Skip to content

Instantly share code, notes, and snippets.

@BekaValentine
Created September 23, 2024 18:47
Show Gist options
  • Save BekaValentine/17a3da048e712b738125a5ebcaf25751 to your computer and use it in GitHub Desktop.
Save BekaValentine/17a3da048e712b738125a5ebcaf25751 to your computer and use it in GitHub Desktop.
open import Data.Product hiding (<_,_>)
open import Data.Sum
open import Data.Unit
data Type : Set where
One : Type
_*_ _+_ _=>_ : Type -> Type -> Type
[[_]]ty : Type -> Set
[[ One ]]ty = ⊤
[[ A * B ]]ty = [[ A ]]ty × [[ B ]]ty
[[ A + B ]]ty = [[ A ]]ty ⊎ [[ B ]]ty
[[ A => B ]]ty = [[ A ]]ty -> [[ B ]]ty
data PType : Set where
d : Type -> PType
_->>_ : Type -> PType -> PType
[[_]]pty : PType -> Set
[[ d A ]]pty = [[ A ]]ty
[[ A ->> B ]]pty = [[ A ]]ty -> [[ B ]]pty
data Context : Set where
[] : Context
_,_ : Context -> Type -> Context
[[_]]ctx : Context -> Set
[[ [] ]]ctx = ⊤
[[ G , A ]]ctx = [[ G ]]ctx × [[ A ]]ty
data Var : (G : Context) -> (A : Type) -> Set where
here : forall {G A} -> Var (G , A) A
there : forall {G A B} -> Var G A -> Var (G , B) A
mutual
data Term (G : Context) : (A : Type) -> Set where
<> : Term G One
<_,_> : forall {A B} -> Term G A -> Term G B -> Term G (A * B)
left : forall {A B} -> Term G A -> Term G (A + B)
right : forall {A B} -> Term G B -> Term G (A + B)
lam : forall {A B} -> PatternMatch G (A ->> d B) -> Term G (A => B)
_$_ : forall {A B} -> Term G (A => B) -> Term G A -> Term G B
var : forall {A} -> Var G A -> Term G A
data PatternMatch (G : Context) : (A : PType) -> Set where
d : forall {R} -> Term G R -> PatternMatch G (d R)
<> : forall {A} -> PatternMatch G A -> PatternMatch G (One ->> A)
<,> : forall {A B C} -> PatternMatch G (A ->> (B ->> C)) -> PatternMatch G ((A * B) ->> C)
lr : forall {A B C} -> PatternMatch G (A ->> C) -> PatternMatch G (B ->> C) -> PatternMatch G ((A + B) ->> C)
var : forall {A B} -> PatternMatch (G , A) B -> PatternMatch G (A ->> B)
[[_]]var : forall {G A} -> Var G A -> [[ G ]]ctx -> [[ A ]]ty
[[ here ]]var (env , v) = v
[[ there x ]]var (env , v) = [[ x ]]var env
mutual
[[_]]tm : forall {G A} -> Term G A -> [[ G ]]ctx -> [[ A ]]ty
[[ <> ]]tm env = tt
[[ < M , N > ]]tm env = [[ M ]]tm env , [[ N ]]tm env
[[ left M ]]tm env = inj₁ ([[ M ]]tm env)
[[ right N ]]tm env = inj₂ ([[ N ]]tm env)
[[ lam P ]]tm env = [[ P ]]pat env
[[ M $ N ]]tm env = [[ M ]]tm env ([[ N ]]tm env)
[[ var x ]]tm env = [[ x ]]var env
[[_]]pat : forall {G A} -> PatternMatch G A -> [[ G ]]ctx -> [[ A ]]pty
[[ d M ]]pat env = [[ M ]]tm env
[[ <> P ]]pat env = \ _ -> [[ P ]]pat env
[[ <,> P ]]pat env = \ { (x , y) -> [[ P ]]pat env x y }
[[ lr P Q ]]pat env = \ { (inj₁ x) -> [[ P ]]pat env x ; (inj₂ y) -> [[ Q ]]pat env y }
[[ var P ]]pat env = \ x -> [[ P ]]pat (env , x)
-- \ { < x , y > -> < y , x >
ex : forall {A B} -> PatternMatch [] ((A * B) ->> d (B * A))
ex = <,> (var (var (d < var here , var (there here) >)))
-- \ { (left x) -> right x ; (right y) -> left y }
ex2 : forall {A B} -> PatternMatch [] ((A + B) ->> d (B + A))
ex2 = lr (var (d (right (var here)))) (var (d (left (var here))))
-- \ { < < x , y > , z > -> < x , < y , z > > }
ex3 : forall {A B C} -> PatternMatch [] (((A * B) * C) ->> d (A * (B * C)))
ex3 = <,> (<,> (var (var (var (d < var (there (there here)) , < var (there here) , var here > >)))))
-- \ { (left (left x)) -> left x ; (left (right y)) -> right (left y) ; (right z) -> right (right z) }
ex4 : forall {A B C} -> PatternMatch [] (((A + B) + C) ->> d (A + (B + C)))
ex4 = lr (lr (var (d (left (var here)))) (var (d (right (left (var here)))))) (var (d (right (right (var here)))))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment