Last active
August 20, 2024 18:01
-
-
Save BexTuychiev/1f4c48cfd4c5cc4c8c8fa773dcbcca5d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import seaborn as sns | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import warnings | |
warnings.filterwarnings("ignore") | |
np.random.seed(42) | |
# Load the data | |
dataset_size = 10_000 | |
diamonds = sns.load_dataset("diamonds") | |
# Extract the target and the feature | |
xy = diamonds[["carat", "price"]].values | |
np.random.shuffle(xy) # Shuffle the data | |
xy = xy[:dataset_size] | |
# Normalize the data | |
mean = np.mean(xy, axis=0) | |
std = np.std(xy, axis=0) | |
xy_normalized = (xy - mean) / std | |
# Split the data | |
train_size = int(0.8 * dataset_size) | |
train_xy, test_xy = xy_normalized[:train_size], xy_normalized[train_size:] | |
def model(m, x, b): | |
"""Simple linear model""" | |
return m * x + b | |
def loss(y_true, y_pred): | |
"""Mean squared error""" | |
return np.mean((y_true - y_pred) ** 2) | |
def rmsprop_optimization( | |
x, | |
y, | |
epochs=100, | |
learning_rate=0.01, | |
batch_size=32, | |
stopping_threshold=1e-6, | |
beta=0.9, | |
epsilon=1e-8, | |
): | |
""" | |
RMSprop optimization with support for mini-batches. | |
""" | |
# Initialize the model parameters randomly | |
m = np.random.randn() | |
b = np.random.randn() | |
# Initialize accumulators for squared gradients | |
s_m = 0 | |
s_b = 0 | |
n = len(x) | |
previous_loss = np.inf | |
for i in range(epochs): | |
# Shuffle the data | |
indices = np.random.permutation(n) | |
x = x[indices] | |
y = y[indices] | |
for j in range(0, n, batch_size): | |
x_batch = x[j : j + batch_size] | |
y_batch = y[j : j + batch_size] | |
# Compute the gradients | |
y_pred = model(m, x_batch, b) | |
m_gradient = 2 * np.mean(x_batch * (y_batch - y_pred)) | |
b_gradient = 2 * np.mean(y_batch - y_pred) | |
# Update accumulators | |
s_m = beta * s_m + (1 - beta) * (m_gradient**2) | |
s_b = beta * s_b + (1 - beta) * (b_gradient**2) | |
# Update parameters | |
m -= learning_rate * m_gradient / (np.sqrt(s_m) + epsilon) | |
b -= learning_rate * b_gradient / (np.sqrt(s_b) + epsilon) | |
# Compute the loss | |
y_pred = model(m, x, b) | |
current_loss = loss(y, y_pred) | |
if abs(previous_loss - current_loss) < stopping_threshold: | |
break | |
previous_loss = current_loss | |
return m, b | |
# Find the optimal parameters m and b with RMSprop | |
m, b = rmsprop_optimization( | |
train_xy[:, 0], | |
train_xy[:, 1], | |
learning_rate=0.01, | |
epochs=10000, | |
batch_size=512, | |
beta=0.9, | |
epsilon=1e-8, | |
) | |
# Make predictions | |
y_preds = model(m, test_xy[:, 0], b) | |
# Compute and print the loss | |
mean_squared_error = loss(test_xy[:, 1], y_preds) | |
print(f"Normalized RMSE: {mean_squared_error**0.5}") | |
# Denormalize the predictions and compute the actual RMSE | |
y_preds_denormalized = y_preds * std[1] + mean[1] | |
y_true_denormalized = test_xy[:, 1] * std[1] + mean[1] | |
actual_mse = np.mean((y_true_denormalized - y_preds_denormalized) ** 2) | |
print(f"Actual RMSE: {actual_mse**0.5}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment