Skip to content

Instantly share code, notes, and snippets.

@BioSciEconomist
Created November 5, 2016 22:03
Show Gist options
  • Save BioSciEconomist/409eef19ba90ec79087e9d59a81782ba to your computer and use it in GitHub Desktop.
Save BioSciEconomist/409eef19ba90ec79087e9d59a81782ba to your computer and use it in GitHub Desktop.
Elements of Bayesina Econometrics
# ------------------------------------------------------------------
# | PROGRAM NAME: EX_BAYESIAN_ECONOMETRCS
# | DATE: 9-15-11
# | CREATED BY: MATT BOGARD
# | PROJECT FILE: http://econometricsense.blogspot.com/2011/09/elements-of-bayesian-econometrics.html
# |----------------------------------------------------------------
# | ADAPTED FROM: Andrew D. Martin. "Bayesian Inference and Computation in Political Science." Slides from a talk given to the Department of Politics, Nuffield College, Oxford University, March 9, # | 2004. SLIDES:http://adm.wustl.edu/media/talks/bayesslides.pdf R-CODE : http://adm.wustl.edu/media/talks/examples.zip
# |
# |
# |
# |------------------------------------------------------------------
setwd('/Users/wkuuser/Desktop/Briefcase/R Data Sets')
library(MCMCpack)
murder <- read.table("murder.txt", header=TRUE)
names(murder)
dim(murder)
# estimation using OLS
lm(murder ~ unemp, data=murder)
summary(lm(murder ~ unemp, data=murder))
# posterior with standard priors
post1 <- MCMCregress(murder ~ unemp, data=murder)
print(summary(post1))
# posterior with informative priors
m <- matrix(c(0,3),2,1)
V <- matrix(c(1,0,0,1),2,2)
post2 <- MCMCregress(murder ~ unemp, b0=m, B0=V, data=murder)
print(summary(post2))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment