Last active
October 21, 2016 08:06
-
-
Save BillyBadBoy/2abafb03e95dc7e04ed7df046e401cfc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Kmeans where | |
import System.Random | |
type Point = (Int, Int) | |
type Mean = (Float, Float) | |
type Cluster = [Point] | |
i2f :: (Integral a, Num b) => a -> b | |
i2f = fromIntegral | |
p2f :: Point -> (Float, Float) | |
p2f (x, y) = (i2f x, i2f y) | |
-- distance squared between 2 points | |
dist :: (Float, Float) -> (Float, Float) -> Float | |
dist (x1,y1) (x2,y2) = (x1 - x2)^^2 + (y1 - y2)^^2 | |
-- find index of closest point in list | |
closest :: Point -> [Mean] -> Int | |
closest p ms = (snd . minimum) $ zip (map ((dist . p2f) p) ms) [0..] | |
-- Updates a list of lists by adding an item to | |
-- one of the lists. The list to be augmented is | |
-- specified by its index within the list of lists. | |
add2List :: [[a]] -> a -> Int -> [[a]] | |
add2List xss x i = take i xss ++ [x : (xss !! i)] ++ drop (i + 1) xss | |
-- partition points into clusters by | |
-- assigning each point to the mean point | |
-- that it is closest to. | |
assign :: [Point] -> [Mean] -> [Cluster] | |
assign ps ms = foldr acc zero ps | |
where | |
-- | |
-- add p to cluster with closest mean | |
acc :: Point -> [Cluster] -> [Cluster] | |
acc p cs = add2List cs p $ closest p ms | |
-- | |
-- init with an empty cluster for each mean in ms | |
zero :: [Cluster] | |
zero = replicate (length ms) [] | |
-- add 2 points together pointwise | |
add :: Point -> Point -> Point | |
add (x1,y1) (x2,y2) = (x1+x2, y1+y2) | |
-- multiply point co-ords by some factor | |
mult :: Float -> Point -> (Float, Float) | |
mult k (x,y) = (k * i2f x, k * i2f y) | |
-- find mean point of cluster | |
-- i.e. (average x co-ord, average y co-ord) | |
mean :: Cluster -> Mean | |
mean [] = (0,0) | |
mean c = mult (1 / i2f (length c)) $ foldr add (0,0) c | |
-- calculate new means by finding mean of | |
-- each cluster in list of clusters | |
means :: [Cluster] -> [Mean] | |
means = map mean | |
-- updates a value using a function until the value stabilizes | |
stabilize :: Eq a => a -> (a -> a) -> a | |
stabilize x f = let x' = f x | |
in if x == x' then x else stabilize x' f | |
-- initialize k means by taking the first k points | |
kInit :: Int -> [Point] -> [Mean] | |
kInit k ps = map (\(x,y) -> (i2f x, i2f y)) $ take k ps | |
-- initialize k clusters in round-robin fashion | |
cInit :: Int -> [Point] -> [Cluster] | |
cInit k ps = snd $ foldr acc zero ps | |
where | |
zero = (0, replicate k []) | |
acc pt (i, css) = ((i + 1) `mod` k, add2List css pt i) | |
kmeans :: Int -> [Point] -> [Cluster] | |
kmeans k ps = stabilize initClusters updateClusters | |
where | |
-- | |
-- assign points to clusters | |
initClusters :: [Cluster] | |
initClusters = cInit k ps | |
-- | |
-- calc new means from clusters then re-assign clusters | |
updateClusters :: [Cluster] -> [Cluster] | |
updateClusters = assign ps . means | |
------------------------------------------------------------- | |
--------------------- Screen utilities ---------------------- | |
------------------------------------------------------------- | |
-- animate algorithm using generated random data | |
-- size: number of lines in grid | |
-- k: number of clusters to find | |
-- delay: to slow animation down ~30 | |
animate :: Int -> Int -> Int -> IO () | |
animate size k delay = do | |
ps <- randomPoints size k | |
go ps $ cInit k ps | |
where go ps cs = do | |
printClusters size cs | |
wait delay | |
let cs' = (assign ps . means) cs | |
if cs == cs' | |
then putMsg "Complete!!!" (0,0) | |
else go ps cs' | |
plot :: Int -> (Int, Int) -> IO () | |
plot i (x,y) = do | |
putStrLn $ "\ESC[4" ++ [['1'..] !! (i `mod` 6)] ++ "m" | |
putStr ("\ESC[" ++ show (y+2) ++ ";" ++ show (2*x+2) ++ "H") | |
putChar ' ' | |
putStr ("\ESC[1;1H") | |
resetColor | |
putMsg :: String -> (Int, Int) -> IO () | |
putMsg s (x,y) = do | |
resetColor | |
putStr ("\ESC[" ++ show (y+1) ++ ";" ++ show (x+1) ++ "H") | |
putStr s | |
cls :: Int -> IO () | |
cls size = sequence_ | |
[ putStrLn $ "\ESC[" ++ show r ++ ";1H\ESC[2K" | r <- [1..size+1] ] | |
resetColor :: IO () | |
resetColor = putStr "\ESC[37m\ESC[40m" | |
wait :: Int -> IO () | |
wait t = sequence_ $ replicate t (go 15) | |
where go n = if n > 0 | |
then do go (n-1); go (n-1) | |
else return () | |
printClusters :: Int -> [Cluster] -> IO () | |
printClusters size cs = do | |
cls size | |
sequence_ $ concat $ zipWith (map . plot) [1..] cs | |
------------------------------------------------------------- | |
--------------------- random data --------------------------- | |
------------------------------------------------------------- | |
normalVar :: Mean -> Int -> Int -> IO Point | |
normalVar (x,y) steps size = | |
if steps == 0 then return (bound x size, bound y size) | |
else do | |
x' <- randomRIO (-1.0, 1.0) | |
y' <- randomRIO (-1.0, 1.0) | |
normalVar (x+x', y+y') (steps - 1) size | |
bound :: Float -> Int -> Int | |
bound x size = let x' = round x in min (size - 1) $ max 0 x' | |
randomMean :: Int -> IO Mean | |
randomMean size = do | |
x <- randomRIO (i2f size / 5, i2f size * 4 / 5) | |
y <- randomRIO (i2f size / 5, i2f size * 4 / 5) | |
return (x,y) | |
randomMeans :: Int -> Int -> IO [Mean] | |
randomMeans size k = do | |
mss <- sequence $ replicate 10 genMs | |
return $ snd $ maximum [ (spread ms, ms) | ms <- mss ] | |
where | |
genMs = sequence $ replicate k (randomMean size) | |
spread ms = sum [ sqrt $ dist m1 m2 | m1 <- ms, m2 <- ms] | |
randomPoints :: Int -> Int -> IO [Point] | |
randomPoints s k = do | |
ms <- randomMeans s k | |
randPts ms ((s * s) `div` 5) | |
where | |
randPts ms n = if n == 0 | |
then return [] | |
else do | |
pts <- randPts ms (n - 1) | |
pt <- randPt ms pts | |
return $ pt : pts | |
randPt ms pts = do | |
i <- randomRIO (0, k-1) | |
pt <- normalVar (ms !! i) s s | |
if pt `elem` pts then randPt ms pts else return pt |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Implementation of the k-means clustering algorithm with an animated display thet runs in a terminal.
Works in ubuntu linux - may?? work on windows,
[1] load ghci
[2] animate 30 3 30
To slow it down increase the final param.