Last active
December 19, 2023 22:07
-
-
Save Birch-san/4315701264b72bb72e8eac5a529ee93a to your computer and use it in GitHub Desktop.
FlashAttnProcessor
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from typing import Optional | |
from flash_attn import flash_attn_func | |
from diffusers.models.attention import Attention | |
class FlashAttnProcessor: | |
r""" | |
Processor for implementing memory efficient attention using flash_attn. | |
""" | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, key_tokens, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) | |
if attention_mask is not None: | |
# expand our mask's singleton query_tokens dimension: | |
# [batch*heads, 1, key_tokens] -> | |
# [batch*heads, query_tokens, key_tokens] | |
# so that it can be added as a bias onto the attention scores that xformers computes: | |
# [batch*heads, query_tokens, key_tokens] | |
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us. | |
_, query_tokens, _ = hidden_states.shape | |
attention_mask = attention_mask.expand(-1, query_tokens, -1) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = query.unflatten(-1, (attn.heads, -1)) | |
key = key.unflatten(-1, (attn.heads, -1)) | |
value = value.unflatten(-1, (attn.heads, -1)) | |
assert attention_mask is None, 'flash_attn does not implement support for attention masks' | |
hidden_states = flash_attn_func( | |
query, key, value, dropout_p=0.0, causal=False | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = hidden_states.flatten(-2) | |
out_proj, dropout = attn.to_out | |
hidden_states = out_proj(hidden_states) | |
hidden_states = dropout(hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
if attn.rescale_output_factor != 1: | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you for sharing this @Birch-san why doesn’t FlashAttnQKVPackedProcessor work with cross-attention?