Created
November 6, 2016 17:23
-
-
Save BioSciEconomist/d2d4f28aeaa9b74496076c4dba18ecf6 to your computer and use it in GitHub Desktop.
R Code Example for Neural Networks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ------------------------------------------------------------------ | |
# |PROGRAM NAME: NEURALNET_PKG_R | |
# |DATE: 12/3/10 | |
# |CREATED BY: MATT BOGARD | |
# |PROJECT FILE: http://econometricsense.blogspot.com/2010/12/r-code-example-for-neural-networks.html | |
# |---------------------------------------------------------------- | |
# | PURPOSE: DEMO OF THE 'neuralnet' PACKAGE AND OUTPUT INTERPRETATION | |
# | | |
# | ADAPTED FROM: neuralnet: Training of Neural Networks | |
# | by Frauke Günther and Stefan Fritsch The R Journal Vol. 2/1, June 2010 | |
# | ISSN 2073-4859 (LOCATED: P:\TOOLS AND REFERENCES (Copy)\R References\Neural Networks | |
# | | |
# | | |
# |------------------------------------------------------------------ | |
# |DATA USED: 'infert' FROM THE 'datasets' LIBRARY | |
# |------------------------------------------------------------------ | |
# |CONTENTS: | |
# | | |
# | PART 1: get the data | |
# | PART 2: train the network | |
# | PART 3: | |
# | PART 4: | |
# | PART 5: | |
# |------------------------------------------------------------------ | |
# |COMMENTS: | |
# | | |
# |----------------------------------------------------------------- | |
# |UPDATES: | |
# | | |
# | | |
# |------------------------------------------------------------------ | |
# *------------------------------------------------------------------* | |
# | get the data | |
# *------------------------------------------------------------------* | |
library(datasets) | |
names(infert) | |
# *------------------------------------------------------------------* | |
# | train the network | |
# *------------------------------------------------------------------* | |
library(neuralnet) | |
nn <- neuralnet( | |
case~age+parity+induced+spontaneous, | |
data=infert, hidden=2, err.fct="ce", | |
linear.output=FALSE) | |
# *------------------------------------------------------------------* | |
# | output training results | |
# *------------------------------------------------------------------* | |
# basic | |
nn | |
# reults options | |
names(nn) | |
# result matrix | |
nn$result.matrix | |
# The given data is saved in nn$covariate and | |
# nn$response as well as in nn$data for the whole data | |
# set inclusive non-used variables. The output of the | |
# neural network, i.e. the fitted values o(x), is provided | |
# by nn$net.result: | |
out <- cbind(nn$covariate,nn$net.result[[1]]) | |
dimnames(out) <- list(NULL, c("age", "parity","induced","spontaneous","nn-output")) | |
head(out) | |
# generalized weights | |
# The generalized weight expresses the effect of each | |
# ovariate xi and thus has an analogous interpretation | |
# as the ith regression parameter in regression models. | |
# However, the generalized weight depends on all | |
# other covariates. Its distribution indicates whether | |
# the effect of the covariate is linear since a small variance | |
# suggests a linear effect | |
# The columns refer to the four covariates age (j = | |
# 1), parity (j = 2), induced (j = 3), and spontaneous (j=4) | |
head(nn$generalized.weights[[1]]) | |
# visualization | |
plot(nn) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment