A → A ∣ B | |
Right : B → A ∣ B | |
axiom₆ : {A B : Set} → A → A ∣ B | |
axiom₆ = Left | |
axiom₇ : {A B : Set} → B → A ∣ B | |
axiom₇ = Right | |
axiom₈ : {A B C : Set} → (A → C) → ((B → C) → (A ∣ B → C)) | |
axiom₈ f g (Left a) = f a | |
axiom₈ f g (Right b) = g b | |
¬ : Set → Set -- for ¬ type \neg | |
¬ A = A → ⊥ | |
axiom₉ : {A B : Set} → (A → B) → ((A → ¬ B) → ¬ A) | |
axiom₉ f g h = g h (f h) | |
-- (A → B) → (A → B → ⊥) → A → ⊥ | |
axiom₁₀ : {A B : Set} → ¬ A → (A → B) | |
axiom₁₀ f a = ⊥-elim (f a) | |
-- (A → ⊥) → A → B | |
axiom₁₁ : {A : Set}{P : A → Set} → | |
(∀ (a : A) → P a) → (a₁ : A) → P a₁ | |
axiom₁₁ f = f | |
data Σ (A : Set) (P : A → Set) : Set where | |
⟨_,_⟩ : (a : A) → P a → Σ A P --\< \> | |
∃ : (A : Set) → (P : A → Set) → Set | |
∃ A P = Σ A P | |
axiom₁₂ : (A : Set) → (P : A → Set) → Set | |
axiom₁₂ = ∃ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment