Created
October 5, 2019 11:14
-
-
Save BigNerd/ad880941bbe6987e6621cf99e3b2af78 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import random | |
import scipy.stats as stats | |
die_e = 3.5 # expected value of an ordinary six-sided die | |
die_var = 17.5/6 # variance of an ordinary six-sided die | |
die_sigma = math.sqrt(die_var) | |
def create_statistics(repetitions, casts): | |
clt_sum_frequencies = np.zeros(6 * casts + 1, dtype = int) | |
total_sum = 0 | |
for repetition in range(0, repetitions): | |
sum = 0 | |
for cast in range(0, casts): | |
die_number = random.randint(1, 6) | |
sum = sum + die_number | |
clt_sum_frequencies[sum] += 1 | |
total_sum += sum | |
return clt_sum_frequencies / repetitions | |
def plot_clt_chart(sum_frequencies, shift, scale, casts, ax, title): | |
sums = np.linspace((0 - shift) / scale, (6 * casts - shift) / scale, len(sum_frequencies)) | |
width = sums[1] - sums[0] | |
sum_densities = sum_frequencies / width | |
mu = (casts * die_e - shift) / scale | |
sigma = die_sigma * math.sqrt(casts) / scale | |
normal_densities = [stats.norm.pdf(x, mu, sigma) for x in sums] | |
plot_chart(sums, sum_densities, normal_densities, width, ax, title) | |
def plot_chart(x_values, y_values, y_comparison_values, width, ax, title): | |
x_values_odd = x_values[np.mod(np.arange(x_values.size), 2) != 0] | |
y_values_odd = y_values[np.mod(np.arange(x_values.size), 2) != 0] | |
x_values_even = x_values[np.mod(np.arange(y_values.size), 2) == 0] | |
y_values_even = y_values[np.mod(np.arange(y_values.size), 2) == 0] | |
ax.bar(x_values_odd, y_values_odd, width=width, align='center', color='blue') | |
ax.bar(x_values_even, y_values_even, width=width, align='center', color='palegreen') | |
ax.plot(x_values, y_comparison_values, color='r') | |
ax.set_title(title) | |
fig, ax = plt.subplots(2, sharex=True, sharey=True, figsize=(5, 10)) | |
plt.xlim(-0.5, 0.5) | |
row = 0 | |
for casts in [100, 1000]: | |
for repetitions in [10000]: | |
title = f"{repetitions} times averages of {casts} random numbers" | |
clt_sum_frequencies = create_statistics(repetitions, casts) | |
plot_clt_chart(clt_sum_frequencies, die_e * casts, casts, casts, ax[row], title) | |
row += 1 | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment