Last active
October 12, 2019 03:25
-
-
Save BioSciEconomist/6533129b53b6739e265374055598229e to your computer and use it in GitHub Desktop.
DID glm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
########################################################## | |
########################################################## | |
######### under construction ############# | |
########################################################## | |
########################################################## | |
# see: http://econometricsense.blogspot.com/2019/01/modeling-claims-with-linear-vs-non.html?_sm_au_=iVV3RHk1r75TjsfM | |
# this is also the approach taken in Jonk: Yvonne Jonk, Karen Lawson, Heidi O'Connor, Kirsten S. Riise, David | |
# Eisenberg, Bryan Dowd, Mary J. KreitzerMed Care. 2015 Feb; 53(2): 133–140. doi: 10.1097/MLR.0000000000000287 | |
### OLS | |
summary(lm(Admit ~ treat + time + treat*time,data = did.match)) | |
# Coefficients: | |
# Estimate Std. Error t value Pr(>|t|) | |
# (Intercept) 1.5842 0.1760 9.00 <0.0000000000000002 *** | |
# treat -0.0693 0.2489 -0.28 0.781 | |
# time -0.5644 0.2489 -2.27 0.024 * | |
# treat:time -0.1782 0.3520 -0.51 0.613 | |
### GLM | |
summary(m1 <- glm.nb(Admit ~ treat + time + treat*time, control = glm.control(maxit = 500),data = did.match)) | |
# Coefficients: | |
# Estimate Std. Error z value Pr(>|z|) | |
# (Intercept) 0.4601 0.1142 4.03 0.000056 *** | |
# treat -0.0447 0.1624 -0.28 0.78 | |
# time -0.4404 0.1719 -2.56 0.01 * | |
# treat:time -0.2333 0.2500 -0.93 0.35 | |
# DID on model predicted values | |
treat <- c(1,0,1,0) | |
time <- c(0,0,1,1) | |
tmp.scoredat <- data.frame(treat,time) | |
tmp.scoredat$phat <- predict(m1, tmp.scoredat, type= 'response') | |
print(tmp.scoredat) | |
# treat time phat | |
# 1 1 0 1.5149 | |
# 2 0 0 1.5842 | |
# 3 1 1 0.7723 | |
# 4 0 1 1.0198 | |
# implied DID based on predicted values | |
(.7723-1.5149)-(1.0198-1.5842) # = -.1782 | |
# pull out predicted treatment and control pre and post values | |
trt_post <- tmp.scoredat[tmp.scoredat$treat == 1 & tmp.scoredat$time == 1,] | |
trt_pre <- tmp.scoredat[tmp.scoredat$treat == 1 & tmp.scoredat$time == 0,] | |
ctrl_post <- tmp.scoredat[tmp.scoredat$treat == 0 & tmp.scoredat$time == 1,] | |
ctrl_pre <- tmp.scoredat[tmp.scoredat$treat == 0 & tmp.scoredat$time == 0,] | |
# calculate DID: | |
(trt_post$phat - trt_pre$phat) - (ctrl_post$phat - ctrl_pre$phat) | |
rm(m1,treat,time,tmp.scoredat,trt_post,trt_pre,ctrl_post,ctrl_pre) # cleanup |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment