Skip to content

Instantly share code, notes, and snippets.

@BekaValentine
Created September 23, 2024 19:49
Show Gist options
  • Save BekaValentine/2916a70be66e4bd9436e51502b25cc6e to your computer and use it in GitHub Desktop.
Save BekaValentine/2916a70be66e4bd9436e51502b25cc6e to your computer and use it in GitHub Desktop.
open import Data.List renaming (_∷_ to _::_)
open import Data.Product hiding (<_,_>)
open import Data.Sum
open import Data.Unit
data Type : Set where
One : Type
_*_ _+_ _=>_ : Type -> Type -> Type
[[_]]ty : Type -> Set
[[ One ]]ty = ⊤
[[ A * B ]]ty = [[ A ]]ty × [[ B ]]ty
[[ A + B ]]ty = [[ A ]]ty ⊎ [[ B ]]ty
[[ A => B ]]ty = [[ A ]]ty -> [[ B ]]ty
data Context : Set where
[] : Context
_,_ : Context -> Type -> Context
[[_]]ctx : Context -> Set
[[ [] ]]ctx = ⊤
[[ G , A ]]ctx = [[ G ]]ctx × [[ A ]]ty
data Var : (G : Context) -> (A : Type) -> Set where
here : forall {G A} -> Var (G , A) A
there : forall {G A B} -> Var G A -> Var (G , B) A
mutual
data Term (G : Context) : (A : Type) -> Set where
<> : Term G One
<_,_> : forall {A B} -> Term G A -> Term G B -> Term G (A * B)
left : forall {A B} -> Term G A -> Term G (A + B)
right : forall {A B} -> Term G B -> Term G (A + B)
lam : forall {A B} -> PatternMatch G B (A :: []) -> Term G (A => B)
_$_ : forall {A B} -> Term G (A => B) -> Term G A -> Term G B
var : forall {A} -> Var G A -> Term G A
data PatternMatch (G : Context) (R : Type) : (As : List Type) -> Set where
d : Term G R -> PatternMatch G R []
<> : forall {Cs} -> PatternMatch G R Cs -> PatternMatch G R (One :: Cs)
<,> : forall {A B Cs} -> PatternMatch G R (A :: B :: Cs) -> PatternMatch G R ((A * B) :: Cs)
lr : forall {A B Cs} -> PatternMatch G R (A :: Cs) -> PatternMatch G R (B :: Cs) -> PatternMatch G R ((A + B):: Cs)
var : forall {A Cs} -> PatternMatch (G , A) R Cs -> PatternMatch G R (A :: Cs)
data Scrutinees : (Cs : List Type) -> Set where
[] : Scrutinees []
_::_ : forall {A Cs} -> [[ A ]]ty -> Scrutinees Cs -> Scrutinees (A :: Cs)
[[_]]var : forall {G A} -> Var G A -> [[ G ]]ctx -> [[ A ]]ty
[[ here ]]var (env , v) = v
[[ there x ]]var (env , v) = [[ x ]]var env
mutual
[[_]]tm : forall {G A} -> Term G A -> [[ G ]]ctx -> [[ A ]]ty
[[ <> ]]tm env = tt
[[ < M , N > ]]tm env = [[ M ]]tm env , [[ N ]]tm env
[[ left M ]]tm env = inj₁ ([[ M ]]tm env)
[[ right N ]]tm env = inj₂ ([[ N ]]tm env)
[[ lam P ]]tm env = \ x -> [[ P ]]pat env (x :: [])
[[ M $ N ]]tm env = [[ M ]]tm env ([[ N ]]tm env)
[[ var x ]]tm env = [[ x ]]var env
[[_]]pat : forall {G R Cs} -> PatternMatch G R Cs -> [[ G ]]ctx -> Scrutinees Cs -> [[ R ]]ty
[[ d M ]]pat env scrs = [[ M ]]tm env
[[ <> P ]]pat env (_ :: scrs) = [[ P ]]pat env scrs
[[ <,> P ]]pat env ((x , y) :: scrs) = [[ P ]]pat env (x :: (y :: scrs))
[[ lr P P' ]]pat env (inj₁ x :: scrs) = [[ P ]]pat env (x :: scrs)
[[ lr P P' ]]pat env (inj₂ y :: scrs) = [[ P' ]]pat env (y :: scrs)
[[ var P ]]pat env (x :: scrs) = [[ P ]]pat (env , x) scrs
-- \ { < x , y > -> < y , x >
ex : forall {A B} -> PatternMatch [] (B * A) ((A * B) :: [])
ex = <,> (var (var (d < var here , var (there here) >)))
-- \ { (left x) -> right x ; (right y) -> left y }
ex2 : forall {A B} -> PatternMatch [] (B + A) ((A + B) :: [])
ex2 = lr (var (d (right (var here)))) (var (d (left (var here))))
-- \ { < < x , y > , z > -> < x , < y , z > > }
ex3 : forall {A B C} -> PatternMatch [] (A * (B * C)) (((A * B) * C) :: [])
ex3 = <,> (<,> (var (var (var (d < var (there (there here)) , < var (there here) , var here > >)))))
-- \ { (left (left x)) -> left x ; (left (right y)) -> right (left y) ; (right z) -> right (right z) }
ex4 : forall {A B C} -> PatternMatch [] (A + (B + C)) (((A + B) + C) :: [])
ex4 = lr (lr (var (d (left (var here)))) (var (d (right (left (var here)))))) (var (d (right (right (var here)))))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment