Created
June 25, 2022 23:21
-
-
Save Birch-san/758c67c23b135381340f1dbe9b10a4ae to your computer and use it in GitHub Desktop.
failed to legalize operation 'arith.cmpi'
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #loc0 = loc(unknown) | |
| module @pmap_p_generate.14 { | |
| func.func public @main(%arg0: tensor<1x64xi32> loc(unknown), %arg1: tensor<1x64xi32> loc(unknown), %arg2: tensor<1x64xi32> loc(unknown), %arg3: tensor<1x64xi32> loc(unknown), %arg4: tensor<2xui32> loc(unknown), %arg5: tensor<2048x16416xf32> loc(unknown), %arg6: tensor<256x2048xf32> loc(unknown), %arg7: tensor<16416x2048xf32> loc(unknown), %arg8: tensor<2048xf32> loc(unknown), %arg9: tensor<2048xf32> loc(unknown), %arg10: tensor<2048xf32> loc(unknown), %arg11: tensor<24x2048x2048xf32> loc(unknown), %arg12: tensor<24x2048x2048xf32> loc(unknown), %arg13: tensor<24x2048x2048xf32> loc(unknown), %arg14: tensor<24x2048x2048xf32> loc(unknown), %arg15: tensor<24x2048x2048xf32> loc(unknown), %arg16: tensor<24x2048x2048xf32> loc(unknown), %arg17: tensor<24x2048x2048xf32> loc(unknown), %arg18: tensor<24x2048x2048xf32> loc(unknown), %arg19: tensor<24x2048x4096xf32> loc(unknown), %arg20: tensor<24x2048x4096xf32> loc(unknown), %arg21: tensor<24x4096x2048xf32> loc(unknown), %arg22: tensor<24x2048xf32> loc(unknown), %arg23: tensor<24x4096xf32> loc(unknown), %arg24: tensor<24x2048xf32> loc(unknown), %arg25: tensor<24x2048xf32> loc(unknown), %arg26: tensor<24x2048xf32> loc(unknown), %arg27: tensor<24x2048xf32> loc(unknown), %arg28: tensor<24x2048xf32> loc(unknown), %arg29: tensor<24x2048xf32> loc(unknown), %arg30: tensor<64x2048xf32> loc(unknown), %arg31: tensor<50272x2048xf32> loc(unknown), %arg32: tensor<2048xf32> loc(unknown), %arg33: tensor<2048xf32> loc(unknown), %arg34: tensor<2048xf32> loc(unknown), %arg35: tensor<24x2048x2048xf32> loc(unknown), %arg36: tensor<24x2048x2048xf32> loc(unknown), %arg37: tensor<24x2048x2048xf32> loc(unknown), %arg38: tensor<24x2048x2048xf32> loc(unknown), %arg39: tensor<24x2048x4096xf32> loc(unknown), %arg40: tensor<24x2048x4096xf32> loc(unknown), %arg41: tensor<24x4096x2048xf32> loc(unknown), %arg42: tensor<24x2048xf32> loc(unknown), %arg43: tensor<24x4096xf32> loc(unknown), %arg44: tensor<24x2048xf32> loc(unknown), %arg45: tensor<24x2048xf32> loc(unknown), %arg46: tensor<24x2048xf32> loc(unknown)) -> tensor<1x257xi32> { | |
| %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<64xi32> loc(#loc1) | |
| %1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<64xi32>) -> tensor<1x64xi32> loc(#loc2) | |
| %2 = call @_take(%arg31, %arg2) : (tensor<50272x2048xf32>, tensor<1x64xi32>) -> tensor<1x64x2048xf32> loc(#loc3) | |
| %3 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x2048xf32> loc(#loc4) | |
| %5 = mhlo.multiply %2, %4 : tensor<1x64x2048xf32> loc(#loc4) | |
| %6 = mhlo.constant dense<0> : tensor<i32> loc(#loc0) | |
| %7 = "mhlo.broadcast_in_dim"(%6) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x64xi32> loc(#loc5) | |
| %8 = mhlo.add %1, %7 : tensor<1x64xi32> loc(#loc5) | |
| %9 = call @_take_0(%arg30, %8) : (tensor<64x2048xf32>, tensor<1x64xi32>) -> tensor<1x64x2048xf32> loc(#loc6) | |
| %10 = mhlo.add %5, %9 : tensor<1x64x2048xf32> loc(#loc7) | |
| %11 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc8) | |
| %12 = mhlo.reduce(%10 init: %11) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc8) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc8) | |
| } loc(#loc8) | |
| %13 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %14 = "mhlo.broadcast_in_dim"(%13) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc9) | |
| %15 = mhlo.divide %12, %14 : tensor<1x64xf32> loc(#loc9) | |
| %16 = mhlo.multiply %10, %10 : tensor<1x64x2048xf32> loc(#loc10) | |
| %17 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc11) | |
| %18 = mhlo.reduce(%16 init: %17) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc11) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc11) | |
| } loc(#loc11) | |
| %19 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %20 = "mhlo.broadcast_in_dim"(%19) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc12) | |
| %21 = mhlo.divide %18, %20 : tensor<1x64xf32> loc(#loc12) | |
| %22 = mhlo.multiply %15, %15 : tensor<1x64xf32> loc(#loc10) | |
| %23 = mhlo.subtract %21, %22 : tensor<1x64xf32> loc(#loc13) | |
| %24 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc0) | |
| %25 = "mhlo.broadcast_in_dim"(%24) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc14) | |
| %26 = mhlo.maximum %25, %23 : tensor<1x64xf32> loc(#loc14) | |
| %27 = "mhlo.reshape"(%15) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc15) | |
| %28 = "mhlo.reshape"(%26) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc16) | |
| %29 = "mhlo.broadcast_in_dim"(%27) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc17) | |
| %30 = mhlo.subtract %10, %29 : tensor<1x64x2048xf32> loc(#loc17) | |
| %31 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc0) | |
| %32 = "mhlo.broadcast_in_dim"(%31) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc18) | |
| %33 = mhlo.add %28, %32 : tensor<1x64x1xf32> loc(#loc18) | |
| %34 = mhlo.rsqrt %33 : tensor<1x64x1xf32> loc(#loc19) | |
| %35 = "mhlo.reshape"(%arg34) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc20) | |
| %36 = "mhlo.broadcast_in_dim"(%34) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc21) | |
| %37 = "mhlo.broadcast_in_dim"(%35) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc21) | |
| %38 = mhlo.multiply %36, %37 : tensor<1x64x2048xf32> loc(#loc21) | |
| %39 = mhlo.multiply %30, %38 : tensor<1x64x2048xf32> loc(#loc22) | |
| %40 = "mhlo.reshape"(%arg33) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc23) | |
| %41 = "mhlo.broadcast_in_dim"(%40) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc24) | |
| %42 = mhlo.add %39, %41 : tensor<1x64x2048xf32> loc(#loc24) | |
| %43 = mhlo.convert(%42) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc25) | |
| %44 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %45 = "mhlo.broadcast_in_dim"(%44) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc27) | |
| %46 = mhlo.convert(%45) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc28) | |
| %47 = mhlo.constant dense<0xFF800000> : tensor<f32> loc(#loc26) | |
| %48 = "mhlo.broadcast_in_dim"(%47) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc29) | |
| %49 = mhlo.convert(%48) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc30) | |
| %50 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc26) | |
| %51 = mhlo.sqrt %50 : tensor<f32> loc(#loc31) | |
| %52 = mhlo.convert(%51) : (tensor<f32>) -> tensor<f16> loc(#loc32) | |
| call @_einsum() : () -> () loc(#loc33) | |
| call @_einsum_2() : () -> () loc(#loc34) | |
| %53 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc26) | |
| %54 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc26) | |
| %55 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %56 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %57 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %58 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %59 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %60 = mhlo.constant dense<0> : tensor<i32> loc(#loc26) | |
| %61 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %62 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %63 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %64 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc26) | |
| %65 = mhlo.constant dense<2.000000e+00> : tensor<f16> loc(#loc26) | |
| %66 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc26) | |
| %67 = mhlo.constant dense<1.414060e+00> : tensor<f16> loc(#loc26) | |
| %68 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %69 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %70 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %71 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %72 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %73 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %74 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc26) | |
| %75 = mhlo.constant dense<0> : tensor<i32> loc(#loc35) | |
| %76:15 = mhlo.while(%iterArg = %arg35, %iterArg_0 = %arg36, %iterArg_1 = %arg37, %iterArg_2 = %arg38, %iterArg_3 = %arg39, %iterArg_4 = %arg40, %iterArg_5 = %arg41, %iterArg_6 = %arg42, %iterArg_7 = %arg43, %iterArg_8 = %arg44, %iterArg_9 = %arg45, %iterArg_10 = %arg46, %iterArg_11 = %arg0, %iterArg_12 = %75, %iterArg_13 = %43) : tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x4096xf32>, tensor<24x2048x4096xf32>, tensor<24x4096x2048xf32>, tensor<24x2048xf32>, tensor<24x4096xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<1x64xi32>, tensor<i32>, tensor<1x64x2048xf16> | |
| cond { | |
| %5188 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5189 = "mhlo.compare"(%iterArg_12, %5188) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc37) | |
| "mhlo.return"(%5189) : (tensor<i1>) -> () loc(#loc36) | |
| } do { | |
| %5188 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5189 = "mhlo.compare"(%iterArg_12, %5188) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5190 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5191 = mhlo.add %iterArg_12, %5190 : tensor<i32> loc(#loc39) | |
| %5192 = "mhlo.select"(%5189, %5191, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5193 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5194 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5195 = "mhlo.compare"(%5193, %5194) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5196 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5197 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5198 = mhlo.add %5196, %5197 : tensor<i32> loc(#loc39) | |
| %5199 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5200 = "mhlo.select"(%5195, %5198, %5199) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5201 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5202 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5203 = "mhlo.compare"(%5201, %5202) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5204 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5205 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5206 = mhlo.add %5204, %5205 : tensor<i32> loc(#loc39) | |
| %5207 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5208 = "mhlo.select"(%5203, %5206, %5207) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5209 = "mhlo.dynamic-slice"(%iterArg, %5192, %5200, %5208) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5210 = "mhlo.reshape"(%5209) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5211 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5212 = "mhlo.compare"(%iterArg_12, %5211) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5213 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5214 = mhlo.add %iterArg_12, %5213 : tensor<i32> loc(#loc39) | |
| %5215 = "mhlo.select"(%5212, %5214, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5216 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5217 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5218 = "mhlo.compare"(%5216, %5217) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5219 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5220 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5221 = mhlo.add %5219, %5220 : tensor<i32> loc(#loc39) | |
| %5222 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5223 = "mhlo.select"(%5218, %5221, %5222) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5224 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5225 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5226 = "mhlo.compare"(%5224, %5225) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5227 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5228 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5229 = mhlo.add %5227, %5228 : tensor<i32> loc(#loc39) | |
| %5230 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5231 = "mhlo.select"(%5226, %5229, %5230) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5232 = "mhlo.dynamic-slice"(%iterArg_0, %5215, %5223, %5231) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5233 = "mhlo.reshape"(%5232) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5234 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5235 = "mhlo.compare"(%iterArg_12, %5234) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5236 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5237 = mhlo.add %iterArg_12, %5236 : tensor<i32> loc(#loc39) | |
| %5238 = "mhlo.select"(%5235, %5237, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5239 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5240 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5241 = "mhlo.compare"(%5239, %5240) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5242 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5243 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5244 = mhlo.add %5242, %5243 : tensor<i32> loc(#loc39) | |
| %5245 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5246 = "mhlo.select"(%5241, %5244, %5245) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5247 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5248 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5249 = "mhlo.compare"(%5247, %5248) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5250 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5251 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5252 = mhlo.add %5250, %5251 : tensor<i32> loc(#loc39) | |
| %5253 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5254 = "mhlo.select"(%5249, %5252, %5253) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5255 = "mhlo.dynamic-slice"(%iterArg_1, %5238, %5246, %5254) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5256 = "mhlo.reshape"(%5255) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5257 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5258 = "mhlo.compare"(%iterArg_12, %5257) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5259 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5260 = mhlo.add %iterArg_12, %5259 : tensor<i32> loc(#loc39) | |
| %5261 = "mhlo.select"(%5258, %5260, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5262 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5263 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5264 = "mhlo.compare"(%5262, %5263) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5265 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5266 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5267 = mhlo.add %5265, %5266 : tensor<i32> loc(#loc39) | |
| %5268 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5269 = "mhlo.select"(%5264, %5267, %5268) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5270 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5271 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5272 = "mhlo.compare"(%5270, %5271) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5273 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5274 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5275 = mhlo.add %5273, %5274 : tensor<i32> loc(#loc39) | |
| %5276 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5277 = "mhlo.select"(%5272, %5275, %5276) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5278 = "mhlo.dynamic-slice"(%iterArg_2, %5261, %5269, %5277) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5279 = "mhlo.reshape"(%5278) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5280 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5281 = "mhlo.compare"(%iterArg_12, %5280) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5282 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5283 = mhlo.add %iterArg_12, %5282 : tensor<i32> loc(#loc39) | |
| %5284 = "mhlo.select"(%5281, %5283, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5285 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5286 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5287 = "mhlo.compare"(%5285, %5286) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5288 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5289 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5290 = mhlo.add %5288, %5289 : tensor<i32> loc(#loc39) | |
| %5291 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5292 = "mhlo.select"(%5287, %5290, %5291) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5293 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5294 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5295 = "mhlo.compare"(%5293, %5294) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5296 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5297 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5298 = mhlo.add %5296, %5297 : tensor<i32> loc(#loc39) | |
| %5299 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5300 = "mhlo.select"(%5295, %5298, %5299) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5301 = "mhlo.dynamic-slice"(%iterArg_3, %5284, %5292, %5300) {slice_sizes = dense<[1, 2048, 4096]> : tensor<3xi64>} : (tensor<24x2048x4096xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x4096xf32> loc(#loc43) | |
| %5302 = "mhlo.reshape"(%5301) : (tensor<1x2048x4096xf32>) -> tensor<2048x4096xf32> loc(#loc42) | |
| %5303 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5304 = "mhlo.compare"(%iterArg_12, %5303) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5305 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5306 = mhlo.add %iterArg_12, %5305 : tensor<i32> loc(#loc39) | |
| %5307 = "mhlo.select"(%5304, %5306, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5308 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5309 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5310 = "mhlo.compare"(%5308, %5309) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5311 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5312 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5313 = mhlo.add %5311, %5312 : tensor<i32> loc(#loc39) | |
| %5314 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5315 = "mhlo.select"(%5310, %5313, %5314) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5316 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5317 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5318 = "mhlo.compare"(%5316, %5317) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5319 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5320 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5321 = mhlo.add %5319, %5320 : tensor<i32> loc(#loc39) | |
| %5322 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5323 = "mhlo.select"(%5318, %5321, %5322) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5324 = "mhlo.dynamic-slice"(%iterArg_4, %5307, %5315, %5323) {slice_sizes = dense<[1, 2048, 4096]> : tensor<3xi64>} : (tensor<24x2048x4096xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x4096xf32> loc(#loc43) | |
| %5325 = "mhlo.reshape"(%5324) : (tensor<1x2048x4096xf32>) -> tensor<2048x4096xf32> loc(#loc42) | |
| %5326 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5327 = "mhlo.compare"(%iterArg_12, %5326) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5328 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5329 = mhlo.add %iterArg_12, %5328 : tensor<i32> loc(#loc39) | |
| %5330 = "mhlo.select"(%5327, %5329, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5331 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5332 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5333 = "mhlo.compare"(%5331, %5332) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5334 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5335 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5336 = mhlo.add %5334, %5335 : tensor<i32> loc(#loc39) | |
| %5337 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5338 = "mhlo.select"(%5333, %5336, %5337) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5339 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5340 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5341 = "mhlo.compare"(%5339, %5340) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5342 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5343 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5344 = mhlo.add %5342, %5343 : tensor<i32> loc(#loc39) | |
| %5345 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5346 = "mhlo.select"(%5341, %5344, %5345) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5347 = "mhlo.dynamic-slice"(%iterArg_5, %5330, %5338, %5346) {slice_sizes = dense<[1, 4096, 2048]> : tensor<3xi64>} : (tensor<24x4096x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x4096x2048xf32> loc(#loc44) | |
| %5348 = "mhlo.reshape"(%5347) : (tensor<1x4096x2048xf32>) -> tensor<4096x2048xf32> loc(#loc42) | |
| %5349 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5350 = "mhlo.compare"(%iterArg_12, %5349) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5351 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5352 = mhlo.add %iterArg_12, %5351 : tensor<i32> loc(#loc39) | |
| %5353 = "mhlo.select"(%5350, %5352, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5354 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5355 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5356 = "mhlo.compare"(%5354, %5355) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5357 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5358 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5359 = mhlo.add %5357, %5358 : tensor<i32> loc(#loc39) | |
| %5360 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5361 = "mhlo.select"(%5356, %5359, %5360) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5362 = "mhlo.dynamic-slice"(%iterArg_6, %5353, %5361) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5363 = "mhlo.reshape"(%5362) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5364 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5365 = "mhlo.compare"(%iterArg_12, %5364) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5366 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5367 = mhlo.add %iterArg_12, %5366 : tensor<i32> loc(#loc39) | |
| %5368 = "mhlo.select"(%5365, %5367, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5369 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5370 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5371 = "mhlo.compare"(%5369, %5370) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5372 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5373 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5374 = mhlo.add %5372, %5373 : tensor<i32> loc(#loc39) | |
| %5375 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5376 = "mhlo.select"(%5371, %5374, %5375) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5377 = "mhlo.dynamic-slice"(%iterArg_7, %5368, %5376) {slice_sizes = dense<[1, 4096]> : tensor<2xi64>} : (tensor<24x4096xf32>, tensor<i32>, tensor<i32>) -> tensor<1x4096xf32> loc(#loc46) | |
| %5378 = "mhlo.reshape"(%5377) : (tensor<1x4096xf32>) -> tensor<4096xf32> loc(#loc42) | |
| %5379 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5380 = "mhlo.compare"(%iterArg_12, %5379) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5381 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5382 = mhlo.add %iterArg_12, %5381 : tensor<i32> loc(#loc39) | |
| %5383 = "mhlo.select"(%5380, %5382, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5384 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5385 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5386 = "mhlo.compare"(%5384, %5385) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5387 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5388 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5389 = mhlo.add %5387, %5388 : tensor<i32> loc(#loc39) | |
| %5390 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5391 = "mhlo.select"(%5386, %5389, %5390) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5392 = "mhlo.dynamic-slice"(%iterArg_8, %5383, %5391) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5393 = "mhlo.reshape"(%5392) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5394 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5395 = "mhlo.compare"(%iterArg_12, %5394) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5396 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5397 = mhlo.add %iterArg_12, %5396 : tensor<i32> loc(#loc39) | |
| %5398 = "mhlo.select"(%5395, %5397, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5399 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5400 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5401 = "mhlo.compare"(%5399, %5400) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5402 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5403 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5404 = mhlo.add %5402, %5403 : tensor<i32> loc(#loc39) | |
| %5405 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5406 = "mhlo.select"(%5401, %5404, %5405) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5407 = "mhlo.dynamic-slice"(%iterArg_9, %5398, %5406) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5408 = "mhlo.reshape"(%5407) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5409 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5410 = "mhlo.compare"(%iterArg_12, %5409) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5411 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5412 = mhlo.add %iterArg_12, %5411 : tensor<i32> loc(#loc39) | |
| %5413 = "mhlo.select"(%5410, %5412, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5414 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5415 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5416 = "mhlo.compare"(%5414, %5415) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5417 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5418 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5419 = mhlo.add %5417, %5418 : tensor<i32> loc(#loc39) | |
| %5420 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5421 = "mhlo.select"(%5416, %5419, %5420) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5422 = "mhlo.dynamic-slice"(%iterArg_10, %5413, %5421) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5423 = "mhlo.reshape"(%5422) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5424 = mhlo.convert(%iterArg_13) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc47) | |
| %5425 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc48) | |
| %5426 = mhlo.reduce(%5424 init: %5425) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc48) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc48) | |
| } loc(#loc48) | |
| %5427 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5428 = "mhlo.broadcast_in_dim"(%5427) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc50) | |
| %5429 = mhlo.divide %5426, %5428 : tensor<1x64xf32> loc(#loc50) | |
| %5430 = mhlo.multiply %5424, %5424 : tensor<1x64x2048xf32> loc(#loc51) | |
| %5431 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc52) | |
| %5432 = mhlo.reduce(%5430 init: %5431) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc52) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc52) | |
| } loc(#loc52) | |
| %5433 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5434 = "mhlo.broadcast_in_dim"(%5433) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc53) | |
| %5435 = mhlo.divide %5432, %5434 : tensor<1x64xf32> loc(#loc53) | |
| %5436 = mhlo.multiply %5429, %5429 : tensor<1x64xf32> loc(#loc51) | |
| %5437 = mhlo.subtract %5435, %5436 : tensor<1x64xf32> loc(#loc54) | |
| %5438 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5439 = "mhlo.broadcast_in_dim"(%5438) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc55) | |
| %5440 = mhlo.maximum %5439, %5437 : tensor<1x64xf32> loc(#loc55) | |
| %5441 = "mhlo.reshape"(%5429) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc56) | |
| %5442 = "mhlo.reshape"(%5440) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc57) | |
| %5443 = mhlo.convert(%iterArg_13) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc58) | |
| %5444 = "mhlo.broadcast_in_dim"(%5441) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc59) | |
| %5445 = mhlo.subtract %5443, %5444 : tensor<1x64x2048xf32> loc(#loc59) | |
| %5446 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5447 = "mhlo.broadcast_in_dim"(%5446) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc60) | |
| %5448 = mhlo.add %5442, %5447 : tensor<1x64x1xf32> loc(#loc60) | |
| %5449 = mhlo.rsqrt %5448 : tensor<1x64x1xf32> loc(#loc61) | |
| %5450 = "mhlo.broadcast_in_dim"(%5449) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc62) | |
| %5451 = mhlo.multiply %5445, %5450 : tensor<1x64x2048xf32> loc(#loc62) | |
| %5452 = "mhlo.reshape"(%5393) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc63) | |
| %5453 = "mhlo.broadcast_in_dim"(%5452) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc64) | |
| %5454 = mhlo.add %5451, %5453 : tensor<1x64x2048xf32> loc(#loc64) | |
| %5455 = mhlo.convert(%5454) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc65) | |
| %5456 = mhlo.convert(%5256) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc66) | |
| %5457 = "mhlo.dot_general"(%5455, %5456) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc67) | |
| %5458 = mhlo.convert(%5210) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc68) | |
| %5459 = "mhlo.dot_general"(%5455, %5458) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc69) | |
| %5460 = mhlo.convert(%5279) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc70) | |
| %5461 = "mhlo.dot_general"(%5455, %5460) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc71) | |
| %5462 = "mhlo.reshape"(%5457) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc72) | |
| %5463 = "mhlo.reshape"(%5459) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc72) | |
| %5464 = "mhlo.reshape"(%5461) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc72) | |
| %5465 = "mhlo.broadcast_in_dim"(%iterArg_11) {broadcast_dimensions = dense<[0, 3]> : tensor<2xi64>} : (tensor<1x64xi32>) -> tensor<1x1x1x64xi32> loc(#loc73) | |
| %5466 = mhlo.constant dense<0> : tensor<i32> loc(#loc49) | |
| %5467 = "mhlo.broadcast_in_dim"(%5466) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x1x1x64xi32> loc(#loc74) | |
| %5468 = "mhlo.compare"(%5465, %5467) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction GT">} : (tensor<1x1x1x64xi32>, tensor<1x1x1x64xi32>) -> tensor<1x1x1x64xi1> loc(#loc74) | |
| %5469 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5470 = "mhlo.broadcast_in_dim"(%5469) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc75) | |
| %5471 = mhlo.convert(%5470) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc76) | |
| %5472 = mhlo.constant dense<0xFF800000> : tensor<f32> loc(#loc49) | |
| %5473 = "mhlo.broadcast_in_dim"(%5472) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc77) | |
| %5474 = mhlo.convert(%5473) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc78) | |
| %5475 = "mhlo.select"(%5468, %5471, %5474) : (tensor<1x1x1x64xi1>, tensor<1x1x1x64xf16>, tensor<1x1x1x64xf16>) -> tensor<1x1x1x64xf16> loc(#loc79) | |
| %5476 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc49) | |
| %5477 = mhlo.sqrt %5476 : tensor<f32> loc(#loc80) | |
| %5478 = mhlo.convert(%5477) : (tensor<f32>) -> tensor<f16> loc(#loc81) | |
| %5479 = "mhlo.broadcast_in_dim"(%5478) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x32x64xf16> loc(#loc82) | |
| %5480 = mhlo.divide %5462, %5479 : tensor<1x64x32x64xf16> loc(#loc82) | |
| %5481 = func.call @_einsum_3(%5480, %5463) : (tensor<1x64x32x64xf16>, tensor<1x64x32x64xf16>) -> tensor<1x32x64x64xf16> loc(#loc83) | |
| %5482 = "mhlo.broadcast_in_dim"(%5475) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf16>) -> tensor<1x32x64x64xf16> loc(#loc84) | |
| %5483 = mhlo.add %5481, %5482 : tensor<1x32x64x64xf16> loc(#loc84) | |
| %5484 = mhlo.constant dense<0xFC00> : tensor<f16> loc(#loc85) | |
| %5485 = mhlo.reduce(%5483 init: %5484) across dimensions = [3] : (tensor<1x32x64x64xf16>, tensor<f16>) -> tensor<1x32x64xf16> | |
| reducer(%arg47: tensor<f16> loc(unknown), %arg48: tensor<f16> loc(unknown)) { | |
| %5628 = mhlo.maximum %arg47, %arg48 : tensor<f16> loc(#loc85) | |
| "mhlo.return"(%5628) : (tensor<f16>) -> () loc(#loc85) | |
| } loc(#loc85) | |
| %5486 = "mhlo.broadcast_in_dim"(%5485) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x64xf16>) -> tensor<1x32x64x1xf16> loc(#loc86) | |
| %5487 = "mhlo.broadcast_in_dim"(%5486) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x64x1xf16>) -> tensor<1x32x64x64xf16> loc(#loc87) | |
| %5488 = mhlo.subtract %5483, %5487 : tensor<1x32x64x64xf16> loc(#loc87) | |
| %5489 = mhlo.exponential %5488 : tensor<1x32x64x64xf16> loc(#loc88) | |
| %5490 = mhlo.convert(%5489) : (tensor<1x32x64x64xf16>) -> tensor<1x32x64x64xf32> loc(#loc89) | |
| %5491 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc90) | |
| %5492 = mhlo.reduce(%5490 init: %5491) across dimensions = [3] : (tensor<1x32x64x64xf32>, tensor<f32>) -> tensor<1x32x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc90) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc90) | |
| } loc(#loc90) | |
| %5493 = "mhlo.broadcast_in_dim"(%5492) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x64xf32>) -> tensor<1x32x64x1xf32> loc(#loc86) | |
| %5494 = mhlo.convert(%5493) : (tensor<1x32x64x1xf32>) -> tensor<1x32x64x1xf16> loc(#loc91) | |
| %5495 = "mhlo.broadcast_in_dim"(%5494) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x64x1xf16>) -> tensor<1x32x64x64xf16> loc(#loc92) | |
| %5496 = mhlo.divide %5489, %5495 : tensor<1x32x64x64xf16> loc(#loc92) | |
| %5497 = func.call @_einsum_4(%5496, %5464) : (tensor<1x32x64x64xf16>, tensor<1x64x32x64xf16>) -> tensor<1x64x32x64xf16> loc(#loc93) | |
| %5498 = "mhlo.reshape"(%5497) : (tensor<1x64x32x64xf16>) -> tensor<1x64x2048xf16> loc(#loc94) | |
| %5499 = mhlo.convert(%5233) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc95) | |
| %5500 = "mhlo.dot_general"(%5498, %5499) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc96) | |
| %5501 = mhlo.convert(%5500) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc97) | |
| %5502 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc98) | |
| %5503 = mhlo.reduce(%5501 init: %5502) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc98) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc98) | |
| } loc(#loc98) | |
| %5504 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5505 = "mhlo.broadcast_in_dim"(%5504) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc99) | |
| %5506 = mhlo.divide %5503, %5505 : tensor<1x64xf32> loc(#loc99) | |
| %5507 = mhlo.multiply %5501, %5501 : tensor<1x64x2048xf32> loc(#loc100) | |
| %5508 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc101) | |
| %5509 = mhlo.reduce(%5507 init: %5508) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc101) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc101) | |
| } loc(#loc101) | |
| %5510 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5511 = "mhlo.broadcast_in_dim"(%5510) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc102) | |
| %5512 = mhlo.divide %5509, %5511 : tensor<1x64xf32> loc(#loc102) | |
| %5513 = mhlo.multiply %5506, %5506 : tensor<1x64xf32> loc(#loc100) | |
| %5514 = mhlo.subtract %5512, %5513 : tensor<1x64xf32> loc(#loc103) | |
| %5515 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5516 = "mhlo.broadcast_in_dim"(%5515) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc104) | |
| %5517 = mhlo.maximum %5516, %5514 : tensor<1x64xf32> loc(#loc104) | |
| %5518 = "mhlo.reshape"(%5506) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc105) | |
| %5519 = "mhlo.reshape"(%5517) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc106) | |
| %5520 = mhlo.convert(%5500) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc107) | |
| %5521 = "mhlo.broadcast_in_dim"(%5518) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc108) | |
| %5522 = mhlo.subtract %5520, %5521 : tensor<1x64x2048xf32> loc(#loc108) | |
| %5523 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5524 = "mhlo.broadcast_in_dim"(%5523) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc109) | |
| %5525 = mhlo.add %5519, %5524 : tensor<1x64x1xf32> loc(#loc109) | |
| %5526 = mhlo.rsqrt %5525 : tensor<1x64x1xf32> loc(#loc110) | |
| %5527 = "mhlo.reshape"(%5423) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc111) | |
| %5528 = "mhlo.broadcast_in_dim"(%5526) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc112) | |
| %5529 = "mhlo.broadcast_in_dim"(%5527) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc112) | |
| %5530 = mhlo.multiply %5528, %5529 : tensor<1x64x2048xf32> loc(#loc112) | |
| %5531 = mhlo.multiply %5522, %5530 : tensor<1x64x2048xf32> loc(#loc113) | |
| %5532 = "mhlo.reshape"(%5408) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc114) | |
| %5533 = "mhlo.broadcast_in_dim"(%5532) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc115) | |
| %5534 = mhlo.add %5531, %5533 : tensor<1x64x2048xf32> loc(#loc115) | |
| %5535 = mhlo.convert(%5534) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc116) | |
| %5536 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc49) | |
| %5537 = "mhlo.broadcast_in_dim"(%5536) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x2048xf16> loc(#loc117) | |
| %5538 = mhlo.multiply %iterArg_13, %5537 : tensor<1x64x2048xf16> loc(#loc117) | |
| %5539 = mhlo.add %5538, %5535 : tensor<1x64x2048xf16> loc(#loc118) | |
| %5540 = mhlo.convert(%5539) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc119) | |
| %5541 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc120) | |
| %5542 = mhlo.reduce(%5540 init: %5541) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc120) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc120) | |
| } loc(#loc120) | |
| %5543 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5544 = "mhlo.broadcast_in_dim"(%5543) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc121) | |
| %5545 = mhlo.divide %5542, %5544 : tensor<1x64xf32> loc(#loc121) | |
| %5546 = mhlo.multiply %5540, %5540 : tensor<1x64x2048xf32> loc(#loc122) | |
| %5547 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc123) | |
| %5548 = mhlo.reduce(%5546 init: %5547) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc123) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc123) | |
| } loc(#loc123) | |
| %5549 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5550 = "mhlo.broadcast_in_dim"(%5549) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc124) | |
| %5551 = mhlo.divide %5548, %5550 : tensor<1x64xf32> loc(#loc124) | |
| %5552 = mhlo.multiply %5545, %5545 : tensor<1x64xf32> loc(#loc122) | |
| %5553 = mhlo.subtract %5551, %5552 : tensor<1x64xf32> loc(#loc125) | |
| %5554 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5555 = "mhlo.broadcast_in_dim"(%5554) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc126) | |
| %5556 = mhlo.maximum %5555, %5553 : tensor<1x64xf32> loc(#loc126) | |
| %5557 = "mhlo.reshape"(%5545) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc127) | |
| %5558 = "mhlo.reshape"(%5556) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc128) | |
| %5559 = mhlo.convert(%5539) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc129) | |
| %5560 = "mhlo.broadcast_in_dim"(%5557) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc130) | |
| %5561 = mhlo.subtract %5559, %5560 : tensor<1x64x2048xf32> loc(#loc130) | |
| %5562 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5563 = "mhlo.broadcast_in_dim"(%5562) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc131) | |
| %5564 = mhlo.add %5558, %5563 : tensor<1x64x1xf32> loc(#loc131) | |
| %5565 = mhlo.rsqrt %5564 : tensor<1x64x1xf32> loc(#loc132) | |
| %5566 = "mhlo.broadcast_in_dim"(%5565) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc133) | |
| %5567 = mhlo.multiply %5561, %5566 : tensor<1x64x2048xf32> loc(#loc133) | |
| %5568 = "mhlo.reshape"(%5363) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc134) | |
| %5569 = "mhlo.broadcast_in_dim"(%5568) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc135) | |
| %5570 = mhlo.add %5567, %5569 : tensor<1x64x2048xf32> loc(#loc135) | |
| %5571 = mhlo.convert(%5570) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc136) | |
| %5572 = mhlo.convert(%5302) : (tensor<2048x4096xf32>) -> tensor<2048x4096xf16> loc(#loc137) | |
| %5573 = "mhlo.dot_general"(%5571, %5572) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x4096xf16>) -> tensor<1x64x4096xf16> loc(#loc138) | |
| %5574 = mhlo.constant dense<1.414060e+00> : tensor<f16> loc(#loc49) | |
| %5575 = "mhlo.broadcast_in_dim"(%5574) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x4096xf16> loc(#loc139) | |
| %5576 = mhlo.divide %5573, %5575 : tensor<1x64x4096xf16> loc(#loc139) | |
| %5577 = chlo.erf %5576 : tensor<1x64x4096xf16> -> tensor<1x64x4096xf16> loc(#loc140) | |
| %5578 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc49) | |
| %5579 = "mhlo.broadcast_in_dim"(%5578) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x4096xf16> loc(#loc141) | |
| %5580 = mhlo.add %5577, %5579 : tensor<1x64x4096xf16> loc(#loc141) | |
| %5581 = mhlo.multiply %5573, %5580 : tensor<1x64x4096xf16> loc(#loc142) | |
| %5582 = mhlo.constant dense<2.000000e+00> : tensor<f16> loc(#loc49) | |
| %5583 = "mhlo.broadcast_in_dim"(%5582) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x4096xf16> loc(#loc139) | |
| %5584 = mhlo.divide %5581, %5583 : tensor<1x64x4096xf16> loc(#loc139) | |
| %5585 = mhlo.convert(%5325) : (tensor<2048x4096xf32>) -> tensor<2048x4096xf16> loc(#loc143) | |
| %5586 = "mhlo.dot_general"(%5571, %5585) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x4096xf16>) -> tensor<1x64x4096xf16> loc(#loc144) | |
| %5587 = mhlo.multiply %5584, %5586 : tensor<1x64x4096xf16> loc(#loc145) | |
| %5588 = mhlo.convert(%5587) : (tensor<1x64x4096xf16>) -> tensor<1x64x4096xf32> loc(#loc146) | |
| %5589 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc147) | |
| %5590 = mhlo.reduce(%5588 init: %5589) across dimensions = [2] : (tensor<1x64x4096xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc147) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc147) | |
| } loc(#loc147) | |
| %5591 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc49) | |
| %5592 = "mhlo.broadcast_in_dim"(%5591) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc148) | |
| %5593 = mhlo.divide %5590, %5592 : tensor<1x64xf32> loc(#loc148) | |
| %5594 = mhlo.multiply %5588, %5588 : tensor<1x64x4096xf32> loc(#loc149) | |
| %5595 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc150) | |
| %5596 = mhlo.reduce(%5594 init: %5595) across dimensions = [2] : (tensor<1x64x4096xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc150) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc150) | |
| } loc(#loc150) | |
| %5597 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc49) | |
| %5598 = "mhlo.broadcast_in_dim"(%5597) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc151) | |
| %5599 = mhlo.divide %5596, %5598 : tensor<1x64xf32> loc(#loc151) | |
| %5600 = mhlo.multiply %5593, %5593 : tensor<1x64xf32> loc(#loc149) | |
| %5601 = mhlo.subtract %5599, %5600 : tensor<1x64xf32> loc(#loc152) | |
| %5602 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5603 = "mhlo.broadcast_in_dim"(%5602) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc153) | |
| %5604 = mhlo.maximum %5603, %5601 : tensor<1x64xf32> loc(#loc153) | |
| %5605 = "mhlo.reshape"(%5593) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc154) | |
| %5606 = "mhlo.reshape"(%5604) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc155) | |
| %5607 = mhlo.convert(%5587) : (tensor<1x64x4096xf16>) -> tensor<1x64x4096xf32> loc(#loc156) | |
| %5608 = "mhlo.broadcast_in_dim"(%5605) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x4096xf32> loc(#loc157) | |
| %5609 = mhlo.subtract %5607, %5608 : tensor<1x64x4096xf32> loc(#loc157) | |
| %5610 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5611 = "mhlo.broadcast_in_dim"(%5610) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc158) | |
| %5612 = mhlo.add %5606, %5611 : tensor<1x64x1xf32> loc(#loc158) | |
| %5613 = mhlo.rsqrt %5612 : tensor<1x64x1xf32> loc(#loc159) | |
| %5614 = "mhlo.broadcast_in_dim"(%5613) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x4096xf32> loc(#loc160) | |
| %5615 = mhlo.multiply %5609, %5614 : tensor<1x64x4096xf32> loc(#loc160) | |
| %5616 = "mhlo.reshape"(%5378) : (tensor<4096xf32>) -> tensor<1x1x4096xf32> loc(#loc161) | |
| %5617 = "mhlo.broadcast_in_dim"(%5616) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x4096xf32>) -> tensor<1x64x4096xf32> loc(#loc162) | |
| %5618 = mhlo.add %5615, %5617 : tensor<1x64x4096xf32> loc(#loc162) | |
| %5619 = mhlo.convert(%5618) : (tensor<1x64x4096xf32>) -> tensor<1x64x4096xf16> loc(#loc163) | |
| %5620 = mhlo.convert(%5348) : (tensor<4096x2048xf32>) -> tensor<4096x2048xf16> loc(#loc164) | |
| %5621 = "mhlo.dot_general"(%5619, %5620) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x4096xf16>, tensor<4096x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc165) | |
| %5622 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc49) | |
| %5623 = "mhlo.broadcast_in_dim"(%5622) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x2048xf16> loc(#loc166) | |
| %5624 = mhlo.multiply %5539, %5623 : tensor<1x64x2048xf16> loc(#loc166) | |
| %5625 = mhlo.add %5624, %5621 : tensor<1x64x2048xf16> loc(#loc167) | |
| %5626 = mhlo.constant dense<1> : tensor<i32> loc(#loc36) | |
| %5627 = mhlo.add %iterArg_12, %5626 : tensor<i32> loc(#loc39) | |
| "mhlo.return"(%iterArg, %iterArg_0, %iterArg_1, %iterArg_2, %iterArg_3, %iterArg_4, %iterArg_5, %iterArg_6, %iterArg_7, %iterArg_8, %iterArg_9, %iterArg_10, %iterArg_11, %5627, %5625) : (tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x4096xf32>, tensor<24x2048x4096xf32>, tensor<24x4096x2048xf32>, tensor<24x2048xf32>, tensor<24x4096xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<1x64xi32>, tensor<i32>, tensor<1x64x2048xf16>) -> () loc(#loc36) | |
| } loc(#loc36) | |
| %77 = mhlo.convert(%76#14) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc168) | |
| %78 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc169) | |
| %79 = mhlo.reduce(%77 init: %78) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc169) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc169) | |
| } loc(#loc169) | |
| %80 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %81 = "mhlo.broadcast_in_dim"(%80) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc170) | |
| %82 = mhlo.divide %79, %81 : tensor<1x64xf32> loc(#loc170) | |
| %83 = mhlo.multiply %77, %77 : tensor<1x64x2048xf32> loc(#loc171) | |
| %84 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc172) | |
| %85 = mhlo.reduce(%83 init: %84) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc172) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc172) | |
| } loc(#loc172) | |
| %86 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %87 = "mhlo.broadcast_in_dim"(%86) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc173) | |
| %88 = mhlo.divide %85, %87 : tensor<1x64xf32> loc(#loc173) | |
| %89 = mhlo.multiply %82, %82 : tensor<1x64xf32> loc(#loc171) | |
| %90 = mhlo.subtract %88, %89 : tensor<1x64xf32> loc(#loc174) | |
| %91 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc0) | |
| %92 = "mhlo.broadcast_in_dim"(%91) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc175) | |
| %93 = mhlo.maximum %92, %90 : tensor<1x64xf32> loc(#loc175) | |
| %94 = "mhlo.reshape"(%82) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc176) | |
| %95 = "mhlo.reshape"(%93) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc177) | |
| %96 = mhlo.convert(%76#14) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc178) | |
| %97 = "mhlo.broadcast_in_dim"(%94) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc179) | |
| %98 = mhlo.subtract %96, %97 : tensor<1x64x2048xf32> loc(#loc179) | |
| %99 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc0) | |
| %100 = "mhlo.broadcast_in_dim"(%99) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc180) | |
| %101 = mhlo.add %95, %100 : tensor<1x64x1xf32> loc(#loc180) | |
| %102 = mhlo.rsqrt %101 : tensor<1x64x1xf32> loc(#loc181) | |
| %103 = "mhlo.broadcast_in_dim"(%102) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc182) | |
| %104 = mhlo.multiply %98, %103 : tensor<1x64x2048xf32> loc(#loc182) | |
| %105 = "mhlo.reshape"(%arg32) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc183) | |
| %106 = "mhlo.broadcast_in_dim"(%105) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc184) | |
| %107 = mhlo.add %104, %106 : tensor<1x64x2048xf32> loc(#loc184) | |
| %108 = mhlo.convert(%107) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc185) | |
| %109 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<64xi32> loc(#loc1) | |
| %110 = "mhlo.broadcast_in_dim"(%109) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<64xi32>) -> tensor<1x64xi32> loc(#loc2) | |
| %111 = call @_take_5(%arg31, %arg3) : (tensor<50272x2048xf32>, tensor<1x64xi32>) -> tensor<1x64x2048xf32> loc(#loc3) | |
| %112 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %113 = "mhlo.broadcast_in_dim"(%112) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x2048xf32> loc(#loc4) | |
| %114 = mhlo.multiply %111, %113 : tensor<1x64x2048xf32> loc(#loc4) | |
| %115 = mhlo.constant dense<0> : tensor<i32> loc(#loc0) | |
| %116 = "mhlo.broadcast_in_dim"(%115) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x64xi32> loc(#loc5) | |
| %117 = mhlo.add %110, %116 : tensor<1x64xi32> loc(#loc5) | |
| %118 = call @_take_7(%arg30, %117) : (tensor<64x2048xf32>, tensor<1x64xi32>) -> tensor<1x64x2048xf32> loc(#loc6) | |
| %119 = mhlo.add %114, %118 : tensor<1x64x2048xf32> loc(#loc7) | |
| %120 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc8) | |
| %121 = mhlo.reduce(%119 init: %120) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc8) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc8) | |
| } loc(#loc8) | |
| %122 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %123 = "mhlo.broadcast_in_dim"(%122) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc9) | |
| %124 = mhlo.divide %121, %123 : tensor<1x64xf32> loc(#loc9) | |
| %125 = mhlo.multiply %119, %119 : tensor<1x64x2048xf32> loc(#loc10) | |
| %126 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc11) | |
| %127 = mhlo.reduce(%125 init: %126) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc11) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc11) | |
| } loc(#loc11) | |
| %128 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %129 = "mhlo.broadcast_in_dim"(%128) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc12) | |
| %130 = mhlo.divide %127, %129 : tensor<1x64xf32> loc(#loc12) | |
| %131 = mhlo.multiply %124, %124 : tensor<1x64xf32> loc(#loc10) | |
| %132 = mhlo.subtract %130, %131 : tensor<1x64xf32> loc(#loc13) | |
| %133 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc0) | |
| %134 = "mhlo.broadcast_in_dim"(%133) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc14) | |
| %135 = mhlo.maximum %134, %132 : tensor<1x64xf32> loc(#loc14) | |
| %136 = "mhlo.reshape"(%124) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc15) | |
| %137 = "mhlo.reshape"(%135) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc16) | |
| %138 = "mhlo.broadcast_in_dim"(%136) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc17) | |
| %139 = mhlo.subtract %119, %138 : tensor<1x64x2048xf32> loc(#loc17) | |
| %140 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc0) | |
| %141 = "mhlo.broadcast_in_dim"(%140) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc18) | |
| %142 = mhlo.add %137, %141 : tensor<1x64x1xf32> loc(#loc18) | |
| %143 = mhlo.rsqrt %142 : tensor<1x64x1xf32> loc(#loc19) | |
| %144 = "mhlo.reshape"(%arg34) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc20) | |
| %145 = "mhlo.broadcast_in_dim"(%143) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc21) | |
| %146 = "mhlo.broadcast_in_dim"(%144) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc21) | |
| %147 = mhlo.multiply %145, %146 : tensor<1x64x2048xf32> loc(#loc21) | |
| %148 = mhlo.multiply %139, %147 : tensor<1x64x2048xf32> loc(#loc22) | |
| %149 = "mhlo.reshape"(%arg33) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc23) | |
| %150 = "mhlo.broadcast_in_dim"(%149) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc24) | |
| %151 = mhlo.add %148, %150 : tensor<1x64x2048xf32> loc(#loc24) | |
| %152 = mhlo.convert(%151) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc25) | |
| %153 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %154 = "mhlo.broadcast_in_dim"(%153) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc27) | |
| %155 = mhlo.convert(%154) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc28) | |
| %156 = mhlo.constant dense<0xFF800000> : tensor<f32> loc(#loc26) | |
| %157 = "mhlo.broadcast_in_dim"(%156) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc29) | |
| %158 = mhlo.convert(%157) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc30) | |
| %159 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc26) | |
| %160 = mhlo.sqrt %159 : tensor<f32> loc(#loc31) | |
| %161 = mhlo.convert(%160) : (tensor<f32>) -> tensor<f16> loc(#loc32) | |
| call @_einsum_9() : () -> () loc(#loc33) | |
| call @_einsum_10() : () -> () loc(#loc34) | |
| %162 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc26) | |
| %163 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc26) | |
| %164 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %165 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %166 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %167 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %168 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %169 = mhlo.constant dense<0> : tensor<i32> loc(#loc26) | |
| %170 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %171 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %172 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %173 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc26) | |
| %174 = mhlo.constant dense<2.000000e+00> : tensor<f16> loc(#loc26) | |
| %175 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc26) | |
| %176 = mhlo.constant dense<1.414060e+00> : tensor<f16> loc(#loc26) | |
| %177 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %178 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %179 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %180 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc26) | |
| %181 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc26) | |
| %182 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc26) | |
| %183 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc26) | |
| %184 = mhlo.constant dense<0> : tensor<i32> loc(#loc35) | |
| %185:15 = mhlo.while(%iterArg = %arg35, %iterArg_0 = %arg36, %iterArg_1 = %arg37, %iterArg_2 = %arg38, %iterArg_3 = %arg39, %iterArg_4 = %arg40, %iterArg_5 = %arg41, %iterArg_6 = %arg42, %iterArg_7 = %arg43, %iterArg_8 = %arg44, %iterArg_9 = %arg45, %iterArg_10 = %arg46, %iterArg_11 = %arg1, %iterArg_12 = %184, %iterArg_13 = %152) : tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x4096xf32>, tensor<24x2048x4096xf32>, tensor<24x4096x2048xf32>, tensor<24x2048xf32>, tensor<24x4096xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<1x64xi32>, tensor<i32>, tensor<1x64x2048xf16> | |
| cond { | |
| %5188 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5189 = "mhlo.compare"(%iterArg_12, %5188) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc37) | |
| "mhlo.return"(%5189) : (tensor<i1>) -> () loc(#loc36) | |
| } do { | |
| %5188 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5189 = "mhlo.compare"(%iterArg_12, %5188) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5190 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5191 = mhlo.add %iterArg_12, %5190 : tensor<i32> loc(#loc39) | |
| %5192 = "mhlo.select"(%5189, %5191, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5193 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5194 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5195 = "mhlo.compare"(%5193, %5194) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5196 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5197 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5198 = mhlo.add %5196, %5197 : tensor<i32> loc(#loc39) | |
| %5199 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5200 = "mhlo.select"(%5195, %5198, %5199) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5201 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5202 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5203 = "mhlo.compare"(%5201, %5202) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5204 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5205 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5206 = mhlo.add %5204, %5205 : tensor<i32> loc(#loc39) | |
| %5207 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5208 = "mhlo.select"(%5203, %5206, %5207) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5209 = "mhlo.dynamic-slice"(%iterArg, %5192, %5200, %5208) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5210 = "mhlo.reshape"(%5209) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5211 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5212 = "mhlo.compare"(%iterArg_12, %5211) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5213 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5214 = mhlo.add %iterArg_12, %5213 : tensor<i32> loc(#loc39) | |
| %5215 = "mhlo.select"(%5212, %5214, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5216 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5217 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5218 = "mhlo.compare"(%5216, %5217) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5219 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5220 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5221 = mhlo.add %5219, %5220 : tensor<i32> loc(#loc39) | |
| %5222 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5223 = "mhlo.select"(%5218, %5221, %5222) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5224 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5225 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5226 = "mhlo.compare"(%5224, %5225) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5227 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5228 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5229 = mhlo.add %5227, %5228 : tensor<i32> loc(#loc39) | |
| %5230 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5231 = "mhlo.select"(%5226, %5229, %5230) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5232 = "mhlo.dynamic-slice"(%iterArg_0, %5215, %5223, %5231) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5233 = "mhlo.reshape"(%5232) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5234 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5235 = "mhlo.compare"(%iterArg_12, %5234) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5236 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5237 = mhlo.add %iterArg_12, %5236 : tensor<i32> loc(#loc39) | |
| %5238 = "mhlo.select"(%5235, %5237, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5239 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5240 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5241 = "mhlo.compare"(%5239, %5240) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5242 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5243 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5244 = mhlo.add %5242, %5243 : tensor<i32> loc(#loc39) | |
| %5245 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5246 = "mhlo.select"(%5241, %5244, %5245) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5247 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5248 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5249 = "mhlo.compare"(%5247, %5248) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5250 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5251 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5252 = mhlo.add %5250, %5251 : tensor<i32> loc(#loc39) | |
| %5253 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5254 = "mhlo.select"(%5249, %5252, %5253) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5255 = "mhlo.dynamic-slice"(%iterArg_1, %5238, %5246, %5254) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5256 = "mhlo.reshape"(%5255) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5257 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5258 = "mhlo.compare"(%iterArg_12, %5257) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5259 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5260 = mhlo.add %iterArg_12, %5259 : tensor<i32> loc(#loc39) | |
| %5261 = "mhlo.select"(%5258, %5260, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5262 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5263 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5264 = "mhlo.compare"(%5262, %5263) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5265 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5266 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5267 = mhlo.add %5265, %5266 : tensor<i32> loc(#loc39) | |
| %5268 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5269 = "mhlo.select"(%5264, %5267, %5268) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5270 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5271 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5272 = "mhlo.compare"(%5270, %5271) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5273 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5274 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5275 = mhlo.add %5273, %5274 : tensor<i32> loc(#loc39) | |
| %5276 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5277 = "mhlo.select"(%5272, %5275, %5276) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5278 = "mhlo.dynamic-slice"(%iterArg_2, %5261, %5269, %5277) {slice_sizes = dense<[1, 2048, 2048]> : tensor<3xi64>} : (tensor<24x2048x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x2048xf32> loc(#loc41) | |
| %5279 = "mhlo.reshape"(%5278) : (tensor<1x2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc42) | |
| %5280 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5281 = "mhlo.compare"(%iterArg_12, %5280) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5282 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5283 = mhlo.add %iterArg_12, %5282 : tensor<i32> loc(#loc39) | |
| %5284 = "mhlo.select"(%5281, %5283, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5285 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5286 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5287 = "mhlo.compare"(%5285, %5286) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5288 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5289 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5290 = mhlo.add %5288, %5289 : tensor<i32> loc(#loc39) | |
| %5291 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5292 = "mhlo.select"(%5287, %5290, %5291) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5293 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5294 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5295 = "mhlo.compare"(%5293, %5294) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5296 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5297 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5298 = mhlo.add %5296, %5297 : tensor<i32> loc(#loc39) | |
| %5299 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5300 = "mhlo.select"(%5295, %5298, %5299) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5301 = "mhlo.dynamic-slice"(%iterArg_3, %5284, %5292, %5300) {slice_sizes = dense<[1, 2048, 4096]> : tensor<3xi64>} : (tensor<24x2048x4096xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x4096xf32> loc(#loc43) | |
| %5302 = "mhlo.reshape"(%5301) : (tensor<1x2048x4096xf32>) -> tensor<2048x4096xf32> loc(#loc42) | |
| %5303 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5304 = "mhlo.compare"(%iterArg_12, %5303) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5305 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5306 = mhlo.add %iterArg_12, %5305 : tensor<i32> loc(#loc39) | |
| %5307 = "mhlo.select"(%5304, %5306, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5308 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5309 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5310 = "mhlo.compare"(%5308, %5309) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5311 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5312 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5313 = mhlo.add %5311, %5312 : tensor<i32> loc(#loc39) | |
| %5314 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5315 = "mhlo.select"(%5310, %5313, %5314) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5316 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5317 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5318 = "mhlo.compare"(%5316, %5317) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5319 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5320 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5321 = mhlo.add %5319, %5320 : tensor<i32> loc(#loc39) | |
| %5322 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5323 = "mhlo.select"(%5318, %5321, %5322) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5324 = "mhlo.dynamic-slice"(%iterArg_4, %5307, %5315, %5323) {slice_sizes = dense<[1, 2048, 4096]> : tensor<3xi64>} : (tensor<24x2048x4096xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x2048x4096xf32> loc(#loc43) | |
| %5325 = "mhlo.reshape"(%5324) : (tensor<1x2048x4096xf32>) -> tensor<2048x4096xf32> loc(#loc42) | |
| %5326 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5327 = "mhlo.compare"(%iterArg_12, %5326) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5328 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5329 = mhlo.add %iterArg_12, %5328 : tensor<i32> loc(#loc39) | |
| %5330 = "mhlo.select"(%5327, %5329, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5331 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5332 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5333 = "mhlo.compare"(%5331, %5332) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5334 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5335 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5336 = mhlo.add %5334, %5335 : tensor<i32> loc(#loc39) | |
| %5337 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5338 = "mhlo.select"(%5333, %5336, %5337) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5339 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5340 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5341 = "mhlo.compare"(%5339, %5340) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5342 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5343 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5344 = mhlo.add %5342, %5343 : tensor<i32> loc(#loc39) | |
| %5345 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5346 = "mhlo.select"(%5341, %5344, %5345) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5347 = "mhlo.dynamic-slice"(%iterArg_5, %5330, %5338, %5346) {slice_sizes = dense<[1, 4096, 2048]> : tensor<3xi64>} : (tensor<24x4096x2048xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<1x4096x2048xf32> loc(#loc44) | |
| %5348 = "mhlo.reshape"(%5347) : (tensor<1x4096x2048xf32>) -> tensor<4096x2048xf32> loc(#loc42) | |
| %5349 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5350 = "mhlo.compare"(%iterArg_12, %5349) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5351 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5352 = mhlo.add %iterArg_12, %5351 : tensor<i32> loc(#loc39) | |
| %5353 = "mhlo.select"(%5350, %5352, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5354 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5355 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5356 = "mhlo.compare"(%5354, %5355) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5357 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5358 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5359 = mhlo.add %5357, %5358 : tensor<i32> loc(#loc39) | |
| %5360 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5361 = "mhlo.select"(%5356, %5359, %5360) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5362 = "mhlo.dynamic-slice"(%iterArg_6, %5353, %5361) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5363 = "mhlo.reshape"(%5362) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5364 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5365 = "mhlo.compare"(%iterArg_12, %5364) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5366 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5367 = mhlo.add %iterArg_12, %5366 : tensor<i32> loc(#loc39) | |
| %5368 = "mhlo.select"(%5365, %5367, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5369 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5370 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5371 = "mhlo.compare"(%5369, %5370) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5372 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5373 = mhlo.constant dense<4096> : tensor<i32> loc(#loc36) | |
| %5374 = mhlo.add %5372, %5373 : tensor<i32> loc(#loc39) | |
| %5375 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5376 = "mhlo.select"(%5371, %5374, %5375) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5377 = "mhlo.dynamic-slice"(%iterArg_7, %5368, %5376) {slice_sizes = dense<[1, 4096]> : tensor<2xi64>} : (tensor<24x4096xf32>, tensor<i32>, tensor<i32>) -> tensor<1x4096xf32> loc(#loc46) | |
| %5378 = "mhlo.reshape"(%5377) : (tensor<1x4096xf32>) -> tensor<4096xf32> loc(#loc42) | |
| %5379 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5380 = "mhlo.compare"(%iterArg_12, %5379) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5381 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5382 = mhlo.add %iterArg_12, %5381 : tensor<i32> loc(#loc39) | |
| %5383 = "mhlo.select"(%5380, %5382, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5384 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5385 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5386 = "mhlo.compare"(%5384, %5385) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5387 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5388 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5389 = mhlo.add %5387, %5388 : tensor<i32> loc(#loc39) | |
| %5390 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5391 = "mhlo.select"(%5386, %5389, %5390) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5392 = "mhlo.dynamic-slice"(%iterArg_8, %5383, %5391) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5393 = "mhlo.reshape"(%5392) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5394 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5395 = "mhlo.compare"(%iterArg_12, %5394) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5396 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5397 = mhlo.add %iterArg_12, %5396 : tensor<i32> loc(#loc39) | |
| %5398 = "mhlo.select"(%5395, %5397, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5399 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5400 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5401 = "mhlo.compare"(%5399, %5400) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5402 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5403 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5404 = mhlo.add %5402, %5403 : tensor<i32> loc(#loc39) | |
| %5405 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5406 = "mhlo.select"(%5401, %5404, %5405) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5407 = "mhlo.dynamic-slice"(%iterArg_9, %5398, %5406) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5408 = "mhlo.reshape"(%5407) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5409 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5410 = "mhlo.compare"(%iterArg_12, %5409) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5411 = mhlo.constant dense<24> : tensor<i32> loc(#loc36) | |
| %5412 = mhlo.add %iterArg_12, %5411 : tensor<i32> loc(#loc39) | |
| %5413 = "mhlo.select"(%5410, %5412, %iterArg_12) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5414 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5415 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5416 = "mhlo.compare"(%5414, %5415) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc38) | |
| %5417 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5418 = mhlo.constant dense<2048> : tensor<i32> loc(#loc36) | |
| %5419 = mhlo.add %5417, %5418 : tensor<i32> loc(#loc39) | |
| %5420 = mhlo.constant dense<0> : tensor<i32> loc(#loc36) | |
| %5421 = "mhlo.select"(%5416, %5419, %5420) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc40) | |
| %5422 = "mhlo.dynamic-slice"(%iterArg_10, %5413, %5421) {slice_sizes = dense<[1, 2048]> : tensor<2xi64>} : (tensor<24x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> loc(#loc45) | |
| %5423 = "mhlo.reshape"(%5422) : (tensor<1x2048xf32>) -> tensor<2048xf32> loc(#loc42) | |
| %5424 = mhlo.convert(%iterArg_13) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc47) | |
| %5425 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc48) | |
| %5426 = mhlo.reduce(%5424 init: %5425) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc48) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc48) | |
| } loc(#loc48) | |
| %5427 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5428 = "mhlo.broadcast_in_dim"(%5427) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc50) | |
| %5429 = mhlo.divide %5426, %5428 : tensor<1x64xf32> loc(#loc50) | |
| %5430 = mhlo.multiply %5424, %5424 : tensor<1x64x2048xf32> loc(#loc51) | |
| %5431 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc52) | |
| %5432 = mhlo.reduce(%5430 init: %5431) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc52) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc52) | |
| } loc(#loc52) | |
| %5433 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5434 = "mhlo.broadcast_in_dim"(%5433) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc53) | |
| %5435 = mhlo.divide %5432, %5434 : tensor<1x64xf32> loc(#loc53) | |
| %5436 = mhlo.multiply %5429, %5429 : tensor<1x64xf32> loc(#loc51) | |
| %5437 = mhlo.subtract %5435, %5436 : tensor<1x64xf32> loc(#loc54) | |
| %5438 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5439 = "mhlo.broadcast_in_dim"(%5438) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc55) | |
| %5440 = mhlo.maximum %5439, %5437 : tensor<1x64xf32> loc(#loc55) | |
| %5441 = "mhlo.reshape"(%5429) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc56) | |
| %5442 = "mhlo.reshape"(%5440) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc57) | |
| %5443 = mhlo.convert(%iterArg_13) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc58) | |
| %5444 = "mhlo.broadcast_in_dim"(%5441) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc59) | |
| %5445 = mhlo.subtract %5443, %5444 : tensor<1x64x2048xf32> loc(#loc59) | |
| %5446 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5447 = "mhlo.broadcast_in_dim"(%5446) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc60) | |
| %5448 = mhlo.add %5442, %5447 : tensor<1x64x1xf32> loc(#loc60) | |
| %5449 = mhlo.rsqrt %5448 : tensor<1x64x1xf32> loc(#loc61) | |
| %5450 = "mhlo.broadcast_in_dim"(%5449) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc62) | |
| %5451 = mhlo.multiply %5445, %5450 : tensor<1x64x2048xf32> loc(#loc62) | |
| %5452 = "mhlo.reshape"(%5393) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc63) | |
| %5453 = "mhlo.broadcast_in_dim"(%5452) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc64) | |
| %5454 = mhlo.add %5451, %5453 : tensor<1x64x2048xf32> loc(#loc64) | |
| %5455 = mhlo.convert(%5454) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc65) | |
| %5456 = mhlo.convert(%5256) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc66) | |
| %5457 = "mhlo.dot_general"(%5455, %5456) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc67) | |
| %5458 = mhlo.convert(%5210) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc68) | |
| %5459 = "mhlo.dot_general"(%5455, %5458) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc69) | |
| %5460 = mhlo.convert(%5279) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc70) | |
| %5461 = "mhlo.dot_general"(%5455, %5460) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc71) | |
| %5462 = "mhlo.reshape"(%5457) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc72) | |
| %5463 = "mhlo.reshape"(%5459) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc72) | |
| %5464 = "mhlo.reshape"(%5461) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc72) | |
| %5465 = "mhlo.broadcast_in_dim"(%iterArg_11) {broadcast_dimensions = dense<[0, 3]> : tensor<2xi64>} : (tensor<1x64xi32>) -> tensor<1x1x1x64xi32> loc(#loc73) | |
| %5466 = mhlo.constant dense<0> : tensor<i32> loc(#loc49) | |
| %5467 = "mhlo.broadcast_in_dim"(%5466) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x1x1x64xi32> loc(#loc74) | |
| %5468 = "mhlo.compare"(%5465, %5467) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction GT">} : (tensor<1x1x1x64xi32>, tensor<1x1x1x64xi32>) -> tensor<1x1x1x64xi1> loc(#loc74) | |
| %5469 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5470 = "mhlo.broadcast_in_dim"(%5469) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc75) | |
| %5471 = mhlo.convert(%5470) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc76) | |
| %5472 = mhlo.constant dense<0xFF800000> : tensor<f32> loc(#loc49) | |
| %5473 = "mhlo.broadcast_in_dim"(%5472) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1x64xf32> loc(#loc77) | |
| %5474 = mhlo.convert(%5473) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf16> loc(#loc78) | |
| %5475 = "mhlo.select"(%5468, %5471, %5474) : (tensor<1x1x1x64xi1>, tensor<1x1x1x64xf16>, tensor<1x1x1x64xf16>) -> tensor<1x1x1x64xf16> loc(#loc79) | |
| %5476 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc49) | |
| %5477 = mhlo.sqrt %5476 : tensor<f32> loc(#loc80) | |
| %5478 = mhlo.convert(%5477) : (tensor<f32>) -> tensor<f16> loc(#loc81) | |
| %5479 = "mhlo.broadcast_in_dim"(%5478) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x32x64xf16> loc(#loc82) | |
| %5480 = mhlo.divide %5462, %5479 : tensor<1x64x32x64xf16> loc(#loc82) | |
| %5481 = func.call @_einsum_11(%5480, %5463) : (tensor<1x64x32x64xf16>, tensor<1x64x32x64xf16>) -> tensor<1x32x64x64xf16> loc(#loc83) | |
| %5482 = "mhlo.broadcast_in_dim"(%5475) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf16>) -> tensor<1x32x64x64xf16> loc(#loc84) | |
| %5483 = mhlo.add %5481, %5482 : tensor<1x32x64x64xf16> loc(#loc84) | |
| %5484 = mhlo.constant dense<0xFC00> : tensor<f16> loc(#loc85) | |
| %5485 = mhlo.reduce(%5483 init: %5484) across dimensions = [3] : (tensor<1x32x64x64xf16>, tensor<f16>) -> tensor<1x32x64xf16> | |
| reducer(%arg47: tensor<f16> loc(unknown), %arg48: tensor<f16> loc(unknown)) { | |
| %5628 = mhlo.maximum %arg47, %arg48 : tensor<f16> loc(#loc85) | |
| "mhlo.return"(%5628) : (tensor<f16>) -> () loc(#loc85) | |
| } loc(#loc85) | |
| %5486 = "mhlo.broadcast_in_dim"(%5485) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x64xf16>) -> tensor<1x32x64x1xf16> loc(#loc86) | |
| %5487 = "mhlo.broadcast_in_dim"(%5486) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x64x1xf16>) -> tensor<1x32x64x64xf16> loc(#loc87) | |
| %5488 = mhlo.subtract %5483, %5487 : tensor<1x32x64x64xf16> loc(#loc87) | |
| %5489 = mhlo.exponential %5488 : tensor<1x32x64x64xf16> loc(#loc88) | |
| %5490 = mhlo.convert(%5489) : (tensor<1x32x64x64xf16>) -> tensor<1x32x64x64xf32> loc(#loc89) | |
| %5491 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc90) | |
| %5492 = mhlo.reduce(%5490 init: %5491) across dimensions = [3] : (tensor<1x32x64x64xf32>, tensor<f32>) -> tensor<1x32x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc90) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc90) | |
| } loc(#loc90) | |
| %5493 = "mhlo.broadcast_in_dim"(%5492) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x64xf32>) -> tensor<1x32x64x1xf32> loc(#loc86) | |
| %5494 = mhlo.convert(%5493) : (tensor<1x32x64x1xf32>) -> tensor<1x32x64x1xf16> loc(#loc91) | |
| %5495 = "mhlo.broadcast_in_dim"(%5494) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x64x1xf16>) -> tensor<1x32x64x64xf16> loc(#loc92) | |
| %5496 = mhlo.divide %5489, %5495 : tensor<1x32x64x64xf16> loc(#loc92) | |
| %5497 = func.call @_einsum_12(%5496, %5464) : (tensor<1x32x64x64xf16>, tensor<1x64x32x64xf16>) -> tensor<1x64x32x64xf16> loc(#loc93) | |
| %5498 = "mhlo.reshape"(%5497) : (tensor<1x64x32x64xf16>) -> tensor<1x64x2048xf16> loc(#loc94) | |
| %5499 = mhlo.convert(%5233) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc95) | |
| %5500 = "mhlo.dot_general"(%5498, %5499) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc96) | |
| %5501 = mhlo.convert(%5500) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc97) | |
| %5502 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc98) | |
| %5503 = mhlo.reduce(%5501 init: %5502) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc98) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc98) | |
| } loc(#loc98) | |
| %5504 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5505 = "mhlo.broadcast_in_dim"(%5504) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc99) | |
| %5506 = mhlo.divide %5503, %5505 : tensor<1x64xf32> loc(#loc99) | |
| %5507 = mhlo.multiply %5501, %5501 : tensor<1x64x2048xf32> loc(#loc100) | |
| %5508 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc101) | |
| %5509 = mhlo.reduce(%5507 init: %5508) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc101) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc101) | |
| } loc(#loc101) | |
| %5510 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5511 = "mhlo.broadcast_in_dim"(%5510) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc102) | |
| %5512 = mhlo.divide %5509, %5511 : tensor<1x64xf32> loc(#loc102) | |
| %5513 = mhlo.multiply %5506, %5506 : tensor<1x64xf32> loc(#loc100) | |
| %5514 = mhlo.subtract %5512, %5513 : tensor<1x64xf32> loc(#loc103) | |
| %5515 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5516 = "mhlo.broadcast_in_dim"(%5515) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc104) | |
| %5517 = mhlo.maximum %5516, %5514 : tensor<1x64xf32> loc(#loc104) | |
| %5518 = "mhlo.reshape"(%5506) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc105) | |
| %5519 = "mhlo.reshape"(%5517) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc106) | |
| %5520 = mhlo.convert(%5500) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc107) | |
| %5521 = "mhlo.broadcast_in_dim"(%5518) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc108) | |
| %5522 = mhlo.subtract %5520, %5521 : tensor<1x64x2048xf32> loc(#loc108) | |
| %5523 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5524 = "mhlo.broadcast_in_dim"(%5523) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc109) | |
| %5525 = mhlo.add %5519, %5524 : tensor<1x64x1xf32> loc(#loc109) | |
| %5526 = mhlo.rsqrt %5525 : tensor<1x64x1xf32> loc(#loc110) | |
| %5527 = "mhlo.reshape"(%5423) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc111) | |
| %5528 = "mhlo.broadcast_in_dim"(%5526) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc112) | |
| %5529 = "mhlo.broadcast_in_dim"(%5527) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc112) | |
| %5530 = mhlo.multiply %5528, %5529 : tensor<1x64x2048xf32> loc(#loc112) | |
| %5531 = mhlo.multiply %5522, %5530 : tensor<1x64x2048xf32> loc(#loc113) | |
| %5532 = "mhlo.reshape"(%5408) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc114) | |
| %5533 = "mhlo.broadcast_in_dim"(%5532) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc115) | |
| %5534 = mhlo.add %5531, %5533 : tensor<1x64x2048xf32> loc(#loc115) | |
| %5535 = mhlo.convert(%5534) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc116) | |
| %5536 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc49) | |
| %5537 = "mhlo.broadcast_in_dim"(%5536) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x2048xf16> loc(#loc117) | |
| %5538 = mhlo.multiply %iterArg_13, %5537 : tensor<1x64x2048xf16> loc(#loc117) | |
| %5539 = mhlo.add %5538, %5535 : tensor<1x64x2048xf16> loc(#loc118) | |
| %5540 = mhlo.convert(%5539) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc119) | |
| %5541 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc120) | |
| %5542 = mhlo.reduce(%5540 init: %5541) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc120) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc120) | |
| } loc(#loc120) | |
| %5543 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5544 = "mhlo.broadcast_in_dim"(%5543) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc121) | |
| %5545 = mhlo.divide %5542, %5544 : tensor<1x64xf32> loc(#loc121) | |
| %5546 = mhlo.multiply %5540, %5540 : tensor<1x64x2048xf32> loc(#loc122) | |
| %5547 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc123) | |
| %5548 = mhlo.reduce(%5546 init: %5547) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc123) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc123) | |
| } loc(#loc123) | |
| %5549 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc49) | |
| %5550 = "mhlo.broadcast_in_dim"(%5549) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc124) | |
| %5551 = mhlo.divide %5548, %5550 : tensor<1x64xf32> loc(#loc124) | |
| %5552 = mhlo.multiply %5545, %5545 : tensor<1x64xf32> loc(#loc122) | |
| %5553 = mhlo.subtract %5551, %5552 : tensor<1x64xf32> loc(#loc125) | |
| %5554 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5555 = "mhlo.broadcast_in_dim"(%5554) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc126) | |
| %5556 = mhlo.maximum %5555, %5553 : tensor<1x64xf32> loc(#loc126) | |
| %5557 = "mhlo.reshape"(%5545) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc127) | |
| %5558 = "mhlo.reshape"(%5556) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc128) | |
| %5559 = mhlo.convert(%5539) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc129) | |
| %5560 = "mhlo.broadcast_in_dim"(%5557) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc130) | |
| %5561 = mhlo.subtract %5559, %5560 : tensor<1x64x2048xf32> loc(#loc130) | |
| %5562 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5563 = "mhlo.broadcast_in_dim"(%5562) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc131) | |
| %5564 = mhlo.add %5558, %5563 : tensor<1x64x1xf32> loc(#loc131) | |
| %5565 = mhlo.rsqrt %5564 : tensor<1x64x1xf32> loc(#loc132) | |
| %5566 = "mhlo.broadcast_in_dim"(%5565) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc133) | |
| %5567 = mhlo.multiply %5561, %5566 : tensor<1x64x2048xf32> loc(#loc133) | |
| %5568 = "mhlo.reshape"(%5363) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc134) | |
| %5569 = "mhlo.broadcast_in_dim"(%5568) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc135) | |
| %5570 = mhlo.add %5567, %5569 : tensor<1x64x2048xf32> loc(#loc135) | |
| %5571 = mhlo.convert(%5570) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc136) | |
| %5572 = mhlo.convert(%5302) : (tensor<2048x4096xf32>) -> tensor<2048x4096xf16> loc(#loc137) | |
| %5573 = "mhlo.dot_general"(%5571, %5572) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x4096xf16>) -> tensor<1x64x4096xf16> loc(#loc138) | |
| %5574 = mhlo.constant dense<1.414060e+00> : tensor<f16> loc(#loc49) | |
| %5575 = "mhlo.broadcast_in_dim"(%5574) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x4096xf16> loc(#loc139) | |
| %5576 = mhlo.divide %5573, %5575 : tensor<1x64x4096xf16> loc(#loc139) | |
| %5577 = chlo.erf %5576 : tensor<1x64x4096xf16> -> tensor<1x64x4096xf16> loc(#loc140) | |
| %5578 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc49) | |
| %5579 = "mhlo.broadcast_in_dim"(%5578) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x4096xf16> loc(#loc141) | |
| %5580 = mhlo.add %5577, %5579 : tensor<1x64x4096xf16> loc(#loc141) | |
| %5581 = mhlo.multiply %5573, %5580 : tensor<1x64x4096xf16> loc(#loc142) | |
| %5582 = mhlo.constant dense<2.000000e+00> : tensor<f16> loc(#loc49) | |
| %5583 = "mhlo.broadcast_in_dim"(%5582) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x4096xf16> loc(#loc139) | |
| %5584 = mhlo.divide %5581, %5583 : tensor<1x64x4096xf16> loc(#loc139) | |
| %5585 = mhlo.convert(%5325) : (tensor<2048x4096xf32>) -> tensor<2048x4096xf16> loc(#loc143) | |
| %5586 = "mhlo.dot_general"(%5571, %5585) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x4096xf16>) -> tensor<1x64x4096xf16> loc(#loc144) | |
| %5587 = mhlo.multiply %5584, %5586 : tensor<1x64x4096xf16> loc(#loc145) | |
| %5588 = mhlo.convert(%5587) : (tensor<1x64x4096xf16>) -> tensor<1x64x4096xf32> loc(#loc146) | |
| %5589 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc147) | |
| %5590 = mhlo.reduce(%5588 init: %5589) across dimensions = [2] : (tensor<1x64x4096xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc147) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc147) | |
| } loc(#loc147) | |
| %5591 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc49) | |
| %5592 = "mhlo.broadcast_in_dim"(%5591) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc148) | |
| %5593 = mhlo.divide %5590, %5592 : tensor<1x64xf32> loc(#loc148) | |
| %5594 = mhlo.multiply %5588, %5588 : tensor<1x64x4096xf32> loc(#loc149) | |
| %5595 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc150) | |
| %5596 = mhlo.reduce(%5594 init: %5595) across dimensions = [2] : (tensor<1x64x4096xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5628 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc150) | |
| "mhlo.return"(%5628) : (tensor<f32>) -> () loc(#loc150) | |
| } loc(#loc150) | |
| %5597 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc49) | |
| %5598 = "mhlo.broadcast_in_dim"(%5597) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc151) | |
| %5599 = mhlo.divide %5596, %5598 : tensor<1x64xf32> loc(#loc151) | |
| %5600 = mhlo.multiply %5593, %5593 : tensor<1x64xf32> loc(#loc149) | |
| %5601 = mhlo.subtract %5599, %5600 : tensor<1x64xf32> loc(#loc152) | |
| %5602 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc49) | |
| %5603 = "mhlo.broadcast_in_dim"(%5602) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc153) | |
| %5604 = mhlo.maximum %5603, %5601 : tensor<1x64xf32> loc(#loc153) | |
| %5605 = "mhlo.reshape"(%5593) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc154) | |
| %5606 = "mhlo.reshape"(%5604) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc155) | |
| %5607 = mhlo.convert(%5587) : (tensor<1x64x4096xf16>) -> tensor<1x64x4096xf32> loc(#loc156) | |
| %5608 = "mhlo.broadcast_in_dim"(%5605) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x4096xf32> loc(#loc157) | |
| %5609 = mhlo.subtract %5607, %5608 : tensor<1x64x4096xf32> loc(#loc157) | |
| %5610 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc49) | |
| %5611 = "mhlo.broadcast_in_dim"(%5610) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc158) | |
| %5612 = mhlo.add %5606, %5611 : tensor<1x64x1xf32> loc(#loc158) | |
| %5613 = mhlo.rsqrt %5612 : tensor<1x64x1xf32> loc(#loc159) | |
| %5614 = "mhlo.broadcast_in_dim"(%5613) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x4096xf32> loc(#loc160) | |
| %5615 = mhlo.multiply %5609, %5614 : tensor<1x64x4096xf32> loc(#loc160) | |
| %5616 = "mhlo.reshape"(%5378) : (tensor<4096xf32>) -> tensor<1x1x4096xf32> loc(#loc161) | |
| %5617 = "mhlo.broadcast_in_dim"(%5616) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x4096xf32>) -> tensor<1x64x4096xf32> loc(#loc162) | |
| %5618 = mhlo.add %5615, %5617 : tensor<1x64x4096xf32> loc(#loc162) | |
| %5619 = mhlo.convert(%5618) : (tensor<1x64x4096xf32>) -> tensor<1x64x4096xf16> loc(#loc163) | |
| %5620 = mhlo.convert(%5348) : (tensor<4096x2048xf32>) -> tensor<4096x2048xf16> loc(#loc164) | |
| %5621 = "mhlo.dot_general"(%5619, %5620) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x4096xf16>, tensor<4096x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc165) | |
| %5622 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc49) | |
| %5623 = "mhlo.broadcast_in_dim"(%5622) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x64x2048xf16> loc(#loc166) | |
| %5624 = mhlo.multiply %5539, %5623 : tensor<1x64x2048xf16> loc(#loc166) | |
| %5625 = mhlo.add %5624, %5621 : tensor<1x64x2048xf16> loc(#loc167) | |
| %5626 = mhlo.constant dense<1> : tensor<i32> loc(#loc36) | |
| %5627 = mhlo.add %iterArg_12, %5626 : tensor<i32> loc(#loc39) | |
| "mhlo.return"(%iterArg, %iterArg_0, %iterArg_1, %iterArg_2, %iterArg_3, %iterArg_4, %iterArg_5, %iterArg_6, %iterArg_7, %iterArg_8, %iterArg_9, %iterArg_10, %iterArg_11, %5627, %5625) : (tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x4096xf32>, tensor<24x2048x4096xf32>, tensor<24x4096x2048xf32>, tensor<24x2048xf32>, tensor<24x4096xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<1x64xi32>, tensor<i32>, tensor<1x64x2048xf16>) -> () loc(#loc36) | |
| } loc(#loc36) | |
| %186 = mhlo.convert(%185#14) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc168) | |
| %187 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc169) | |
| %188 = mhlo.reduce(%186 init: %187) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc169) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc169) | |
| } loc(#loc169) | |
| %189 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %190 = "mhlo.broadcast_in_dim"(%189) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc170) | |
| %191 = mhlo.divide %188, %190 : tensor<1x64xf32> loc(#loc170) | |
| %192 = mhlo.multiply %186, %186 : tensor<1x64x2048xf32> loc(#loc171) | |
| %193 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc172) | |
| %194 = mhlo.reduce(%192 init: %193) across dimensions = [2] : (tensor<1x64x2048xf32>, tensor<f32>) -> tensor<1x64xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc172) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc172) | |
| } loc(#loc172) | |
| %195 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %196 = "mhlo.broadcast_in_dim"(%195) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc173) | |
| %197 = mhlo.divide %194, %196 : tensor<1x64xf32> loc(#loc173) | |
| %198 = mhlo.multiply %191, %191 : tensor<1x64xf32> loc(#loc171) | |
| %199 = mhlo.subtract %197, %198 : tensor<1x64xf32> loc(#loc174) | |
| %200 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc0) | |
| %201 = "mhlo.broadcast_in_dim"(%200) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64xf32> loc(#loc175) | |
| %202 = mhlo.maximum %201, %199 : tensor<1x64xf32> loc(#loc175) | |
| %203 = "mhlo.reshape"(%191) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc176) | |
| %204 = "mhlo.reshape"(%202) : (tensor<1x64xf32>) -> tensor<1x64x1xf32> loc(#loc177) | |
| %205 = mhlo.convert(%185#14) : (tensor<1x64x2048xf16>) -> tensor<1x64x2048xf32> loc(#loc178) | |
| %206 = "mhlo.broadcast_in_dim"(%203) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc179) | |
| %207 = mhlo.subtract %205, %206 : tensor<1x64x2048xf32> loc(#loc179) | |
| %208 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc0) | |
| %209 = "mhlo.broadcast_in_dim"(%208) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x64x1xf32> loc(#loc180) | |
| %210 = mhlo.add %204, %209 : tensor<1x64x1xf32> loc(#loc180) | |
| %211 = mhlo.rsqrt %210 : tensor<1x64x1xf32> loc(#loc181) | |
| %212 = "mhlo.broadcast_in_dim"(%211) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x64x1xf32>) -> tensor<1x64x2048xf32> loc(#loc182) | |
| %213 = mhlo.multiply %207, %212 : tensor<1x64x2048xf32> loc(#loc182) | |
| %214 = "mhlo.reshape"(%arg32) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc183) | |
| %215 = "mhlo.broadcast_in_dim"(%214) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x64x2048xf32> loc(#loc184) | |
| %216 = mhlo.add %213, %215 : tensor<1x64x2048xf32> loc(#loc184) | |
| %217 = mhlo.convert(%216) : (tensor<1x64x2048xf32>) -> tensor<1x64x2048xf16> loc(#loc185) | |
| %218 = mhlo.constant dense<1> : tensor<i32> loc(#loc0) | |
| %219 = "mhlo.broadcast_in_dim"(%218) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x1xi32> loc(#loc186) | |
| %220 = mhlo.constant dense<16384> : tensor<i32> loc(#loc0) | |
| %221 = "mhlo.broadcast_in_dim"(%220) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x1xi32> loc(#loc187) | |
| %222 = mhlo.multiply %219, %221 : tensor<1x1xi32> loc(#loc187) | |
| %223 = mhlo.constant dense<16385> : tensor<i32> loc(#loc0) | |
| %224 = "mhlo.broadcast_in_dim"(%223) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x257xi32> loc(#loc188) | |
| %225 = mhlo.constant dense<0> : tensor<i32> loc(#loc0) | |
| %226 = mhlo.constant dense<0> : tensor<i32> loc(#loc0) | |
| %227 = "mhlo.dynamic-update-slice"(%224, %222, %225, %226) : (tensor<1x257xi32>, tensor<1x1xi32>, tensor<i32>, tensor<i32>) -> tensor<1x257xi32> loc(#loc189) | |
| %228 = mhlo.constant dense<false> : tensor<i1> loc(#loc0) | |
| %229 = "mhlo.broadcast_in_dim"(%228) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i1>) -> tensor<1xi1> loc(#loc190) | |
| %230 = mhlo.constant dense<1> : tensor<i32> loc(#loc0) | |
| %231 = "mhlo.broadcast_in_dim"(%230) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x256xi32> loc(#loc191) | |
| %232 = mhlo.constant dense<1> : tensor<i32> loc(#loc0) | |
| %233 = "mhlo.broadcast_in_dim"(%232) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x256xi32> loc(#loc192) | |
| %234 = call @atleast_2d(%231) : (tensor<1x256xi32>) -> tensor<1x256xi32> loc(#loc193) | |
| %235 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<256xi32> loc(#loc194) | |
| %236 = "mhlo.broadcast_in_dim"(%235) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xi32>) -> tensor<1x256xi32> loc(#loc195) | |
| %237 = mhlo.constant dense<0> : tensor<i32> loc(#loc0) | |
| %238 = mhlo.constant dense<32> : tensor<i32> loc(#loc0) | |
| %239 = mhlo.shift_right_logical %237, %238 : tensor<i32> loc(#loc196) | |
| %240 = mhlo.convert(%239) : (tensor<i32>) -> tensor<ui32> loc(#loc197) | |
| %241 = "mhlo.reshape"(%240) : (tensor<ui32>) -> tensor<1xui32> loc(#loc198) | |
| %242 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc0) | |
| %243 = mhlo.convert(%242) : (tensor<ui32>) -> tensor<i32> loc(#loc199) | |
| %244 = mhlo.constant dense<0> : tensor<i32> loc(#loc0) | |
| %245 = mhlo.and %244, %243 : tensor<i32> loc(#loc200) | |
| %246 = mhlo.convert(%245) : (tensor<i32>) -> tensor<ui32> loc(#loc197) | |
| %247 = "mhlo.reshape"(%246) : (tensor<ui32>) -> tensor<1xui32> loc(#loc198) | |
| %248 = "mhlo.concatenate"(%241, %247) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc201) | |
| %249 = mhlo.constant dense<661413802> : tensor<ui32> loc(#loc0) | |
| %250 = mhlo.constant dense<32> : tensor<ui32> loc(#loc0) | |
| %251 = mhlo.shift_right_logical %249, %250 : tensor<ui32> loc(#loc202) | |
| %252 = "mhlo.reshape"(%251) : (tensor<ui32>) -> tensor<1xui32> loc(#loc203) | |
| %253 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc0) | |
| %254 = mhlo.and %249, %253 : tensor<ui32> loc(#loc204) | |
| %255 = "mhlo.reshape"(%254) : (tensor<ui32>) -> tensor<1xui32> loc(#loc203) | |
| %256 = "mhlo.concatenate"(%252, %255) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc205) | |
| %257 = "mhlo.slice"(%248) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc206) | |
| %258 = "mhlo.reshape"(%257) : (tensor<1xui32>) -> tensor<ui32> loc(#loc207) | |
| %259 = "mhlo.slice"(%248) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc208) | |
| %260 = "mhlo.reshape"(%259) : (tensor<1xui32>) -> tensor<ui32> loc(#loc207) | |
| %261 = "mhlo.slice"(%256) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc209) | |
| %262 = "mhlo.slice"(%256) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc210) | |
| %263 = mhlo.xor %258, %260 : tensor<ui32> loc(#loc211) | |
| %264 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc212) | |
| %265 = mhlo.xor %263, %264 : tensor<ui32> loc(#loc211) | |
| %266 = "mhlo.broadcast_in_dim"(%258) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %267 = mhlo.add %261, %266 : tensor<1xui32> loc(#loc213) | |
| %268 = "mhlo.broadcast_in_dim"(%260) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %269 = mhlo.add %262, %268 : tensor<1xui32> loc(#loc213) | |
| %270 = mhlo.add %267, %269 : tensor<1xui32> loc(#loc213) | |
| %271 = mhlo.constant dense<13> : tensor<ui32> loc(#loc212) | |
| %272 = "mhlo.broadcast_in_dim"(%271) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %273 = mhlo.shift_left %269, %272 : tensor<1xui32> loc(#loc214) | |
| %274 = mhlo.constant dense<19> : tensor<ui32> loc(#loc212) | |
| %275 = "mhlo.broadcast_in_dim"(%274) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %276 = mhlo.shift_right_logical %269, %275 : tensor<1xui32> loc(#loc202) | |
| %277 = mhlo.or %273, %276 : tensor<1xui32> loc(#loc215) | |
| %278 = mhlo.xor %270, %277 : tensor<1xui32> loc(#loc211) | |
| %279 = mhlo.add %270, %278 : tensor<1xui32> loc(#loc213) | |
| %280 = mhlo.constant dense<15> : tensor<ui32> loc(#loc212) | |
| %281 = "mhlo.broadcast_in_dim"(%280) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %282 = mhlo.shift_left %278, %281 : tensor<1xui32> loc(#loc214) | |
| %283 = mhlo.constant dense<17> : tensor<ui32> loc(#loc212) | |
| %284 = "mhlo.broadcast_in_dim"(%283) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %285 = mhlo.shift_right_logical %278, %284 : tensor<1xui32> loc(#loc202) | |
| %286 = mhlo.or %282, %285 : tensor<1xui32> loc(#loc215) | |
| %287 = mhlo.xor %279, %286 : tensor<1xui32> loc(#loc211) | |
| %288 = mhlo.add %279, %287 : tensor<1xui32> loc(#loc213) | |
| %289 = mhlo.constant dense<26> : tensor<ui32> loc(#loc212) | |
| %290 = "mhlo.broadcast_in_dim"(%289) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %291 = mhlo.shift_left %287, %290 : tensor<1xui32> loc(#loc214) | |
| %292 = mhlo.constant dense<6> : tensor<ui32> loc(#loc212) | |
| %293 = "mhlo.broadcast_in_dim"(%292) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %294 = mhlo.shift_right_logical %287, %293 : tensor<1xui32> loc(#loc202) | |
| %295 = mhlo.or %291, %294 : tensor<1xui32> loc(#loc215) | |
| %296 = mhlo.xor %288, %295 : tensor<1xui32> loc(#loc211) | |
| %297 = mhlo.add %288, %296 : tensor<1xui32> loc(#loc213) | |
| %298 = mhlo.constant dense<6> : tensor<ui32> loc(#loc212) | |
| %299 = "mhlo.broadcast_in_dim"(%298) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %300 = mhlo.shift_left %296, %299 : tensor<1xui32> loc(#loc214) | |
| %301 = mhlo.constant dense<26> : tensor<ui32> loc(#loc212) | |
| %302 = "mhlo.broadcast_in_dim"(%301) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %303 = mhlo.shift_right_logical %296, %302 : tensor<1xui32> loc(#loc202) | |
| %304 = mhlo.or %300, %303 : tensor<1xui32> loc(#loc215) | |
| %305 = mhlo.xor %297, %304 : tensor<1xui32> loc(#loc211) | |
| %306 = "mhlo.broadcast_in_dim"(%260) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %307 = mhlo.add %297, %306 : tensor<1xui32> loc(#loc213) | |
| %308 = "mhlo.broadcast_in_dim"(%265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %309 = mhlo.add %305, %308 : tensor<1xui32> loc(#loc213) | |
| %310 = mhlo.constant dense<1> : tensor<ui32> loc(#loc212) | |
| %311 = "mhlo.broadcast_in_dim"(%310) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %312 = mhlo.add %309, %311 : tensor<1xui32> loc(#loc213) | |
| %313 = mhlo.add %307, %312 : tensor<1xui32> loc(#loc213) | |
| %314 = mhlo.constant dense<17> : tensor<ui32> loc(#loc212) | |
| %315 = "mhlo.broadcast_in_dim"(%314) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %316 = mhlo.shift_left %312, %315 : tensor<1xui32> loc(#loc214) | |
| %317 = mhlo.constant dense<15> : tensor<ui32> loc(#loc212) | |
| %318 = "mhlo.broadcast_in_dim"(%317) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %319 = mhlo.shift_right_logical %312, %318 : tensor<1xui32> loc(#loc202) | |
| %320 = mhlo.or %316, %319 : tensor<1xui32> loc(#loc215) | |
| %321 = mhlo.xor %313, %320 : tensor<1xui32> loc(#loc211) | |
| %322 = mhlo.add %313, %321 : tensor<1xui32> loc(#loc213) | |
| %323 = mhlo.constant dense<29> : tensor<ui32> loc(#loc212) | |
| %324 = "mhlo.broadcast_in_dim"(%323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %325 = mhlo.shift_left %321, %324 : tensor<1xui32> loc(#loc214) | |
| %326 = mhlo.constant dense<3> : tensor<ui32> loc(#loc212) | |
| %327 = "mhlo.broadcast_in_dim"(%326) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %328 = mhlo.shift_right_logical %321, %327 : tensor<1xui32> loc(#loc202) | |
| %329 = mhlo.or %325, %328 : tensor<1xui32> loc(#loc215) | |
| %330 = mhlo.xor %322, %329 : tensor<1xui32> loc(#loc211) | |
| %331 = mhlo.add %322, %330 : tensor<1xui32> loc(#loc213) | |
| %332 = mhlo.constant dense<16> : tensor<ui32> loc(#loc212) | |
| %333 = "mhlo.broadcast_in_dim"(%332) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %334 = mhlo.shift_left %330, %333 : tensor<1xui32> loc(#loc214) | |
| %335 = mhlo.constant dense<16> : tensor<ui32> loc(#loc212) | |
| %336 = "mhlo.broadcast_in_dim"(%335) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %337 = mhlo.shift_right_logical %330, %336 : tensor<1xui32> loc(#loc202) | |
| %338 = mhlo.or %334, %337 : tensor<1xui32> loc(#loc215) | |
| %339 = mhlo.xor %331, %338 : tensor<1xui32> loc(#loc211) | |
| %340 = mhlo.add %331, %339 : tensor<1xui32> loc(#loc213) | |
| %341 = mhlo.constant dense<24> : tensor<ui32> loc(#loc212) | |
| %342 = "mhlo.broadcast_in_dim"(%341) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %343 = mhlo.shift_left %339, %342 : tensor<1xui32> loc(#loc214) | |
| %344 = mhlo.constant dense<8> : tensor<ui32> loc(#loc212) | |
| %345 = "mhlo.broadcast_in_dim"(%344) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %346 = mhlo.shift_right_logical %339, %345 : tensor<1xui32> loc(#loc202) | |
| %347 = mhlo.or %343, %346 : tensor<1xui32> loc(#loc215) | |
| %348 = mhlo.xor %340, %347 : tensor<1xui32> loc(#loc211) | |
| %349 = "mhlo.broadcast_in_dim"(%265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %350 = mhlo.add %340, %349 : tensor<1xui32> loc(#loc213) | |
| %351 = "mhlo.broadcast_in_dim"(%258) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %352 = mhlo.add %348, %351 : tensor<1xui32> loc(#loc213) | |
| %353 = mhlo.constant dense<2> : tensor<ui32> loc(#loc212) | |
| %354 = "mhlo.broadcast_in_dim"(%353) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %355 = mhlo.add %352, %354 : tensor<1xui32> loc(#loc213) | |
| %356 = mhlo.add %350, %355 : tensor<1xui32> loc(#loc213) | |
| %357 = mhlo.constant dense<13> : tensor<ui32> loc(#loc212) | |
| %358 = "mhlo.broadcast_in_dim"(%357) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %359 = mhlo.shift_left %355, %358 : tensor<1xui32> loc(#loc214) | |
| %360 = mhlo.constant dense<19> : tensor<ui32> loc(#loc212) | |
| %361 = "mhlo.broadcast_in_dim"(%360) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %362 = mhlo.shift_right_logical %355, %361 : tensor<1xui32> loc(#loc202) | |
| %363 = mhlo.or %359, %362 : tensor<1xui32> loc(#loc215) | |
| %364 = mhlo.xor %356, %363 : tensor<1xui32> loc(#loc211) | |
| %365 = mhlo.add %356, %364 : tensor<1xui32> loc(#loc213) | |
| %366 = mhlo.constant dense<15> : tensor<ui32> loc(#loc212) | |
| %367 = "mhlo.broadcast_in_dim"(%366) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %368 = mhlo.shift_left %364, %367 : tensor<1xui32> loc(#loc214) | |
| %369 = mhlo.constant dense<17> : tensor<ui32> loc(#loc212) | |
| %370 = "mhlo.broadcast_in_dim"(%369) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %371 = mhlo.shift_right_logical %364, %370 : tensor<1xui32> loc(#loc202) | |
| %372 = mhlo.or %368, %371 : tensor<1xui32> loc(#loc215) | |
| %373 = mhlo.xor %365, %372 : tensor<1xui32> loc(#loc211) | |
| %374 = mhlo.add %365, %373 : tensor<1xui32> loc(#loc213) | |
| %375 = mhlo.constant dense<26> : tensor<ui32> loc(#loc212) | |
| %376 = "mhlo.broadcast_in_dim"(%375) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %377 = mhlo.shift_left %373, %376 : tensor<1xui32> loc(#loc214) | |
| %378 = mhlo.constant dense<6> : tensor<ui32> loc(#loc212) | |
| %379 = "mhlo.broadcast_in_dim"(%378) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %380 = mhlo.shift_right_logical %373, %379 : tensor<1xui32> loc(#loc202) | |
| %381 = mhlo.or %377, %380 : tensor<1xui32> loc(#loc215) | |
| %382 = mhlo.xor %374, %381 : tensor<1xui32> loc(#loc211) | |
| %383 = mhlo.add %374, %382 : tensor<1xui32> loc(#loc213) | |
| %384 = mhlo.constant dense<6> : tensor<ui32> loc(#loc212) | |
| %385 = "mhlo.broadcast_in_dim"(%384) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %386 = mhlo.shift_left %382, %385 : tensor<1xui32> loc(#loc214) | |
| %387 = mhlo.constant dense<26> : tensor<ui32> loc(#loc212) | |
| %388 = "mhlo.broadcast_in_dim"(%387) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %389 = mhlo.shift_right_logical %382, %388 : tensor<1xui32> loc(#loc202) | |
| %390 = mhlo.or %386, %389 : tensor<1xui32> loc(#loc215) | |
| %391 = mhlo.xor %383, %390 : tensor<1xui32> loc(#loc211) | |
| %392 = "mhlo.broadcast_in_dim"(%258) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %393 = mhlo.add %383, %392 : tensor<1xui32> loc(#loc213) | |
| %394 = "mhlo.broadcast_in_dim"(%260) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %395 = mhlo.add %391, %394 : tensor<1xui32> loc(#loc213) | |
| %396 = mhlo.constant dense<3> : tensor<ui32> loc(#loc212) | |
| %397 = "mhlo.broadcast_in_dim"(%396) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %398 = mhlo.add %395, %397 : tensor<1xui32> loc(#loc213) | |
| %399 = mhlo.add %393, %398 : tensor<1xui32> loc(#loc213) | |
| %400 = mhlo.constant dense<17> : tensor<ui32> loc(#loc212) | |
| %401 = "mhlo.broadcast_in_dim"(%400) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %402 = mhlo.shift_left %398, %401 : tensor<1xui32> loc(#loc214) | |
| %403 = mhlo.constant dense<15> : tensor<ui32> loc(#loc212) | |
| %404 = "mhlo.broadcast_in_dim"(%403) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %405 = mhlo.shift_right_logical %398, %404 : tensor<1xui32> loc(#loc202) | |
| %406 = mhlo.or %402, %405 : tensor<1xui32> loc(#loc215) | |
| %407 = mhlo.xor %399, %406 : tensor<1xui32> loc(#loc211) | |
| %408 = mhlo.add %399, %407 : tensor<1xui32> loc(#loc213) | |
| %409 = mhlo.constant dense<29> : tensor<ui32> loc(#loc212) | |
| %410 = "mhlo.broadcast_in_dim"(%409) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %411 = mhlo.shift_left %407, %410 : tensor<1xui32> loc(#loc214) | |
| %412 = mhlo.constant dense<3> : tensor<ui32> loc(#loc212) | |
| %413 = "mhlo.broadcast_in_dim"(%412) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %414 = mhlo.shift_right_logical %407, %413 : tensor<1xui32> loc(#loc202) | |
| %415 = mhlo.or %411, %414 : tensor<1xui32> loc(#loc215) | |
| %416 = mhlo.xor %408, %415 : tensor<1xui32> loc(#loc211) | |
| %417 = mhlo.add %408, %416 : tensor<1xui32> loc(#loc213) | |
| %418 = mhlo.constant dense<16> : tensor<ui32> loc(#loc212) | |
| %419 = "mhlo.broadcast_in_dim"(%418) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %420 = mhlo.shift_left %416, %419 : tensor<1xui32> loc(#loc214) | |
| %421 = mhlo.constant dense<16> : tensor<ui32> loc(#loc212) | |
| %422 = "mhlo.broadcast_in_dim"(%421) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %423 = mhlo.shift_right_logical %416, %422 : tensor<1xui32> loc(#loc202) | |
| %424 = mhlo.or %420, %423 : tensor<1xui32> loc(#loc215) | |
| %425 = mhlo.xor %417, %424 : tensor<1xui32> loc(#loc211) | |
| %426 = mhlo.add %417, %425 : tensor<1xui32> loc(#loc213) | |
| %427 = mhlo.constant dense<24> : tensor<ui32> loc(#loc212) | |
| %428 = "mhlo.broadcast_in_dim"(%427) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %429 = mhlo.shift_left %425, %428 : tensor<1xui32> loc(#loc214) | |
| %430 = mhlo.constant dense<8> : tensor<ui32> loc(#loc212) | |
| %431 = "mhlo.broadcast_in_dim"(%430) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %432 = mhlo.shift_right_logical %425, %431 : tensor<1xui32> loc(#loc202) | |
| %433 = mhlo.or %429, %432 : tensor<1xui32> loc(#loc215) | |
| %434 = mhlo.xor %426, %433 : tensor<1xui32> loc(#loc211) | |
| %435 = "mhlo.broadcast_in_dim"(%260) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %436 = mhlo.add %426, %435 : tensor<1xui32> loc(#loc213) | |
| %437 = "mhlo.broadcast_in_dim"(%265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %438 = mhlo.add %434, %437 : tensor<1xui32> loc(#loc213) | |
| %439 = mhlo.constant dense<4> : tensor<ui32> loc(#loc212) | |
| %440 = "mhlo.broadcast_in_dim"(%439) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %441 = mhlo.add %438, %440 : tensor<1xui32> loc(#loc213) | |
| %442 = mhlo.add %436, %441 : tensor<1xui32> loc(#loc213) | |
| %443 = mhlo.constant dense<13> : tensor<ui32> loc(#loc212) | |
| %444 = "mhlo.broadcast_in_dim"(%443) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %445 = mhlo.shift_left %441, %444 : tensor<1xui32> loc(#loc214) | |
| %446 = mhlo.constant dense<19> : tensor<ui32> loc(#loc212) | |
| %447 = "mhlo.broadcast_in_dim"(%446) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %448 = mhlo.shift_right_logical %441, %447 : tensor<1xui32> loc(#loc202) | |
| %449 = mhlo.or %445, %448 : tensor<1xui32> loc(#loc215) | |
| %450 = mhlo.xor %442, %449 : tensor<1xui32> loc(#loc211) | |
| %451 = mhlo.add %442, %450 : tensor<1xui32> loc(#loc213) | |
| %452 = mhlo.constant dense<15> : tensor<ui32> loc(#loc212) | |
| %453 = "mhlo.broadcast_in_dim"(%452) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %454 = mhlo.shift_left %450, %453 : tensor<1xui32> loc(#loc214) | |
| %455 = mhlo.constant dense<17> : tensor<ui32> loc(#loc212) | |
| %456 = "mhlo.broadcast_in_dim"(%455) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %457 = mhlo.shift_right_logical %450, %456 : tensor<1xui32> loc(#loc202) | |
| %458 = mhlo.or %454, %457 : tensor<1xui32> loc(#loc215) | |
| %459 = mhlo.xor %451, %458 : tensor<1xui32> loc(#loc211) | |
| %460 = mhlo.add %451, %459 : tensor<1xui32> loc(#loc213) | |
| %461 = mhlo.constant dense<26> : tensor<ui32> loc(#loc212) | |
| %462 = "mhlo.broadcast_in_dim"(%461) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %463 = mhlo.shift_left %459, %462 : tensor<1xui32> loc(#loc214) | |
| %464 = mhlo.constant dense<6> : tensor<ui32> loc(#loc212) | |
| %465 = "mhlo.broadcast_in_dim"(%464) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %466 = mhlo.shift_right_logical %459, %465 : tensor<1xui32> loc(#loc202) | |
| %467 = mhlo.or %463, %466 : tensor<1xui32> loc(#loc215) | |
| %468 = mhlo.xor %460, %467 : tensor<1xui32> loc(#loc211) | |
| %469 = mhlo.add %460, %468 : tensor<1xui32> loc(#loc213) | |
| %470 = mhlo.constant dense<6> : tensor<ui32> loc(#loc212) | |
| %471 = "mhlo.broadcast_in_dim"(%470) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc214) | |
| %472 = mhlo.shift_left %468, %471 : tensor<1xui32> loc(#loc214) | |
| %473 = mhlo.constant dense<26> : tensor<ui32> loc(#loc212) | |
| %474 = "mhlo.broadcast_in_dim"(%473) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc202) | |
| %475 = mhlo.shift_right_logical %468, %474 : tensor<1xui32> loc(#loc202) | |
| %476 = mhlo.or %472, %475 : tensor<1xui32> loc(#loc215) | |
| %477 = mhlo.xor %469, %476 : tensor<1xui32> loc(#loc211) | |
| %478 = "mhlo.broadcast_in_dim"(%265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %479 = mhlo.add %469, %478 : tensor<1xui32> loc(#loc213) | |
| %480 = "mhlo.broadcast_in_dim"(%258) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %481 = mhlo.add %477, %480 : tensor<1xui32> loc(#loc213) | |
| %482 = mhlo.constant dense<5> : tensor<ui32> loc(#loc212) | |
| %483 = "mhlo.broadcast_in_dim"(%482) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc213) | |
| %484 = mhlo.add %481, %483 : tensor<1xui32> loc(#loc213) | |
| %485 = "mhlo.concatenate"(%479, %484) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc205) | |
| %486 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc0) | |
| %487 = "mhlo.broadcast_in_dim"(%486) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc216) | |
| %488 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %489 = "mhlo.broadcast_in_dim"(%488) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc216) | |
| %490 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<33619968xui32> loc(#loc217) | |
| %491 = "mhlo.slice"(%485) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc218) | |
| %492 = "mhlo.reshape"(%491) : (tensor<1xui32>) -> tensor<ui32> loc(#loc219) | |
| %493 = "mhlo.slice"(%485) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc220) | |
| %494 = "mhlo.reshape"(%493) : (tensor<1xui32>) -> tensor<ui32> loc(#loc219) | |
| %495 = "mhlo.slice"(%490) {limit_indices = dense<16809984> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<33619968xui32>) -> tensor<16809984xui32> loc(#loc221) | |
| %496 = "mhlo.slice"(%490) {limit_indices = dense<33619968> : tensor<1xi64>, start_indices = dense<16809984> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<33619968xui32>) -> tensor<16809984xui32> loc(#loc222) | |
| %497 = mhlo.xor %492, %494 : tensor<ui32> loc(#loc223) | |
| %498 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc224) | |
| %499 = mhlo.xor %497, %498 : tensor<ui32> loc(#loc223) | |
| %500 = "mhlo.broadcast_in_dim"(%492) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %501 = mhlo.add %495, %500 : tensor<16809984xui32> loc(#loc225) | |
| %502 = "mhlo.broadcast_in_dim"(%494) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %503 = mhlo.add %496, %502 : tensor<16809984xui32> loc(#loc225) | |
| %504 = mhlo.add %501, %503 : tensor<16809984xui32> loc(#loc225) | |
| %505 = mhlo.constant dense<13> : tensor<ui32> loc(#loc224) | |
| %506 = "mhlo.broadcast_in_dim"(%505) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %507 = mhlo.shift_left %503, %506 : tensor<16809984xui32> loc(#loc226) | |
| %508 = mhlo.constant dense<19> : tensor<ui32> loc(#loc224) | |
| %509 = "mhlo.broadcast_in_dim"(%508) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %510 = mhlo.shift_right_logical %503, %509 : tensor<16809984xui32> loc(#loc227) | |
| %511 = mhlo.or %507, %510 : tensor<16809984xui32> loc(#loc228) | |
| %512 = mhlo.xor %504, %511 : tensor<16809984xui32> loc(#loc223) | |
| %513 = mhlo.add %504, %512 : tensor<16809984xui32> loc(#loc225) | |
| %514 = mhlo.constant dense<15> : tensor<ui32> loc(#loc224) | |
| %515 = "mhlo.broadcast_in_dim"(%514) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %516 = mhlo.shift_left %512, %515 : tensor<16809984xui32> loc(#loc226) | |
| %517 = mhlo.constant dense<17> : tensor<ui32> loc(#loc224) | |
| %518 = "mhlo.broadcast_in_dim"(%517) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %519 = mhlo.shift_right_logical %512, %518 : tensor<16809984xui32> loc(#loc227) | |
| %520 = mhlo.or %516, %519 : tensor<16809984xui32> loc(#loc228) | |
| %521 = mhlo.xor %513, %520 : tensor<16809984xui32> loc(#loc223) | |
| %522 = mhlo.add %513, %521 : tensor<16809984xui32> loc(#loc225) | |
| %523 = mhlo.constant dense<26> : tensor<ui32> loc(#loc224) | |
| %524 = "mhlo.broadcast_in_dim"(%523) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %525 = mhlo.shift_left %521, %524 : tensor<16809984xui32> loc(#loc226) | |
| %526 = mhlo.constant dense<6> : tensor<ui32> loc(#loc224) | |
| %527 = "mhlo.broadcast_in_dim"(%526) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %528 = mhlo.shift_right_logical %521, %527 : tensor<16809984xui32> loc(#loc227) | |
| %529 = mhlo.or %525, %528 : tensor<16809984xui32> loc(#loc228) | |
| %530 = mhlo.xor %522, %529 : tensor<16809984xui32> loc(#loc223) | |
| %531 = mhlo.add %522, %530 : tensor<16809984xui32> loc(#loc225) | |
| %532 = mhlo.constant dense<6> : tensor<ui32> loc(#loc224) | |
| %533 = "mhlo.broadcast_in_dim"(%532) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %534 = mhlo.shift_left %530, %533 : tensor<16809984xui32> loc(#loc226) | |
| %535 = mhlo.constant dense<26> : tensor<ui32> loc(#loc224) | |
| %536 = "mhlo.broadcast_in_dim"(%535) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %537 = mhlo.shift_right_logical %530, %536 : tensor<16809984xui32> loc(#loc227) | |
| %538 = mhlo.or %534, %537 : tensor<16809984xui32> loc(#loc228) | |
| %539 = mhlo.xor %531, %538 : tensor<16809984xui32> loc(#loc223) | |
| %540 = "mhlo.broadcast_in_dim"(%494) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %541 = mhlo.add %531, %540 : tensor<16809984xui32> loc(#loc225) | |
| %542 = "mhlo.broadcast_in_dim"(%499) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %543 = mhlo.add %539, %542 : tensor<16809984xui32> loc(#loc225) | |
| %544 = mhlo.constant dense<1> : tensor<ui32> loc(#loc224) | |
| %545 = "mhlo.broadcast_in_dim"(%544) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %546 = mhlo.add %543, %545 : tensor<16809984xui32> loc(#loc225) | |
| %547 = mhlo.add %541, %546 : tensor<16809984xui32> loc(#loc225) | |
| %548 = mhlo.constant dense<17> : tensor<ui32> loc(#loc224) | |
| %549 = "mhlo.broadcast_in_dim"(%548) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %550 = mhlo.shift_left %546, %549 : tensor<16809984xui32> loc(#loc226) | |
| %551 = mhlo.constant dense<15> : tensor<ui32> loc(#loc224) | |
| %552 = "mhlo.broadcast_in_dim"(%551) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %553 = mhlo.shift_right_logical %546, %552 : tensor<16809984xui32> loc(#loc227) | |
| %554 = mhlo.or %550, %553 : tensor<16809984xui32> loc(#loc228) | |
| %555 = mhlo.xor %547, %554 : tensor<16809984xui32> loc(#loc223) | |
| %556 = mhlo.add %547, %555 : tensor<16809984xui32> loc(#loc225) | |
| %557 = mhlo.constant dense<29> : tensor<ui32> loc(#loc224) | |
| %558 = "mhlo.broadcast_in_dim"(%557) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %559 = mhlo.shift_left %555, %558 : tensor<16809984xui32> loc(#loc226) | |
| %560 = mhlo.constant dense<3> : tensor<ui32> loc(#loc224) | |
| %561 = "mhlo.broadcast_in_dim"(%560) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %562 = mhlo.shift_right_logical %555, %561 : tensor<16809984xui32> loc(#loc227) | |
| %563 = mhlo.or %559, %562 : tensor<16809984xui32> loc(#loc228) | |
| %564 = mhlo.xor %556, %563 : tensor<16809984xui32> loc(#loc223) | |
| %565 = mhlo.add %556, %564 : tensor<16809984xui32> loc(#loc225) | |
| %566 = mhlo.constant dense<16> : tensor<ui32> loc(#loc224) | |
| %567 = "mhlo.broadcast_in_dim"(%566) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %568 = mhlo.shift_left %564, %567 : tensor<16809984xui32> loc(#loc226) | |
| %569 = mhlo.constant dense<16> : tensor<ui32> loc(#loc224) | |
| %570 = "mhlo.broadcast_in_dim"(%569) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %571 = mhlo.shift_right_logical %564, %570 : tensor<16809984xui32> loc(#loc227) | |
| %572 = mhlo.or %568, %571 : tensor<16809984xui32> loc(#loc228) | |
| %573 = mhlo.xor %565, %572 : tensor<16809984xui32> loc(#loc223) | |
| %574 = mhlo.add %565, %573 : tensor<16809984xui32> loc(#loc225) | |
| %575 = mhlo.constant dense<24> : tensor<ui32> loc(#loc224) | |
| %576 = "mhlo.broadcast_in_dim"(%575) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %577 = mhlo.shift_left %573, %576 : tensor<16809984xui32> loc(#loc226) | |
| %578 = mhlo.constant dense<8> : tensor<ui32> loc(#loc224) | |
| %579 = "mhlo.broadcast_in_dim"(%578) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %580 = mhlo.shift_right_logical %573, %579 : tensor<16809984xui32> loc(#loc227) | |
| %581 = mhlo.or %577, %580 : tensor<16809984xui32> loc(#loc228) | |
| %582 = mhlo.xor %574, %581 : tensor<16809984xui32> loc(#loc223) | |
| %583 = "mhlo.broadcast_in_dim"(%499) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %584 = mhlo.add %574, %583 : tensor<16809984xui32> loc(#loc225) | |
| %585 = "mhlo.broadcast_in_dim"(%492) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %586 = mhlo.add %582, %585 : tensor<16809984xui32> loc(#loc225) | |
| %587 = mhlo.constant dense<2> : tensor<ui32> loc(#loc224) | |
| %588 = "mhlo.broadcast_in_dim"(%587) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %589 = mhlo.add %586, %588 : tensor<16809984xui32> loc(#loc225) | |
| %590 = mhlo.add %584, %589 : tensor<16809984xui32> loc(#loc225) | |
| %591 = mhlo.constant dense<13> : tensor<ui32> loc(#loc224) | |
| %592 = "mhlo.broadcast_in_dim"(%591) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %593 = mhlo.shift_left %589, %592 : tensor<16809984xui32> loc(#loc226) | |
| %594 = mhlo.constant dense<19> : tensor<ui32> loc(#loc224) | |
| %595 = "mhlo.broadcast_in_dim"(%594) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %596 = mhlo.shift_right_logical %589, %595 : tensor<16809984xui32> loc(#loc227) | |
| %597 = mhlo.or %593, %596 : tensor<16809984xui32> loc(#loc228) | |
| %598 = mhlo.xor %590, %597 : tensor<16809984xui32> loc(#loc223) | |
| %599 = mhlo.add %590, %598 : tensor<16809984xui32> loc(#loc225) | |
| %600 = mhlo.constant dense<15> : tensor<ui32> loc(#loc224) | |
| %601 = "mhlo.broadcast_in_dim"(%600) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %602 = mhlo.shift_left %598, %601 : tensor<16809984xui32> loc(#loc226) | |
| %603 = mhlo.constant dense<17> : tensor<ui32> loc(#loc224) | |
| %604 = "mhlo.broadcast_in_dim"(%603) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %605 = mhlo.shift_right_logical %598, %604 : tensor<16809984xui32> loc(#loc227) | |
| %606 = mhlo.or %602, %605 : tensor<16809984xui32> loc(#loc228) | |
| %607 = mhlo.xor %599, %606 : tensor<16809984xui32> loc(#loc223) | |
| %608 = mhlo.add %599, %607 : tensor<16809984xui32> loc(#loc225) | |
| %609 = mhlo.constant dense<26> : tensor<ui32> loc(#loc224) | |
| %610 = "mhlo.broadcast_in_dim"(%609) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %611 = mhlo.shift_left %607, %610 : tensor<16809984xui32> loc(#loc226) | |
| %612 = mhlo.constant dense<6> : tensor<ui32> loc(#loc224) | |
| %613 = "mhlo.broadcast_in_dim"(%612) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %614 = mhlo.shift_right_logical %607, %613 : tensor<16809984xui32> loc(#loc227) | |
| %615 = mhlo.or %611, %614 : tensor<16809984xui32> loc(#loc228) | |
| %616 = mhlo.xor %608, %615 : tensor<16809984xui32> loc(#loc223) | |
| %617 = mhlo.add %608, %616 : tensor<16809984xui32> loc(#loc225) | |
| %618 = mhlo.constant dense<6> : tensor<ui32> loc(#loc224) | |
| %619 = "mhlo.broadcast_in_dim"(%618) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %620 = mhlo.shift_left %616, %619 : tensor<16809984xui32> loc(#loc226) | |
| %621 = mhlo.constant dense<26> : tensor<ui32> loc(#loc224) | |
| %622 = "mhlo.broadcast_in_dim"(%621) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %623 = mhlo.shift_right_logical %616, %622 : tensor<16809984xui32> loc(#loc227) | |
| %624 = mhlo.or %620, %623 : tensor<16809984xui32> loc(#loc228) | |
| %625 = mhlo.xor %617, %624 : tensor<16809984xui32> loc(#loc223) | |
| %626 = "mhlo.broadcast_in_dim"(%492) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %627 = mhlo.add %617, %626 : tensor<16809984xui32> loc(#loc225) | |
| %628 = "mhlo.broadcast_in_dim"(%494) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %629 = mhlo.add %625, %628 : tensor<16809984xui32> loc(#loc225) | |
| %630 = mhlo.constant dense<3> : tensor<ui32> loc(#loc224) | |
| %631 = "mhlo.broadcast_in_dim"(%630) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %632 = mhlo.add %629, %631 : tensor<16809984xui32> loc(#loc225) | |
| %633 = mhlo.add %627, %632 : tensor<16809984xui32> loc(#loc225) | |
| %634 = mhlo.constant dense<17> : tensor<ui32> loc(#loc224) | |
| %635 = "mhlo.broadcast_in_dim"(%634) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %636 = mhlo.shift_left %632, %635 : tensor<16809984xui32> loc(#loc226) | |
| %637 = mhlo.constant dense<15> : tensor<ui32> loc(#loc224) | |
| %638 = "mhlo.broadcast_in_dim"(%637) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %639 = mhlo.shift_right_logical %632, %638 : tensor<16809984xui32> loc(#loc227) | |
| %640 = mhlo.or %636, %639 : tensor<16809984xui32> loc(#loc228) | |
| %641 = mhlo.xor %633, %640 : tensor<16809984xui32> loc(#loc223) | |
| %642 = mhlo.add %633, %641 : tensor<16809984xui32> loc(#loc225) | |
| %643 = mhlo.constant dense<29> : tensor<ui32> loc(#loc224) | |
| %644 = "mhlo.broadcast_in_dim"(%643) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %645 = mhlo.shift_left %641, %644 : tensor<16809984xui32> loc(#loc226) | |
| %646 = mhlo.constant dense<3> : tensor<ui32> loc(#loc224) | |
| %647 = "mhlo.broadcast_in_dim"(%646) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %648 = mhlo.shift_right_logical %641, %647 : tensor<16809984xui32> loc(#loc227) | |
| %649 = mhlo.or %645, %648 : tensor<16809984xui32> loc(#loc228) | |
| %650 = mhlo.xor %642, %649 : tensor<16809984xui32> loc(#loc223) | |
| %651 = mhlo.add %642, %650 : tensor<16809984xui32> loc(#loc225) | |
| %652 = mhlo.constant dense<16> : tensor<ui32> loc(#loc224) | |
| %653 = "mhlo.broadcast_in_dim"(%652) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %654 = mhlo.shift_left %650, %653 : tensor<16809984xui32> loc(#loc226) | |
| %655 = mhlo.constant dense<16> : tensor<ui32> loc(#loc224) | |
| %656 = "mhlo.broadcast_in_dim"(%655) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %657 = mhlo.shift_right_logical %650, %656 : tensor<16809984xui32> loc(#loc227) | |
| %658 = mhlo.or %654, %657 : tensor<16809984xui32> loc(#loc228) | |
| %659 = mhlo.xor %651, %658 : tensor<16809984xui32> loc(#loc223) | |
| %660 = mhlo.add %651, %659 : tensor<16809984xui32> loc(#loc225) | |
| %661 = mhlo.constant dense<24> : tensor<ui32> loc(#loc224) | |
| %662 = "mhlo.broadcast_in_dim"(%661) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %663 = mhlo.shift_left %659, %662 : tensor<16809984xui32> loc(#loc226) | |
| %664 = mhlo.constant dense<8> : tensor<ui32> loc(#loc224) | |
| %665 = "mhlo.broadcast_in_dim"(%664) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %666 = mhlo.shift_right_logical %659, %665 : tensor<16809984xui32> loc(#loc227) | |
| %667 = mhlo.or %663, %666 : tensor<16809984xui32> loc(#loc228) | |
| %668 = mhlo.xor %660, %667 : tensor<16809984xui32> loc(#loc223) | |
| %669 = "mhlo.broadcast_in_dim"(%494) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %670 = mhlo.add %660, %669 : tensor<16809984xui32> loc(#loc225) | |
| %671 = "mhlo.broadcast_in_dim"(%499) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %672 = mhlo.add %668, %671 : tensor<16809984xui32> loc(#loc225) | |
| %673 = mhlo.constant dense<4> : tensor<ui32> loc(#loc224) | |
| %674 = "mhlo.broadcast_in_dim"(%673) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %675 = mhlo.add %672, %674 : tensor<16809984xui32> loc(#loc225) | |
| %676 = mhlo.add %670, %675 : tensor<16809984xui32> loc(#loc225) | |
| %677 = mhlo.constant dense<13> : tensor<ui32> loc(#loc224) | |
| %678 = "mhlo.broadcast_in_dim"(%677) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %679 = mhlo.shift_left %675, %678 : tensor<16809984xui32> loc(#loc226) | |
| %680 = mhlo.constant dense<19> : tensor<ui32> loc(#loc224) | |
| %681 = "mhlo.broadcast_in_dim"(%680) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %682 = mhlo.shift_right_logical %675, %681 : tensor<16809984xui32> loc(#loc227) | |
| %683 = mhlo.or %679, %682 : tensor<16809984xui32> loc(#loc228) | |
| %684 = mhlo.xor %676, %683 : tensor<16809984xui32> loc(#loc223) | |
| %685 = mhlo.add %676, %684 : tensor<16809984xui32> loc(#loc225) | |
| %686 = mhlo.constant dense<15> : tensor<ui32> loc(#loc224) | |
| %687 = "mhlo.broadcast_in_dim"(%686) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %688 = mhlo.shift_left %684, %687 : tensor<16809984xui32> loc(#loc226) | |
| %689 = mhlo.constant dense<17> : tensor<ui32> loc(#loc224) | |
| %690 = "mhlo.broadcast_in_dim"(%689) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %691 = mhlo.shift_right_logical %684, %690 : tensor<16809984xui32> loc(#loc227) | |
| %692 = mhlo.or %688, %691 : tensor<16809984xui32> loc(#loc228) | |
| %693 = mhlo.xor %685, %692 : tensor<16809984xui32> loc(#loc223) | |
| %694 = mhlo.add %685, %693 : tensor<16809984xui32> loc(#loc225) | |
| %695 = mhlo.constant dense<26> : tensor<ui32> loc(#loc224) | |
| %696 = "mhlo.broadcast_in_dim"(%695) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %697 = mhlo.shift_left %693, %696 : tensor<16809984xui32> loc(#loc226) | |
| %698 = mhlo.constant dense<6> : tensor<ui32> loc(#loc224) | |
| %699 = "mhlo.broadcast_in_dim"(%698) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %700 = mhlo.shift_right_logical %693, %699 : tensor<16809984xui32> loc(#loc227) | |
| %701 = mhlo.or %697, %700 : tensor<16809984xui32> loc(#loc228) | |
| %702 = mhlo.xor %694, %701 : tensor<16809984xui32> loc(#loc223) | |
| %703 = mhlo.add %694, %702 : tensor<16809984xui32> loc(#loc225) | |
| %704 = mhlo.constant dense<6> : tensor<ui32> loc(#loc224) | |
| %705 = "mhlo.broadcast_in_dim"(%704) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc226) | |
| %706 = mhlo.shift_left %702, %705 : tensor<16809984xui32> loc(#loc226) | |
| %707 = mhlo.constant dense<26> : tensor<ui32> loc(#loc224) | |
| %708 = "mhlo.broadcast_in_dim"(%707) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc227) | |
| %709 = mhlo.shift_right_logical %702, %708 : tensor<16809984xui32> loc(#loc227) | |
| %710 = mhlo.or %706, %709 : tensor<16809984xui32> loc(#loc228) | |
| %711 = mhlo.xor %703, %710 : tensor<16809984xui32> loc(#loc223) | |
| %712 = "mhlo.broadcast_in_dim"(%499) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %713 = mhlo.add %703, %712 : tensor<16809984xui32> loc(#loc225) | |
| %714 = "mhlo.broadcast_in_dim"(%492) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %715 = mhlo.add %711, %714 : tensor<16809984xui32> loc(#loc225) | |
| %716 = mhlo.constant dense<5> : tensor<ui32> loc(#loc224) | |
| %717 = "mhlo.broadcast_in_dim"(%716) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16809984xui32> loc(#loc225) | |
| %718 = mhlo.add %715, %717 : tensor<16809984xui32> loc(#loc225) | |
| %719 = "mhlo.concatenate"(%713, %718) {dimension = 0 : i64} : (tensor<16809984xui32>, tensor<16809984xui32>) -> tensor<33619968xui32> loc(#loc229) | |
| %720 = "mhlo.reshape"(%719) : (tensor<33619968xui32>) -> tensor<16416x2048xui32> loc(#loc230) | |
| %721 = mhlo.constant dense<9> : tensor<ui32> loc(#loc0) | |
| %722 = "mhlo.broadcast_in_dim"(%721) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16416x2048xui32> loc(#loc227) | |
| %723 = mhlo.shift_right_logical %720, %722 : tensor<16416x2048xui32> loc(#loc227) | |
| %724 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc0) | |
| %725 = "mhlo.broadcast_in_dim"(%724) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<16416x2048xui32> loc(#loc228) | |
| %726 = mhlo.or %723, %725 : tensor<16416x2048xui32> loc(#loc228) | |
| %727 = "mhlo.bitcast_convert"(%726) : (tensor<16416x2048xui32>) -> tensor<16416x2048xf32> loc(#loc231) | |
| %728 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %729 = "mhlo.broadcast_in_dim"(%728) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<16416x2048xf32> loc(#loc232) | |
| %730 = mhlo.subtract %727, %729 : tensor<16416x2048xf32> loc(#loc232) | |
| %731 = mhlo.subtract %489, %487 : tensor<1x1xf32> loc(#loc232) | |
| %732 = "mhlo.broadcast_in_dim"(%731) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<16416x2048xf32> loc(#loc233) | |
| %733 = mhlo.multiply %730, %732 : tensor<16416x2048xf32> loc(#loc233) | |
| %734 = "mhlo.broadcast_in_dim"(%487) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<16416x2048xf32> loc(#loc225) | |
| %735 = mhlo.add %733, %734 : tensor<16416x2048xf32> loc(#loc225) | |
| %736 = "mhlo.broadcast_in_dim"(%487) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<16416x2048xf32> loc(#loc234) | |
| %737 = mhlo.maximum %736, %735 : tensor<16416x2048xf32> loc(#loc234) | |
| %738 = call @erf_inv(%737) : (tensor<16416x2048xf32>) -> tensor<16416x2048xf32> loc(#loc235) | |
| %739 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc0) | |
| %740 = "mhlo.broadcast_in_dim"(%739) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<16416x2048xf32> loc(#loc233) | |
| %741 = mhlo.multiply %738, %740 : tensor<16416x2048xf32> loc(#loc233) | |
| %742 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc0) | |
| %743 = "mhlo.broadcast_in_dim"(%742) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<16416x2048xf32> loc(#loc233) | |
| %744 = mhlo.multiply %741, %743 : tensor<16416x2048xf32> loc(#loc233) | |
| %745 = call @_take_13(%744, %231) : (tensor<16416x2048xf32>, tensor<1x256xi32>) -> tensor<1x256x2048xf32> loc(#loc236) | |
| %746 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %747 = "mhlo.broadcast_in_dim"(%746) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256x2048xf32> loc(#loc237) | |
| %748 = mhlo.multiply %745, %747 : tensor<1x256x2048xf32> loc(#loc237) | |
| %749 = mhlo.constant dense<0> : tensor<i32> loc(#loc0) | |
| %750 = "mhlo.broadcast_in_dim"(%749) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x256xi32> loc(#loc238) | |
| %751 = mhlo.add %236, %750 : tensor<1x256xi32> loc(#loc238) | |
| %752 = mhlo.constant dense<331529253> : tensor<ui32> loc(#loc0) | |
| %753 = mhlo.constant dense<32> : tensor<ui32> loc(#loc0) | |
| %754 = mhlo.shift_right_logical %752, %753 : tensor<ui32> loc(#loc239) | |
| %755 = "mhlo.reshape"(%754) : (tensor<ui32>) -> tensor<1xui32> loc(#loc240) | |
| %756 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc0) | |
| %757 = mhlo.and %752, %756 : tensor<ui32> loc(#loc241) | |
| %758 = "mhlo.reshape"(%757) : (tensor<ui32>) -> tensor<1xui32> loc(#loc240) | |
| %759 = "mhlo.concatenate"(%755, %758) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc242) | |
| %760 = "mhlo.slice"(%248) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc243) | |
| %761 = "mhlo.reshape"(%760) : (tensor<1xui32>) -> tensor<ui32> loc(#loc244) | |
| %762 = "mhlo.slice"(%248) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc245) | |
| %763 = "mhlo.reshape"(%762) : (tensor<1xui32>) -> tensor<ui32> loc(#loc244) | |
| %764 = "mhlo.slice"(%759) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc246) | |
| %765 = "mhlo.slice"(%759) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc247) | |
| %766 = mhlo.xor %761, %763 : tensor<ui32> loc(#loc248) | |
| %767 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc249) | |
| %768 = mhlo.xor %766, %767 : tensor<ui32> loc(#loc248) | |
| %769 = "mhlo.broadcast_in_dim"(%761) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %770 = mhlo.add %764, %769 : tensor<1xui32> loc(#loc250) | |
| %771 = "mhlo.broadcast_in_dim"(%763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %772 = mhlo.add %765, %771 : tensor<1xui32> loc(#loc250) | |
| %773 = mhlo.add %770, %772 : tensor<1xui32> loc(#loc250) | |
| %774 = mhlo.constant dense<13> : tensor<ui32> loc(#loc249) | |
| %775 = "mhlo.broadcast_in_dim"(%774) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %776 = mhlo.shift_left %772, %775 : tensor<1xui32> loc(#loc251) | |
| %777 = mhlo.constant dense<19> : tensor<ui32> loc(#loc249) | |
| %778 = "mhlo.broadcast_in_dim"(%777) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %779 = mhlo.shift_right_logical %772, %778 : tensor<1xui32> loc(#loc239) | |
| %780 = mhlo.or %776, %779 : tensor<1xui32> loc(#loc252) | |
| %781 = mhlo.xor %773, %780 : tensor<1xui32> loc(#loc248) | |
| %782 = mhlo.add %773, %781 : tensor<1xui32> loc(#loc250) | |
| %783 = mhlo.constant dense<15> : tensor<ui32> loc(#loc249) | |
| %784 = "mhlo.broadcast_in_dim"(%783) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %785 = mhlo.shift_left %781, %784 : tensor<1xui32> loc(#loc251) | |
| %786 = mhlo.constant dense<17> : tensor<ui32> loc(#loc249) | |
| %787 = "mhlo.broadcast_in_dim"(%786) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %788 = mhlo.shift_right_logical %781, %787 : tensor<1xui32> loc(#loc239) | |
| %789 = mhlo.or %785, %788 : tensor<1xui32> loc(#loc252) | |
| %790 = mhlo.xor %782, %789 : tensor<1xui32> loc(#loc248) | |
| %791 = mhlo.add %782, %790 : tensor<1xui32> loc(#loc250) | |
| %792 = mhlo.constant dense<26> : tensor<ui32> loc(#loc249) | |
| %793 = "mhlo.broadcast_in_dim"(%792) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %794 = mhlo.shift_left %790, %793 : tensor<1xui32> loc(#loc251) | |
| %795 = mhlo.constant dense<6> : tensor<ui32> loc(#loc249) | |
| %796 = "mhlo.broadcast_in_dim"(%795) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %797 = mhlo.shift_right_logical %790, %796 : tensor<1xui32> loc(#loc239) | |
| %798 = mhlo.or %794, %797 : tensor<1xui32> loc(#loc252) | |
| %799 = mhlo.xor %791, %798 : tensor<1xui32> loc(#loc248) | |
| %800 = mhlo.add %791, %799 : tensor<1xui32> loc(#loc250) | |
| %801 = mhlo.constant dense<6> : tensor<ui32> loc(#loc249) | |
| %802 = "mhlo.broadcast_in_dim"(%801) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %803 = mhlo.shift_left %799, %802 : tensor<1xui32> loc(#loc251) | |
| %804 = mhlo.constant dense<26> : tensor<ui32> loc(#loc249) | |
| %805 = "mhlo.broadcast_in_dim"(%804) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %806 = mhlo.shift_right_logical %799, %805 : tensor<1xui32> loc(#loc239) | |
| %807 = mhlo.or %803, %806 : tensor<1xui32> loc(#loc252) | |
| %808 = mhlo.xor %800, %807 : tensor<1xui32> loc(#loc248) | |
| %809 = "mhlo.broadcast_in_dim"(%763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %810 = mhlo.add %800, %809 : tensor<1xui32> loc(#loc250) | |
| %811 = "mhlo.broadcast_in_dim"(%768) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %812 = mhlo.add %808, %811 : tensor<1xui32> loc(#loc250) | |
| %813 = mhlo.constant dense<1> : tensor<ui32> loc(#loc249) | |
| %814 = "mhlo.broadcast_in_dim"(%813) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %815 = mhlo.add %812, %814 : tensor<1xui32> loc(#loc250) | |
| %816 = mhlo.add %810, %815 : tensor<1xui32> loc(#loc250) | |
| %817 = mhlo.constant dense<17> : tensor<ui32> loc(#loc249) | |
| %818 = "mhlo.broadcast_in_dim"(%817) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %819 = mhlo.shift_left %815, %818 : tensor<1xui32> loc(#loc251) | |
| %820 = mhlo.constant dense<15> : tensor<ui32> loc(#loc249) | |
| %821 = "mhlo.broadcast_in_dim"(%820) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %822 = mhlo.shift_right_logical %815, %821 : tensor<1xui32> loc(#loc239) | |
| %823 = mhlo.or %819, %822 : tensor<1xui32> loc(#loc252) | |
| %824 = mhlo.xor %816, %823 : tensor<1xui32> loc(#loc248) | |
| %825 = mhlo.add %816, %824 : tensor<1xui32> loc(#loc250) | |
| %826 = mhlo.constant dense<29> : tensor<ui32> loc(#loc249) | |
| %827 = "mhlo.broadcast_in_dim"(%826) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %828 = mhlo.shift_left %824, %827 : tensor<1xui32> loc(#loc251) | |
| %829 = mhlo.constant dense<3> : tensor<ui32> loc(#loc249) | |
| %830 = "mhlo.broadcast_in_dim"(%829) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %831 = mhlo.shift_right_logical %824, %830 : tensor<1xui32> loc(#loc239) | |
| %832 = mhlo.or %828, %831 : tensor<1xui32> loc(#loc252) | |
| %833 = mhlo.xor %825, %832 : tensor<1xui32> loc(#loc248) | |
| %834 = mhlo.add %825, %833 : tensor<1xui32> loc(#loc250) | |
| %835 = mhlo.constant dense<16> : tensor<ui32> loc(#loc249) | |
| %836 = "mhlo.broadcast_in_dim"(%835) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %837 = mhlo.shift_left %833, %836 : tensor<1xui32> loc(#loc251) | |
| %838 = mhlo.constant dense<16> : tensor<ui32> loc(#loc249) | |
| %839 = "mhlo.broadcast_in_dim"(%838) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %840 = mhlo.shift_right_logical %833, %839 : tensor<1xui32> loc(#loc239) | |
| %841 = mhlo.or %837, %840 : tensor<1xui32> loc(#loc252) | |
| %842 = mhlo.xor %834, %841 : tensor<1xui32> loc(#loc248) | |
| %843 = mhlo.add %834, %842 : tensor<1xui32> loc(#loc250) | |
| %844 = mhlo.constant dense<24> : tensor<ui32> loc(#loc249) | |
| %845 = "mhlo.broadcast_in_dim"(%844) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %846 = mhlo.shift_left %842, %845 : tensor<1xui32> loc(#loc251) | |
| %847 = mhlo.constant dense<8> : tensor<ui32> loc(#loc249) | |
| %848 = "mhlo.broadcast_in_dim"(%847) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %849 = mhlo.shift_right_logical %842, %848 : tensor<1xui32> loc(#loc239) | |
| %850 = mhlo.or %846, %849 : tensor<1xui32> loc(#loc252) | |
| %851 = mhlo.xor %843, %850 : tensor<1xui32> loc(#loc248) | |
| %852 = "mhlo.broadcast_in_dim"(%768) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %853 = mhlo.add %843, %852 : tensor<1xui32> loc(#loc250) | |
| %854 = "mhlo.broadcast_in_dim"(%761) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %855 = mhlo.add %851, %854 : tensor<1xui32> loc(#loc250) | |
| %856 = mhlo.constant dense<2> : tensor<ui32> loc(#loc249) | |
| %857 = "mhlo.broadcast_in_dim"(%856) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %858 = mhlo.add %855, %857 : tensor<1xui32> loc(#loc250) | |
| %859 = mhlo.add %853, %858 : tensor<1xui32> loc(#loc250) | |
| %860 = mhlo.constant dense<13> : tensor<ui32> loc(#loc249) | |
| %861 = "mhlo.broadcast_in_dim"(%860) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %862 = mhlo.shift_left %858, %861 : tensor<1xui32> loc(#loc251) | |
| %863 = mhlo.constant dense<19> : tensor<ui32> loc(#loc249) | |
| %864 = "mhlo.broadcast_in_dim"(%863) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %865 = mhlo.shift_right_logical %858, %864 : tensor<1xui32> loc(#loc239) | |
| %866 = mhlo.or %862, %865 : tensor<1xui32> loc(#loc252) | |
| %867 = mhlo.xor %859, %866 : tensor<1xui32> loc(#loc248) | |
| %868 = mhlo.add %859, %867 : tensor<1xui32> loc(#loc250) | |
| %869 = mhlo.constant dense<15> : tensor<ui32> loc(#loc249) | |
| %870 = "mhlo.broadcast_in_dim"(%869) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %871 = mhlo.shift_left %867, %870 : tensor<1xui32> loc(#loc251) | |
| %872 = mhlo.constant dense<17> : tensor<ui32> loc(#loc249) | |
| %873 = "mhlo.broadcast_in_dim"(%872) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %874 = mhlo.shift_right_logical %867, %873 : tensor<1xui32> loc(#loc239) | |
| %875 = mhlo.or %871, %874 : tensor<1xui32> loc(#loc252) | |
| %876 = mhlo.xor %868, %875 : tensor<1xui32> loc(#loc248) | |
| %877 = mhlo.add %868, %876 : tensor<1xui32> loc(#loc250) | |
| %878 = mhlo.constant dense<26> : tensor<ui32> loc(#loc249) | |
| %879 = "mhlo.broadcast_in_dim"(%878) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %880 = mhlo.shift_left %876, %879 : tensor<1xui32> loc(#loc251) | |
| %881 = mhlo.constant dense<6> : tensor<ui32> loc(#loc249) | |
| %882 = "mhlo.broadcast_in_dim"(%881) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %883 = mhlo.shift_right_logical %876, %882 : tensor<1xui32> loc(#loc239) | |
| %884 = mhlo.or %880, %883 : tensor<1xui32> loc(#loc252) | |
| %885 = mhlo.xor %877, %884 : tensor<1xui32> loc(#loc248) | |
| %886 = mhlo.add %877, %885 : tensor<1xui32> loc(#loc250) | |
| %887 = mhlo.constant dense<6> : tensor<ui32> loc(#loc249) | |
| %888 = "mhlo.broadcast_in_dim"(%887) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %889 = mhlo.shift_left %885, %888 : tensor<1xui32> loc(#loc251) | |
| %890 = mhlo.constant dense<26> : tensor<ui32> loc(#loc249) | |
| %891 = "mhlo.broadcast_in_dim"(%890) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %892 = mhlo.shift_right_logical %885, %891 : tensor<1xui32> loc(#loc239) | |
| %893 = mhlo.or %889, %892 : tensor<1xui32> loc(#loc252) | |
| %894 = mhlo.xor %886, %893 : tensor<1xui32> loc(#loc248) | |
| %895 = "mhlo.broadcast_in_dim"(%761) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %896 = mhlo.add %886, %895 : tensor<1xui32> loc(#loc250) | |
| %897 = "mhlo.broadcast_in_dim"(%763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %898 = mhlo.add %894, %897 : tensor<1xui32> loc(#loc250) | |
| %899 = mhlo.constant dense<3> : tensor<ui32> loc(#loc249) | |
| %900 = "mhlo.broadcast_in_dim"(%899) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %901 = mhlo.add %898, %900 : tensor<1xui32> loc(#loc250) | |
| %902 = mhlo.add %896, %901 : tensor<1xui32> loc(#loc250) | |
| %903 = mhlo.constant dense<17> : tensor<ui32> loc(#loc249) | |
| %904 = "mhlo.broadcast_in_dim"(%903) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %905 = mhlo.shift_left %901, %904 : tensor<1xui32> loc(#loc251) | |
| %906 = mhlo.constant dense<15> : tensor<ui32> loc(#loc249) | |
| %907 = "mhlo.broadcast_in_dim"(%906) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %908 = mhlo.shift_right_logical %901, %907 : tensor<1xui32> loc(#loc239) | |
| %909 = mhlo.or %905, %908 : tensor<1xui32> loc(#loc252) | |
| %910 = mhlo.xor %902, %909 : tensor<1xui32> loc(#loc248) | |
| %911 = mhlo.add %902, %910 : tensor<1xui32> loc(#loc250) | |
| %912 = mhlo.constant dense<29> : tensor<ui32> loc(#loc249) | |
| %913 = "mhlo.broadcast_in_dim"(%912) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %914 = mhlo.shift_left %910, %913 : tensor<1xui32> loc(#loc251) | |
| %915 = mhlo.constant dense<3> : tensor<ui32> loc(#loc249) | |
| %916 = "mhlo.broadcast_in_dim"(%915) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %917 = mhlo.shift_right_logical %910, %916 : tensor<1xui32> loc(#loc239) | |
| %918 = mhlo.or %914, %917 : tensor<1xui32> loc(#loc252) | |
| %919 = mhlo.xor %911, %918 : tensor<1xui32> loc(#loc248) | |
| %920 = mhlo.add %911, %919 : tensor<1xui32> loc(#loc250) | |
| %921 = mhlo.constant dense<16> : tensor<ui32> loc(#loc249) | |
| %922 = "mhlo.broadcast_in_dim"(%921) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %923 = mhlo.shift_left %919, %922 : tensor<1xui32> loc(#loc251) | |
| %924 = mhlo.constant dense<16> : tensor<ui32> loc(#loc249) | |
| %925 = "mhlo.broadcast_in_dim"(%924) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %926 = mhlo.shift_right_logical %919, %925 : tensor<1xui32> loc(#loc239) | |
| %927 = mhlo.or %923, %926 : tensor<1xui32> loc(#loc252) | |
| %928 = mhlo.xor %920, %927 : tensor<1xui32> loc(#loc248) | |
| %929 = mhlo.add %920, %928 : tensor<1xui32> loc(#loc250) | |
| %930 = mhlo.constant dense<24> : tensor<ui32> loc(#loc249) | |
| %931 = "mhlo.broadcast_in_dim"(%930) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %932 = mhlo.shift_left %928, %931 : tensor<1xui32> loc(#loc251) | |
| %933 = mhlo.constant dense<8> : tensor<ui32> loc(#loc249) | |
| %934 = "mhlo.broadcast_in_dim"(%933) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %935 = mhlo.shift_right_logical %928, %934 : tensor<1xui32> loc(#loc239) | |
| %936 = mhlo.or %932, %935 : tensor<1xui32> loc(#loc252) | |
| %937 = mhlo.xor %929, %936 : tensor<1xui32> loc(#loc248) | |
| %938 = "mhlo.broadcast_in_dim"(%763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %939 = mhlo.add %929, %938 : tensor<1xui32> loc(#loc250) | |
| %940 = "mhlo.broadcast_in_dim"(%768) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %941 = mhlo.add %937, %940 : tensor<1xui32> loc(#loc250) | |
| %942 = mhlo.constant dense<4> : tensor<ui32> loc(#loc249) | |
| %943 = "mhlo.broadcast_in_dim"(%942) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %944 = mhlo.add %941, %943 : tensor<1xui32> loc(#loc250) | |
| %945 = mhlo.add %939, %944 : tensor<1xui32> loc(#loc250) | |
| %946 = mhlo.constant dense<13> : tensor<ui32> loc(#loc249) | |
| %947 = "mhlo.broadcast_in_dim"(%946) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %948 = mhlo.shift_left %944, %947 : tensor<1xui32> loc(#loc251) | |
| %949 = mhlo.constant dense<19> : tensor<ui32> loc(#loc249) | |
| %950 = "mhlo.broadcast_in_dim"(%949) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %951 = mhlo.shift_right_logical %944, %950 : tensor<1xui32> loc(#loc239) | |
| %952 = mhlo.or %948, %951 : tensor<1xui32> loc(#loc252) | |
| %953 = mhlo.xor %945, %952 : tensor<1xui32> loc(#loc248) | |
| %954 = mhlo.add %945, %953 : tensor<1xui32> loc(#loc250) | |
| %955 = mhlo.constant dense<15> : tensor<ui32> loc(#loc249) | |
| %956 = "mhlo.broadcast_in_dim"(%955) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %957 = mhlo.shift_left %953, %956 : tensor<1xui32> loc(#loc251) | |
| %958 = mhlo.constant dense<17> : tensor<ui32> loc(#loc249) | |
| %959 = "mhlo.broadcast_in_dim"(%958) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %960 = mhlo.shift_right_logical %953, %959 : tensor<1xui32> loc(#loc239) | |
| %961 = mhlo.or %957, %960 : tensor<1xui32> loc(#loc252) | |
| %962 = mhlo.xor %954, %961 : tensor<1xui32> loc(#loc248) | |
| %963 = mhlo.add %954, %962 : tensor<1xui32> loc(#loc250) | |
| %964 = mhlo.constant dense<26> : tensor<ui32> loc(#loc249) | |
| %965 = "mhlo.broadcast_in_dim"(%964) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %966 = mhlo.shift_left %962, %965 : tensor<1xui32> loc(#loc251) | |
| %967 = mhlo.constant dense<6> : tensor<ui32> loc(#loc249) | |
| %968 = "mhlo.broadcast_in_dim"(%967) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %969 = mhlo.shift_right_logical %962, %968 : tensor<1xui32> loc(#loc239) | |
| %970 = mhlo.or %966, %969 : tensor<1xui32> loc(#loc252) | |
| %971 = mhlo.xor %963, %970 : tensor<1xui32> loc(#loc248) | |
| %972 = mhlo.add %963, %971 : tensor<1xui32> loc(#loc250) | |
| %973 = mhlo.constant dense<6> : tensor<ui32> loc(#loc249) | |
| %974 = "mhlo.broadcast_in_dim"(%973) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc251) | |
| %975 = mhlo.shift_left %971, %974 : tensor<1xui32> loc(#loc251) | |
| %976 = mhlo.constant dense<26> : tensor<ui32> loc(#loc249) | |
| %977 = "mhlo.broadcast_in_dim"(%976) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc239) | |
| %978 = mhlo.shift_right_logical %971, %977 : tensor<1xui32> loc(#loc239) | |
| %979 = mhlo.or %975, %978 : tensor<1xui32> loc(#loc252) | |
| %980 = mhlo.xor %972, %979 : tensor<1xui32> loc(#loc248) | |
| %981 = "mhlo.broadcast_in_dim"(%768) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %982 = mhlo.add %972, %981 : tensor<1xui32> loc(#loc250) | |
| %983 = "mhlo.broadcast_in_dim"(%761) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %984 = mhlo.add %980, %983 : tensor<1xui32> loc(#loc250) | |
| %985 = mhlo.constant dense<5> : tensor<ui32> loc(#loc249) | |
| %986 = "mhlo.broadcast_in_dim"(%985) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc250) | |
| %987 = mhlo.add %984, %986 : tensor<1xui32> loc(#loc250) | |
| %988 = "mhlo.concatenate"(%982, %987) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc242) | |
| %989 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc0) | |
| %990 = "mhlo.broadcast_in_dim"(%989) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc253) | |
| %991 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %992 = "mhlo.broadcast_in_dim"(%991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc253) | |
| %993 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<524288xui32> loc(#loc254) | |
| %994 = "mhlo.slice"(%988) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc255) | |
| %995 = "mhlo.reshape"(%994) : (tensor<1xui32>) -> tensor<ui32> loc(#loc256) | |
| %996 = "mhlo.slice"(%988) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc257) | |
| %997 = "mhlo.reshape"(%996) : (tensor<1xui32>) -> tensor<ui32> loc(#loc256) | |
| %998 = "mhlo.slice"(%993) {limit_indices = dense<262144> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<524288xui32>) -> tensor<262144xui32> loc(#loc258) | |
| %999 = "mhlo.slice"(%993) {limit_indices = dense<524288> : tensor<1xi64>, start_indices = dense<262144> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<524288xui32>) -> tensor<262144xui32> loc(#loc259) | |
| %1000 = mhlo.xor %995, %997 : tensor<ui32> loc(#loc260) | |
| %1001 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc261) | |
| %1002 = mhlo.xor %1000, %1001 : tensor<ui32> loc(#loc260) | |
| %1003 = "mhlo.broadcast_in_dim"(%995) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1004 = mhlo.add %998, %1003 : tensor<262144xui32> loc(#loc262) | |
| %1005 = "mhlo.broadcast_in_dim"(%997) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1006 = mhlo.add %999, %1005 : tensor<262144xui32> loc(#loc262) | |
| %1007 = mhlo.add %1004, %1006 : tensor<262144xui32> loc(#loc262) | |
| %1008 = mhlo.constant dense<13> : tensor<ui32> loc(#loc261) | |
| %1009 = "mhlo.broadcast_in_dim"(%1008) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1010 = mhlo.shift_left %1006, %1009 : tensor<262144xui32> loc(#loc263) | |
| %1011 = mhlo.constant dense<19> : tensor<ui32> loc(#loc261) | |
| %1012 = "mhlo.broadcast_in_dim"(%1011) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1013 = mhlo.shift_right_logical %1006, %1012 : tensor<262144xui32> loc(#loc264) | |
| %1014 = mhlo.or %1010, %1013 : tensor<262144xui32> loc(#loc265) | |
| %1015 = mhlo.xor %1007, %1014 : tensor<262144xui32> loc(#loc260) | |
| %1016 = mhlo.add %1007, %1015 : tensor<262144xui32> loc(#loc262) | |
| %1017 = mhlo.constant dense<15> : tensor<ui32> loc(#loc261) | |
| %1018 = "mhlo.broadcast_in_dim"(%1017) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1019 = mhlo.shift_left %1015, %1018 : tensor<262144xui32> loc(#loc263) | |
| %1020 = mhlo.constant dense<17> : tensor<ui32> loc(#loc261) | |
| %1021 = "mhlo.broadcast_in_dim"(%1020) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1022 = mhlo.shift_right_logical %1015, %1021 : tensor<262144xui32> loc(#loc264) | |
| %1023 = mhlo.or %1019, %1022 : tensor<262144xui32> loc(#loc265) | |
| %1024 = mhlo.xor %1016, %1023 : tensor<262144xui32> loc(#loc260) | |
| %1025 = mhlo.add %1016, %1024 : tensor<262144xui32> loc(#loc262) | |
| %1026 = mhlo.constant dense<26> : tensor<ui32> loc(#loc261) | |
| %1027 = "mhlo.broadcast_in_dim"(%1026) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1028 = mhlo.shift_left %1024, %1027 : tensor<262144xui32> loc(#loc263) | |
| %1029 = mhlo.constant dense<6> : tensor<ui32> loc(#loc261) | |
| %1030 = "mhlo.broadcast_in_dim"(%1029) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1031 = mhlo.shift_right_logical %1024, %1030 : tensor<262144xui32> loc(#loc264) | |
| %1032 = mhlo.or %1028, %1031 : tensor<262144xui32> loc(#loc265) | |
| %1033 = mhlo.xor %1025, %1032 : tensor<262144xui32> loc(#loc260) | |
| %1034 = mhlo.add %1025, %1033 : tensor<262144xui32> loc(#loc262) | |
| %1035 = mhlo.constant dense<6> : tensor<ui32> loc(#loc261) | |
| %1036 = "mhlo.broadcast_in_dim"(%1035) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1037 = mhlo.shift_left %1033, %1036 : tensor<262144xui32> loc(#loc263) | |
| %1038 = mhlo.constant dense<26> : tensor<ui32> loc(#loc261) | |
| %1039 = "mhlo.broadcast_in_dim"(%1038) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1040 = mhlo.shift_right_logical %1033, %1039 : tensor<262144xui32> loc(#loc264) | |
| %1041 = mhlo.or %1037, %1040 : tensor<262144xui32> loc(#loc265) | |
| %1042 = mhlo.xor %1034, %1041 : tensor<262144xui32> loc(#loc260) | |
| %1043 = "mhlo.broadcast_in_dim"(%997) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1044 = mhlo.add %1034, %1043 : tensor<262144xui32> loc(#loc262) | |
| %1045 = "mhlo.broadcast_in_dim"(%1002) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1046 = mhlo.add %1042, %1045 : tensor<262144xui32> loc(#loc262) | |
| %1047 = mhlo.constant dense<1> : tensor<ui32> loc(#loc261) | |
| %1048 = "mhlo.broadcast_in_dim"(%1047) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1049 = mhlo.add %1046, %1048 : tensor<262144xui32> loc(#loc262) | |
| %1050 = mhlo.add %1044, %1049 : tensor<262144xui32> loc(#loc262) | |
| %1051 = mhlo.constant dense<17> : tensor<ui32> loc(#loc261) | |
| %1052 = "mhlo.broadcast_in_dim"(%1051) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1053 = mhlo.shift_left %1049, %1052 : tensor<262144xui32> loc(#loc263) | |
| %1054 = mhlo.constant dense<15> : tensor<ui32> loc(#loc261) | |
| %1055 = "mhlo.broadcast_in_dim"(%1054) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1056 = mhlo.shift_right_logical %1049, %1055 : tensor<262144xui32> loc(#loc264) | |
| %1057 = mhlo.or %1053, %1056 : tensor<262144xui32> loc(#loc265) | |
| %1058 = mhlo.xor %1050, %1057 : tensor<262144xui32> loc(#loc260) | |
| %1059 = mhlo.add %1050, %1058 : tensor<262144xui32> loc(#loc262) | |
| %1060 = mhlo.constant dense<29> : tensor<ui32> loc(#loc261) | |
| %1061 = "mhlo.broadcast_in_dim"(%1060) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1062 = mhlo.shift_left %1058, %1061 : tensor<262144xui32> loc(#loc263) | |
| %1063 = mhlo.constant dense<3> : tensor<ui32> loc(#loc261) | |
| %1064 = "mhlo.broadcast_in_dim"(%1063) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1065 = mhlo.shift_right_logical %1058, %1064 : tensor<262144xui32> loc(#loc264) | |
| %1066 = mhlo.or %1062, %1065 : tensor<262144xui32> loc(#loc265) | |
| %1067 = mhlo.xor %1059, %1066 : tensor<262144xui32> loc(#loc260) | |
| %1068 = mhlo.add %1059, %1067 : tensor<262144xui32> loc(#loc262) | |
| %1069 = mhlo.constant dense<16> : tensor<ui32> loc(#loc261) | |
| %1070 = "mhlo.broadcast_in_dim"(%1069) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1071 = mhlo.shift_left %1067, %1070 : tensor<262144xui32> loc(#loc263) | |
| %1072 = mhlo.constant dense<16> : tensor<ui32> loc(#loc261) | |
| %1073 = "mhlo.broadcast_in_dim"(%1072) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1074 = mhlo.shift_right_logical %1067, %1073 : tensor<262144xui32> loc(#loc264) | |
| %1075 = mhlo.or %1071, %1074 : tensor<262144xui32> loc(#loc265) | |
| %1076 = mhlo.xor %1068, %1075 : tensor<262144xui32> loc(#loc260) | |
| %1077 = mhlo.add %1068, %1076 : tensor<262144xui32> loc(#loc262) | |
| %1078 = mhlo.constant dense<24> : tensor<ui32> loc(#loc261) | |
| %1079 = "mhlo.broadcast_in_dim"(%1078) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1080 = mhlo.shift_left %1076, %1079 : tensor<262144xui32> loc(#loc263) | |
| %1081 = mhlo.constant dense<8> : tensor<ui32> loc(#loc261) | |
| %1082 = "mhlo.broadcast_in_dim"(%1081) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1083 = mhlo.shift_right_logical %1076, %1082 : tensor<262144xui32> loc(#loc264) | |
| %1084 = mhlo.or %1080, %1083 : tensor<262144xui32> loc(#loc265) | |
| %1085 = mhlo.xor %1077, %1084 : tensor<262144xui32> loc(#loc260) | |
| %1086 = "mhlo.broadcast_in_dim"(%1002) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1087 = mhlo.add %1077, %1086 : tensor<262144xui32> loc(#loc262) | |
| %1088 = "mhlo.broadcast_in_dim"(%995) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1089 = mhlo.add %1085, %1088 : tensor<262144xui32> loc(#loc262) | |
| %1090 = mhlo.constant dense<2> : tensor<ui32> loc(#loc261) | |
| %1091 = "mhlo.broadcast_in_dim"(%1090) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1092 = mhlo.add %1089, %1091 : tensor<262144xui32> loc(#loc262) | |
| %1093 = mhlo.add %1087, %1092 : tensor<262144xui32> loc(#loc262) | |
| %1094 = mhlo.constant dense<13> : tensor<ui32> loc(#loc261) | |
| %1095 = "mhlo.broadcast_in_dim"(%1094) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1096 = mhlo.shift_left %1092, %1095 : tensor<262144xui32> loc(#loc263) | |
| %1097 = mhlo.constant dense<19> : tensor<ui32> loc(#loc261) | |
| %1098 = "mhlo.broadcast_in_dim"(%1097) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1099 = mhlo.shift_right_logical %1092, %1098 : tensor<262144xui32> loc(#loc264) | |
| %1100 = mhlo.or %1096, %1099 : tensor<262144xui32> loc(#loc265) | |
| %1101 = mhlo.xor %1093, %1100 : tensor<262144xui32> loc(#loc260) | |
| %1102 = mhlo.add %1093, %1101 : tensor<262144xui32> loc(#loc262) | |
| %1103 = mhlo.constant dense<15> : tensor<ui32> loc(#loc261) | |
| %1104 = "mhlo.broadcast_in_dim"(%1103) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1105 = mhlo.shift_left %1101, %1104 : tensor<262144xui32> loc(#loc263) | |
| %1106 = mhlo.constant dense<17> : tensor<ui32> loc(#loc261) | |
| %1107 = "mhlo.broadcast_in_dim"(%1106) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1108 = mhlo.shift_right_logical %1101, %1107 : tensor<262144xui32> loc(#loc264) | |
| %1109 = mhlo.or %1105, %1108 : tensor<262144xui32> loc(#loc265) | |
| %1110 = mhlo.xor %1102, %1109 : tensor<262144xui32> loc(#loc260) | |
| %1111 = mhlo.add %1102, %1110 : tensor<262144xui32> loc(#loc262) | |
| %1112 = mhlo.constant dense<26> : tensor<ui32> loc(#loc261) | |
| %1113 = "mhlo.broadcast_in_dim"(%1112) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1114 = mhlo.shift_left %1110, %1113 : tensor<262144xui32> loc(#loc263) | |
| %1115 = mhlo.constant dense<6> : tensor<ui32> loc(#loc261) | |
| %1116 = "mhlo.broadcast_in_dim"(%1115) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1117 = mhlo.shift_right_logical %1110, %1116 : tensor<262144xui32> loc(#loc264) | |
| %1118 = mhlo.or %1114, %1117 : tensor<262144xui32> loc(#loc265) | |
| %1119 = mhlo.xor %1111, %1118 : tensor<262144xui32> loc(#loc260) | |
| %1120 = mhlo.add %1111, %1119 : tensor<262144xui32> loc(#loc262) | |
| %1121 = mhlo.constant dense<6> : tensor<ui32> loc(#loc261) | |
| %1122 = "mhlo.broadcast_in_dim"(%1121) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1123 = mhlo.shift_left %1119, %1122 : tensor<262144xui32> loc(#loc263) | |
| %1124 = mhlo.constant dense<26> : tensor<ui32> loc(#loc261) | |
| %1125 = "mhlo.broadcast_in_dim"(%1124) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1126 = mhlo.shift_right_logical %1119, %1125 : tensor<262144xui32> loc(#loc264) | |
| %1127 = mhlo.or %1123, %1126 : tensor<262144xui32> loc(#loc265) | |
| %1128 = mhlo.xor %1120, %1127 : tensor<262144xui32> loc(#loc260) | |
| %1129 = "mhlo.broadcast_in_dim"(%995) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1130 = mhlo.add %1120, %1129 : tensor<262144xui32> loc(#loc262) | |
| %1131 = "mhlo.broadcast_in_dim"(%997) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1132 = mhlo.add %1128, %1131 : tensor<262144xui32> loc(#loc262) | |
| %1133 = mhlo.constant dense<3> : tensor<ui32> loc(#loc261) | |
| %1134 = "mhlo.broadcast_in_dim"(%1133) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1135 = mhlo.add %1132, %1134 : tensor<262144xui32> loc(#loc262) | |
| %1136 = mhlo.add %1130, %1135 : tensor<262144xui32> loc(#loc262) | |
| %1137 = mhlo.constant dense<17> : tensor<ui32> loc(#loc261) | |
| %1138 = "mhlo.broadcast_in_dim"(%1137) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1139 = mhlo.shift_left %1135, %1138 : tensor<262144xui32> loc(#loc263) | |
| %1140 = mhlo.constant dense<15> : tensor<ui32> loc(#loc261) | |
| %1141 = "mhlo.broadcast_in_dim"(%1140) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1142 = mhlo.shift_right_logical %1135, %1141 : tensor<262144xui32> loc(#loc264) | |
| %1143 = mhlo.or %1139, %1142 : tensor<262144xui32> loc(#loc265) | |
| %1144 = mhlo.xor %1136, %1143 : tensor<262144xui32> loc(#loc260) | |
| %1145 = mhlo.add %1136, %1144 : tensor<262144xui32> loc(#loc262) | |
| %1146 = mhlo.constant dense<29> : tensor<ui32> loc(#loc261) | |
| %1147 = "mhlo.broadcast_in_dim"(%1146) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1148 = mhlo.shift_left %1144, %1147 : tensor<262144xui32> loc(#loc263) | |
| %1149 = mhlo.constant dense<3> : tensor<ui32> loc(#loc261) | |
| %1150 = "mhlo.broadcast_in_dim"(%1149) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1151 = mhlo.shift_right_logical %1144, %1150 : tensor<262144xui32> loc(#loc264) | |
| %1152 = mhlo.or %1148, %1151 : tensor<262144xui32> loc(#loc265) | |
| %1153 = mhlo.xor %1145, %1152 : tensor<262144xui32> loc(#loc260) | |
| %1154 = mhlo.add %1145, %1153 : tensor<262144xui32> loc(#loc262) | |
| %1155 = mhlo.constant dense<16> : tensor<ui32> loc(#loc261) | |
| %1156 = "mhlo.broadcast_in_dim"(%1155) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1157 = mhlo.shift_left %1153, %1156 : tensor<262144xui32> loc(#loc263) | |
| %1158 = mhlo.constant dense<16> : tensor<ui32> loc(#loc261) | |
| %1159 = "mhlo.broadcast_in_dim"(%1158) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1160 = mhlo.shift_right_logical %1153, %1159 : tensor<262144xui32> loc(#loc264) | |
| %1161 = mhlo.or %1157, %1160 : tensor<262144xui32> loc(#loc265) | |
| %1162 = mhlo.xor %1154, %1161 : tensor<262144xui32> loc(#loc260) | |
| %1163 = mhlo.add %1154, %1162 : tensor<262144xui32> loc(#loc262) | |
| %1164 = mhlo.constant dense<24> : tensor<ui32> loc(#loc261) | |
| %1165 = "mhlo.broadcast_in_dim"(%1164) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1166 = mhlo.shift_left %1162, %1165 : tensor<262144xui32> loc(#loc263) | |
| %1167 = mhlo.constant dense<8> : tensor<ui32> loc(#loc261) | |
| %1168 = "mhlo.broadcast_in_dim"(%1167) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1169 = mhlo.shift_right_logical %1162, %1168 : tensor<262144xui32> loc(#loc264) | |
| %1170 = mhlo.or %1166, %1169 : tensor<262144xui32> loc(#loc265) | |
| %1171 = mhlo.xor %1163, %1170 : tensor<262144xui32> loc(#loc260) | |
| %1172 = "mhlo.broadcast_in_dim"(%997) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1173 = mhlo.add %1163, %1172 : tensor<262144xui32> loc(#loc262) | |
| %1174 = "mhlo.broadcast_in_dim"(%1002) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1175 = mhlo.add %1171, %1174 : tensor<262144xui32> loc(#loc262) | |
| %1176 = mhlo.constant dense<4> : tensor<ui32> loc(#loc261) | |
| %1177 = "mhlo.broadcast_in_dim"(%1176) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1178 = mhlo.add %1175, %1177 : tensor<262144xui32> loc(#loc262) | |
| %1179 = mhlo.add %1173, %1178 : tensor<262144xui32> loc(#loc262) | |
| %1180 = mhlo.constant dense<13> : tensor<ui32> loc(#loc261) | |
| %1181 = "mhlo.broadcast_in_dim"(%1180) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1182 = mhlo.shift_left %1178, %1181 : tensor<262144xui32> loc(#loc263) | |
| %1183 = mhlo.constant dense<19> : tensor<ui32> loc(#loc261) | |
| %1184 = "mhlo.broadcast_in_dim"(%1183) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1185 = mhlo.shift_right_logical %1178, %1184 : tensor<262144xui32> loc(#loc264) | |
| %1186 = mhlo.or %1182, %1185 : tensor<262144xui32> loc(#loc265) | |
| %1187 = mhlo.xor %1179, %1186 : tensor<262144xui32> loc(#loc260) | |
| %1188 = mhlo.add %1179, %1187 : tensor<262144xui32> loc(#loc262) | |
| %1189 = mhlo.constant dense<15> : tensor<ui32> loc(#loc261) | |
| %1190 = "mhlo.broadcast_in_dim"(%1189) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1191 = mhlo.shift_left %1187, %1190 : tensor<262144xui32> loc(#loc263) | |
| %1192 = mhlo.constant dense<17> : tensor<ui32> loc(#loc261) | |
| %1193 = "mhlo.broadcast_in_dim"(%1192) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1194 = mhlo.shift_right_logical %1187, %1193 : tensor<262144xui32> loc(#loc264) | |
| %1195 = mhlo.or %1191, %1194 : tensor<262144xui32> loc(#loc265) | |
| %1196 = mhlo.xor %1188, %1195 : tensor<262144xui32> loc(#loc260) | |
| %1197 = mhlo.add %1188, %1196 : tensor<262144xui32> loc(#loc262) | |
| %1198 = mhlo.constant dense<26> : tensor<ui32> loc(#loc261) | |
| %1199 = "mhlo.broadcast_in_dim"(%1198) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1200 = mhlo.shift_left %1196, %1199 : tensor<262144xui32> loc(#loc263) | |
| %1201 = mhlo.constant dense<6> : tensor<ui32> loc(#loc261) | |
| %1202 = "mhlo.broadcast_in_dim"(%1201) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1203 = mhlo.shift_right_logical %1196, %1202 : tensor<262144xui32> loc(#loc264) | |
| %1204 = mhlo.or %1200, %1203 : tensor<262144xui32> loc(#loc265) | |
| %1205 = mhlo.xor %1197, %1204 : tensor<262144xui32> loc(#loc260) | |
| %1206 = mhlo.add %1197, %1205 : tensor<262144xui32> loc(#loc262) | |
| %1207 = mhlo.constant dense<6> : tensor<ui32> loc(#loc261) | |
| %1208 = "mhlo.broadcast_in_dim"(%1207) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc263) | |
| %1209 = mhlo.shift_left %1205, %1208 : tensor<262144xui32> loc(#loc263) | |
| %1210 = mhlo.constant dense<26> : tensor<ui32> loc(#loc261) | |
| %1211 = "mhlo.broadcast_in_dim"(%1210) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc264) | |
| %1212 = mhlo.shift_right_logical %1205, %1211 : tensor<262144xui32> loc(#loc264) | |
| %1213 = mhlo.or %1209, %1212 : tensor<262144xui32> loc(#loc265) | |
| %1214 = mhlo.xor %1206, %1213 : tensor<262144xui32> loc(#loc260) | |
| %1215 = "mhlo.broadcast_in_dim"(%1002) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1216 = mhlo.add %1206, %1215 : tensor<262144xui32> loc(#loc262) | |
| %1217 = "mhlo.broadcast_in_dim"(%995) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1218 = mhlo.add %1214, %1217 : tensor<262144xui32> loc(#loc262) | |
| %1219 = mhlo.constant dense<5> : tensor<ui32> loc(#loc261) | |
| %1220 = "mhlo.broadcast_in_dim"(%1219) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<262144xui32> loc(#loc262) | |
| %1221 = mhlo.add %1218, %1220 : tensor<262144xui32> loc(#loc262) | |
| %1222 = "mhlo.concatenate"(%1216, %1221) {dimension = 0 : i64} : (tensor<262144xui32>, tensor<262144xui32>) -> tensor<524288xui32> loc(#loc266) | |
| %1223 = "mhlo.reshape"(%1222) : (tensor<524288xui32>) -> tensor<256x2048xui32> loc(#loc267) | |
| %1224 = mhlo.constant dense<9> : tensor<ui32> loc(#loc0) | |
| %1225 = "mhlo.broadcast_in_dim"(%1224) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<256x2048xui32> loc(#loc264) | |
| %1226 = mhlo.shift_right_logical %1223, %1225 : tensor<256x2048xui32> loc(#loc264) | |
| %1227 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc0) | |
| %1228 = "mhlo.broadcast_in_dim"(%1227) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<256x2048xui32> loc(#loc265) | |
| %1229 = mhlo.or %1226, %1228 : tensor<256x2048xui32> loc(#loc265) | |
| %1230 = "mhlo.bitcast_convert"(%1229) : (tensor<256x2048xui32>) -> tensor<256x2048xf32> loc(#loc268) | |
| %1231 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %1232 = "mhlo.broadcast_in_dim"(%1231) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<256x2048xf32> loc(#loc269) | |
| %1233 = mhlo.subtract %1230, %1232 : tensor<256x2048xf32> loc(#loc269) | |
| %1234 = mhlo.subtract %992, %990 : tensor<1x1xf32> loc(#loc269) | |
| %1235 = "mhlo.broadcast_in_dim"(%1234) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<256x2048xf32> loc(#loc270) | |
| %1236 = mhlo.multiply %1233, %1235 : tensor<256x2048xf32> loc(#loc270) | |
| %1237 = "mhlo.broadcast_in_dim"(%990) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<256x2048xf32> loc(#loc262) | |
| %1238 = mhlo.add %1236, %1237 : tensor<256x2048xf32> loc(#loc262) | |
| %1239 = "mhlo.broadcast_in_dim"(%990) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<256x2048xf32> loc(#loc271) | |
| %1240 = mhlo.maximum %1239, %1238 : tensor<256x2048xf32> loc(#loc271) | |
| %1241 = call @erf_inv_15(%1240) : (tensor<256x2048xf32>) -> tensor<256x2048xf32> loc(#loc272) | |
| %1242 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc0) | |
| %1243 = "mhlo.broadcast_in_dim"(%1242) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<256x2048xf32> loc(#loc270) | |
| %1244 = mhlo.multiply %1241, %1243 : tensor<256x2048xf32> loc(#loc270) | |
| %1245 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc0) | |
| %1246 = "mhlo.broadcast_in_dim"(%1245) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<256x2048xf32> loc(#loc270) | |
| %1247 = mhlo.multiply %1244, %1246 : tensor<256x2048xf32> loc(#loc270) | |
| %1248 = call @_take_16(%1247, %751) : (tensor<256x2048xf32>, tensor<1x256xi32>) -> tensor<1x256x2048xf32> loc(#loc273) | |
| %1249 = mhlo.add %748, %1248 : tensor<1x256x2048xf32> loc(#loc274) | |
| %1250 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc275) | |
| %1251 = mhlo.reduce(%1249 init: %1250) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc275) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc275) | |
| } loc(#loc275) | |
| %1252 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %1253 = "mhlo.broadcast_in_dim"(%1252) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc276) | |
| %1254 = mhlo.divide %1251, %1253 : tensor<1x256xf32> loc(#loc276) | |
| %1255 = mhlo.multiply %1249, %1249 : tensor<1x256x2048xf32> loc(#loc277) | |
| %1256 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc278) | |
| %1257 = mhlo.reduce(%1255 init: %1256) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %5188 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc278) | |
| "mhlo.return"(%5188) : (tensor<f32>) -> () loc(#loc278) | |
| } loc(#loc278) | |
| %1258 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc0) | |
| %1259 = "mhlo.broadcast_in_dim"(%1258) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc279) | |
| %1260 = mhlo.divide %1257, %1259 : tensor<1x256xf32> loc(#loc279) | |
| %1261 = mhlo.multiply %1254, %1254 : tensor<1x256xf32> loc(#loc277) | |
| %1262 = mhlo.subtract %1260, %1261 : tensor<1x256xf32> loc(#loc280) | |
| %1263 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc0) | |
| %1264 = "mhlo.broadcast_in_dim"(%1263) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc281) | |
| %1265 = mhlo.maximum %1264, %1262 : tensor<1x256xf32> loc(#loc281) | |
| %1266 = "mhlo.reshape"(%1254) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc282) | |
| %1267 = "mhlo.reshape"(%1265) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc283) | |
| %1268 = "mhlo.broadcast_in_dim"(%1266) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc284) | |
| %1269 = mhlo.subtract %1249, %1268 : tensor<1x256x2048xf32> loc(#loc284) | |
| %1270 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc0) | |
| %1271 = "mhlo.broadcast_in_dim"(%1270) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256x1xf32> loc(#loc285) | |
| %1272 = mhlo.add %1267, %1271 : tensor<1x256x1xf32> loc(#loc285) | |
| %1273 = mhlo.rsqrt %1272 : tensor<1x256x1xf32> loc(#loc286) | |
| %1274 = mhlo.constant dense<584169612> : tensor<ui32> loc(#loc0) | |
| %1275 = mhlo.constant dense<32> : tensor<ui32> loc(#loc0) | |
| %1276 = mhlo.shift_right_logical %1274, %1275 : tensor<ui32> loc(#loc287) | |
| %1277 = "mhlo.reshape"(%1276) : (tensor<ui32>) -> tensor<1xui32> loc(#loc288) | |
| %1278 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc0) | |
| %1279 = mhlo.and %1274, %1278 : tensor<ui32> loc(#loc289) | |
| %1280 = "mhlo.reshape"(%1279) : (tensor<ui32>) -> tensor<1xui32> loc(#loc288) | |
| %1281 = "mhlo.concatenate"(%1277, %1280) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc290) | |
| %1282 = "mhlo.slice"(%248) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc291) | |
| %1283 = "mhlo.reshape"(%1282) : (tensor<1xui32>) -> tensor<ui32> loc(#loc292) | |
| %1284 = "mhlo.slice"(%248) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc293) | |
| %1285 = "mhlo.reshape"(%1284) : (tensor<1xui32>) -> tensor<ui32> loc(#loc292) | |
| %1286 = "mhlo.slice"(%1281) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc294) | |
| %1287 = "mhlo.slice"(%1281) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc295) | |
| %1288 = mhlo.xor %1283, %1285 : tensor<ui32> loc(#loc296) | |
| %1289 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc297) | |
| %1290 = mhlo.xor %1288, %1289 : tensor<ui32> loc(#loc296) | |
| %1291 = "mhlo.broadcast_in_dim"(%1283) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1292 = mhlo.add %1286, %1291 : tensor<1xui32> loc(#loc298) | |
| %1293 = "mhlo.broadcast_in_dim"(%1285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1294 = mhlo.add %1287, %1293 : tensor<1xui32> loc(#loc298) | |
| %1295 = mhlo.add %1292, %1294 : tensor<1xui32> loc(#loc298) | |
| %1296 = mhlo.constant dense<13> : tensor<ui32> loc(#loc297) | |
| %1297 = "mhlo.broadcast_in_dim"(%1296) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1298 = mhlo.shift_left %1294, %1297 : tensor<1xui32> loc(#loc299) | |
| %1299 = mhlo.constant dense<19> : tensor<ui32> loc(#loc297) | |
| %1300 = "mhlo.broadcast_in_dim"(%1299) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1301 = mhlo.shift_right_logical %1294, %1300 : tensor<1xui32> loc(#loc287) | |
| %1302 = mhlo.or %1298, %1301 : tensor<1xui32> loc(#loc300) | |
| %1303 = mhlo.xor %1295, %1302 : tensor<1xui32> loc(#loc296) | |
| %1304 = mhlo.add %1295, %1303 : tensor<1xui32> loc(#loc298) | |
| %1305 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1306 = "mhlo.broadcast_in_dim"(%1305) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1307 = mhlo.shift_left %1303, %1306 : tensor<1xui32> loc(#loc299) | |
| %1308 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1309 = "mhlo.broadcast_in_dim"(%1308) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1310 = mhlo.shift_right_logical %1303, %1309 : tensor<1xui32> loc(#loc287) | |
| %1311 = mhlo.or %1307, %1310 : tensor<1xui32> loc(#loc300) | |
| %1312 = mhlo.xor %1304, %1311 : tensor<1xui32> loc(#loc296) | |
| %1313 = mhlo.add %1304, %1312 : tensor<1xui32> loc(#loc298) | |
| %1314 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1315 = "mhlo.broadcast_in_dim"(%1314) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1316 = mhlo.shift_left %1312, %1315 : tensor<1xui32> loc(#loc299) | |
| %1317 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1318 = "mhlo.broadcast_in_dim"(%1317) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1319 = mhlo.shift_right_logical %1312, %1318 : tensor<1xui32> loc(#loc287) | |
| %1320 = mhlo.or %1316, %1319 : tensor<1xui32> loc(#loc300) | |
| %1321 = mhlo.xor %1313, %1320 : tensor<1xui32> loc(#loc296) | |
| %1322 = mhlo.add %1313, %1321 : tensor<1xui32> loc(#loc298) | |
| %1323 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1324 = "mhlo.broadcast_in_dim"(%1323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1325 = mhlo.shift_left %1321, %1324 : tensor<1xui32> loc(#loc299) | |
| %1326 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1327 = "mhlo.broadcast_in_dim"(%1326) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1328 = mhlo.shift_right_logical %1321, %1327 : tensor<1xui32> loc(#loc287) | |
| %1329 = mhlo.or %1325, %1328 : tensor<1xui32> loc(#loc300) | |
| %1330 = mhlo.xor %1322, %1329 : tensor<1xui32> loc(#loc296) | |
| %1331 = "mhlo.broadcast_in_dim"(%1285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1332 = mhlo.add %1322, %1331 : tensor<1xui32> loc(#loc298) | |
| %1333 = "mhlo.broadcast_in_dim"(%1290) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1334 = mhlo.add %1330, %1333 : tensor<1xui32> loc(#loc298) | |
| %1335 = mhlo.constant dense<1> : tensor<ui32> loc(#loc297) | |
| %1336 = "mhlo.broadcast_in_dim"(%1335) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1337 = mhlo.add %1334, %1336 : tensor<1xui32> loc(#loc298) | |
| %1338 = mhlo.add %1332, %1337 : tensor<1xui32> loc(#loc298) | |
| %1339 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1340 = "mhlo.broadcast_in_dim"(%1339) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1341 = mhlo.shift_left %1337, %1340 : tensor<1xui32> loc(#loc299) | |
| %1342 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1343 = "mhlo.broadcast_in_dim"(%1342) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1344 = mhlo.shift_right_logical %1337, %1343 : tensor<1xui32> loc(#loc287) | |
| %1345 = mhlo.or %1341, %1344 : tensor<1xui32> loc(#loc300) | |
| %1346 = mhlo.xor %1338, %1345 : tensor<1xui32> loc(#loc296) | |
| %1347 = mhlo.add %1338, %1346 : tensor<1xui32> loc(#loc298) | |
| %1348 = mhlo.constant dense<29> : tensor<ui32> loc(#loc297) | |
| %1349 = "mhlo.broadcast_in_dim"(%1348) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1350 = mhlo.shift_left %1346, %1349 : tensor<1xui32> loc(#loc299) | |
| %1351 = mhlo.constant dense<3> : tensor<ui32> loc(#loc297) | |
| %1352 = "mhlo.broadcast_in_dim"(%1351) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1353 = mhlo.shift_right_logical %1346, %1352 : tensor<1xui32> loc(#loc287) | |
| %1354 = mhlo.or %1350, %1353 : tensor<1xui32> loc(#loc300) | |
| %1355 = mhlo.xor %1347, %1354 : tensor<1xui32> loc(#loc296) | |
| %1356 = mhlo.add %1347, %1355 : tensor<1xui32> loc(#loc298) | |
| %1357 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1358 = "mhlo.broadcast_in_dim"(%1357) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1359 = mhlo.shift_left %1355, %1358 : tensor<1xui32> loc(#loc299) | |
| %1360 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1361 = "mhlo.broadcast_in_dim"(%1360) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1362 = mhlo.shift_right_logical %1355, %1361 : tensor<1xui32> loc(#loc287) | |
| %1363 = mhlo.or %1359, %1362 : tensor<1xui32> loc(#loc300) | |
| %1364 = mhlo.xor %1356, %1363 : tensor<1xui32> loc(#loc296) | |
| %1365 = mhlo.add %1356, %1364 : tensor<1xui32> loc(#loc298) | |
| %1366 = mhlo.constant dense<24> : tensor<ui32> loc(#loc297) | |
| %1367 = "mhlo.broadcast_in_dim"(%1366) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1368 = mhlo.shift_left %1364, %1367 : tensor<1xui32> loc(#loc299) | |
| %1369 = mhlo.constant dense<8> : tensor<ui32> loc(#loc297) | |
| %1370 = "mhlo.broadcast_in_dim"(%1369) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1371 = mhlo.shift_right_logical %1364, %1370 : tensor<1xui32> loc(#loc287) | |
| %1372 = mhlo.or %1368, %1371 : tensor<1xui32> loc(#loc300) | |
| %1373 = mhlo.xor %1365, %1372 : tensor<1xui32> loc(#loc296) | |
| %1374 = "mhlo.broadcast_in_dim"(%1290) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1375 = mhlo.add %1365, %1374 : tensor<1xui32> loc(#loc298) | |
| %1376 = "mhlo.broadcast_in_dim"(%1283) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1377 = mhlo.add %1373, %1376 : tensor<1xui32> loc(#loc298) | |
| %1378 = mhlo.constant dense<2> : tensor<ui32> loc(#loc297) | |
| %1379 = "mhlo.broadcast_in_dim"(%1378) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1380 = mhlo.add %1377, %1379 : tensor<1xui32> loc(#loc298) | |
| %1381 = mhlo.add %1375, %1380 : tensor<1xui32> loc(#loc298) | |
| %1382 = mhlo.constant dense<13> : tensor<ui32> loc(#loc297) | |
| %1383 = "mhlo.broadcast_in_dim"(%1382) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1384 = mhlo.shift_left %1380, %1383 : tensor<1xui32> loc(#loc299) | |
| %1385 = mhlo.constant dense<19> : tensor<ui32> loc(#loc297) | |
| %1386 = "mhlo.broadcast_in_dim"(%1385) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1387 = mhlo.shift_right_logical %1380, %1386 : tensor<1xui32> loc(#loc287) | |
| %1388 = mhlo.or %1384, %1387 : tensor<1xui32> loc(#loc300) | |
| %1389 = mhlo.xor %1381, %1388 : tensor<1xui32> loc(#loc296) | |
| %1390 = mhlo.add %1381, %1389 : tensor<1xui32> loc(#loc298) | |
| %1391 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1392 = "mhlo.broadcast_in_dim"(%1391) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1393 = mhlo.shift_left %1389, %1392 : tensor<1xui32> loc(#loc299) | |
| %1394 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1395 = "mhlo.broadcast_in_dim"(%1394) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1396 = mhlo.shift_right_logical %1389, %1395 : tensor<1xui32> loc(#loc287) | |
| %1397 = mhlo.or %1393, %1396 : tensor<1xui32> loc(#loc300) | |
| %1398 = mhlo.xor %1390, %1397 : tensor<1xui32> loc(#loc296) | |
| %1399 = mhlo.add %1390, %1398 : tensor<1xui32> loc(#loc298) | |
| %1400 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1401 = "mhlo.broadcast_in_dim"(%1400) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1402 = mhlo.shift_left %1398, %1401 : tensor<1xui32> loc(#loc299) | |
| %1403 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1404 = "mhlo.broadcast_in_dim"(%1403) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1405 = mhlo.shift_right_logical %1398, %1404 : tensor<1xui32> loc(#loc287) | |
| %1406 = mhlo.or %1402, %1405 : tensor<1xui32> loc(#loc300) | |
| %1407 = mhlo.xor %1399, %1406 : tensor<1xui32> loc(#loc296) | |
| %1408 = mhlo.add %1399, %1407 : tensor<1xui32> loc(#loc298) | |
| %1409 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1410 = "mhlo.broadcast_in_dim"(%1409) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1411 = mhlo.shift_left %1407, %1410 : tensor<1xui32> loc(#loc299) | |
| %1412 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1413 = "mhlo.broadcast_in_dim"(%1412) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1414 = mhlo.shift_right_logical %1407, %1413 : tensor<1xui32> loc(#loc287) | |
| %1415 = mhlo.or %1411, %1414 : tensor<1xui32> loc(#loc300) | |
| %1416 = mhlo.xor %1408, %1415 : tensor<1xui32> loc(#loc296) | |
| %1417 = "mhlo.broadcast_in_dim"(%1283) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1418 = mhlo.add %1408, %1417 : tensor<1xui32> loc(#loc298) | |
| %1419 = "mhlo.broadcast_in_dim"(%1285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1420 = mhlo.add %1416, %1419 : tensor<1xui32> loc(#loc298) | |
| %1421 = mhlo.constant dense<3> : tensor<ui32> loc(#loc297) | |
| %1422 = "mhlo.broadcast_in_dim"(%1421) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1423 = mhlo.add %1420, %1422 : tensor<1xui32> loc(#loc298) | |
| %1424 = mhlo.add %1418, %1423 : tensor<1xui32> loc(#loc298) | |
| %1425 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1426 = "mhlo.broadcast_in_dim"(%1425) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1427 = mhlo.shift_left %1423, %1426 : tensor<1xui32> loc(#loc299) | |
| %1428 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1429 = "mhlo.broadcast_in_dim"(%1428) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1430 = mhlo.shift_right_logical %1423, %1429 : tensor<1xui32> loc(#loc287) | |
| %1431 = mhlo.or %1427, %1430 : tensor<1xui32> loc(#loc300) | |
| %1432 = mhlo.xor %1424, %1431 : tensor<1xui32> loc(#loc296) | |
| %1433 = mhlo.add %1424, %1432 : tensor<1xui32> loc(#loc298) | |
| %1434 = mhlo.constant dense<29> : tensor<ui32> loc(#loc297) | |
| %1435 = "mhlo.broadcast_in_dim"(%1434) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1436 = mhlo.shift_left %1432, %1435 : tensor<1xui32> loc(#loc299) | |
| %1437 = mhlo.constant dense<3> : tensor<ui32> loc(#loc297) | |
| %1438 = "mhlo.broadcast_in_dim"(%1437) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1439 = mhlo.shift_right_logical %1432, %1438 : tensor<1xui32> loc(#loc287) | |
| %1440 = mhlo.or %1436, %1439 : tensor<1xui32> loc(#loc300) | |
| %1441 = mhlo.xor %1433, %1440 : tensor<1xui32> loc(#loc296) | |
| %1442 = mhlo.add %1433, %1441 : tensor<1xui32> loc(#loc298) | |
| %1443 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1444 = "mhlo.broadcast_in_dim"(%1443) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1445 = mhlo.shift_left %1441, %1444 : tensor<1xui32> loc(#loc299) | |
| %1446 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1447 = "mhlo.broadcast_in_dim"(%1446) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1448 = mhlo.shift_right_logical %1441, %1447 : tensor<1xui32> loc(#loc287) | |
| %1449 = mhlo.or %1445, %1448 : tensor<1xui32> loc(#loc300) | |
| %1450 = mhlo.xor %1442, %1449 : tensor<1xui32> loc(#loc296) | |
| %1451 = mhlo.add %1442, %1450 : tensor<1xui32> loc(#loc298) | |
| %1452 = mhlo.constant dense<24> : tensor<ui32> loc(#loc297) | |
| %1453 = "mhlo.broadcast_in_dim"(%1452) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1454 = mhlo.shift_left %1450, %1453 : tensor<1xui32> loc(#loc299) | |
| %1455 = mhlo.constant dense<8> : tensor<ui32> loc(#loc297) | |
| %1456 = "mhlo.broadcast_in_dim"(%1455) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1457 = mhlo.shift_right_logical %1450, %1456 : tensor<1xui32> loc(#loc287) | |
| %1458 = mhlo.or %1454, %1457 : tensor<1xui32> loc(#loc300) | |
| %1459 = mhlo.xor %1451, %1458 : tensor<1xui32> loc(#loc296) | |
| %1460 = "mhlo.broadcast_in_dim"(%1285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1461 = mhlo.add %1451, %1460 : tensor<1xui32> loc(#loc298) | |
| %1462 = "mhlo.broadcast_in_dim"(%1290) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1463 = mhlo.add %1459, %1462 : tensor<1xui32> loc(#loc298) | |
| %1464 = mhlo.constant dense<4> : tensor<ui32> loc(#loc297) | |
| %1465 = "mhlo.broadcast_in_dim"(%1464) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1466 = mhlo.add %1463, %1465 : tensor<1xui32> loc(#loc298) | |
| %1467 = mhlo.add %1461, %1466 : tensor<1xui32> loc(#loc298) | |
| %1468 = mhlo.constant dense<13> : tensor<ui32> loc(#loc297) | |
| %1469 = "mhlo.broadcast_in_dim"(%1468) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1470 = mhlo.shift_left %1466, %1469 : tensor<1xui32> loc(#loc299) | |
| %1471 = mhlo.constant dense<19> : tensor<ui32> loc(#loc297) | |
| %1472 = "mhlo.broadcast_in_dim"(%1471) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1473 = mhlo.shift_right_logical %1466, %1472 : tensor<1xui32> loc(#loc287) | |
| %1474 = mhlo.or %1470, %1473 : tensor<1xui32> loc(#loc300) | |
| %1475 = mhlo.xor %1467, %1474 : tensor<1xui32> loc(#loc296) | |
| %1476 = mhlo.add %1467, %1475 : tensor<1xui32> loc(#loc298) | |
| %1477 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1478 = "mhlo.broadcast_in_dim"(%1477) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1479 = mhlo.shift_left %1475, %1478 : tensor<1xui32> loc(#loc299) | |
| %1480 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1481 = "mhlo.broadcast_in_dim"(%1480) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1482 = mhlo.shift_right_logical %1475, %1481 : tensor<1xui32> loc(#loc287) | |
| %1483 = mhlo.or %1479, %1482 : tensor<1xui32> loc(#loc300) | |
| %1484 = mhlo.xor %1476, %1483 : tensor<1xui32> loc(#loc296) | |
| %1485 = mhlo.add %1476, %1484 : tensor<1xui32> loc(#loc298) | |
| %1486 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1487 = "mhlo.broadcast_in_dim"(%1486) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1488 = mhlo.shift_left %1484, %1487 : tensor<1xui32> loc(#loc299) | |
| %1489 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1490 = "mhlo.broadcast_in_dim"(%1489) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1491 = mhlo.shift_right_logical %1484, %1490 : tensor<1xui32> loc(#loc287) | |
| %1492 = mhlo.or %1488, %1491 : tensor<1xui32> loc(#loc300) | |
| %1493 = mhlo.xor %1485, %1492 : tensor<1xui32> loc(#loc296) | |
| %1494 = mhlo.add %1485, %1493 : tensor<1xui32> loc(#loc298) | |
| %1495 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1496 = "mhlo.broadcast_in_dim"(%1495) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1497 = mhlo.shift_left %1493, %1496 : tensor<1xui32> loc(#loc299) | |
| %1498 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1499 = "mhlo.broadcast_in_dim"(%1498) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1500 = mhlo.shift_right_logical %1493, %1499 : tensor<1xui32> loc(#loc287) | |
| %1501 = mhlo.or %1497, %1500 : tensor<1xui32> loc(#loc300) | |
| %1502 = mhlo.xor %1494, %1501 : tensor<1xui32> loc(#loc296) | |
| %1503 = "mhlo.broadcast_in_dim"(%1290) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1504 = mhlo.add %1494, %1503 : tensor<1xui32> loc(#loc298) | |
| %1505 = "mhlo.broadcast_in_dim"(%1283) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1506 = mhlo.add %1502, %1505 : tensor<1xui32> loc(#loc298) | |
| %1507 = mhlo.constant dense<5> : tensor<ui32> loc(#loc297) | |
| %1508 = "mhlo.broadcast_in_dim"(%1507) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1509 = mhlo.add %1506, %1508 : tensor<1xui32> loc(#loc298) | |
| %1510 = "mhlo.concatenate"(%1504, %1509) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc290) | |
| %1511 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc0) | |
| %1512 = "mhlo.broadcast_in_dim"(%1511) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc301) | |
| %1513 = "mhlo.reshape"(%1512) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc302) | |
| %1514 = "mhlo.broadcast_in_dim"(%1273) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc303) | |
| %1515 = "mhlo.broadcast_in_dim"(%1513) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc303) | |
| %1516 = mhlo.multiply %1514, %1515 : tensor<1x256x2048xf32> loc(#loc303) | |
| %1517 = mhlo.multiply %1269, %1516 : tensor<1x256x2048xf32> loc(#loc304) | |
| %1518 = mhlo.constant dense<161557010> : tensor<ui32> loc(#loc0) | |
| %1519 = mhlo.constant dense<32> : tensor<ui32> loc(#loc0) | |
| %1520 = mhlo.shift_right_logical %1518, %1519 : tensor<ui32> loc(#loc287) | |
| %1521 = "mhlo.reshape"(%1520) : (tensor<ui32>) -> tensor<1xui32> loc(#loc288) | |
| %1522 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc0) | |
| %1523 = mhlo.and %1518, %1522 : tensor<ui32> loc(#loc289) | |
| %1524 = "mhlo.reshape"(%1523) : (tensor<ui32>) -> tensor<1xui32> loc(#loc288) | |
| %1525 = "mhlo.concatenate"(%1521, %1524) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc290) | |
| %1526 = "mhlo.slice"(%248) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc291) | |
| %1527 = "mhlo.reshape"(%1526) : (tensor<1xui32>) -> tensor<ui32> loc(#loc292) | |
| %1528 = "mhlo.slice"(%248) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc293) | |
| %1529 = "mhlo.reshape"(%1528) : (tensor<1xui32>) -> tensor<ui32> loc(#loc292) | |
| %1530 = "mhlo.slice"(%1525) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc294) | |
| %1531 = "mhlo.slice"(%1525) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc295) | |
| %1532 = mhlo.xor %1527, %1529 : tensor<ui32> loc(#loc296) | |
| %1533 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc297) | |
| %1534 = mhlo.xor %1532, %1533 : tensor<ui32> loc(#loc296) | |
| %1535 = "mhlo.broadcast_in_dim"(%1527) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1536 = mhlo.add %1530, %1535 : tensor<1xui32> loc(#loc298) | |
| %1537 = "mhlo.broadcast_in_dim"(%1529) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1538 = mhlo.add %1531, %1537 : tensor<1xui32> loc(#loc298) | |
| %1539 = mhlo.add %1536, %1538 : tensor<1xui32> loc(#loc298) | |
| %1540 = mhlo.constant dense<13> : tensor<ui32> loc(#loc297) | |
| %1541 = "mhlo.broadcast_in_dim"(%1540) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1542 = mhlo.shift_left %1538, %1541 : tensor<1xui32> loc(#loc299) | |
| %1543 = mhlo.constant dense<19> : tensor<ui32> loc(#loc297) | |
| %1544 = "mhlo.broadcast_in_dim"(%1543) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1545 = mhlo.shift_right_logical %1538, %1544 : tensor<1xui32> loc(#loc287) | |
| %1546 = mhlo.or %1542, %1545 : tensor<1xui32> loc(#loc300) | |
| %1547 = mhlo.xor %1539, %1546 : tensor<1xui32> loc(#loc296) | |
| %1548 = mhlo.add %1539, %1547 : tensor<1xui32> loc(#loc298) | |
| %1549 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1550 = "mhlo.broadcast_in_dim"(%1549) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1551 = mhlo.shift_left %1547, %1550 : tensor<1xui32> loc(#loc299) | |
| %1552 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1553 = "mhlo.broadcast_in_dim"(%1552) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1554 = mhlo.shift_right_logical %1547, %1553 : tensor<1xui32> loc(#loc287) | |
| %1555 = mhlo.or %1551, %1554 : tensor<1xui32> loc(#loc300) | |
| %1556 = mhlo.xor %1548, %1555 : tensor<1xui32> loc(#loc296) | |
| %1557 = mhlo.add %1548, %1556 : tensor<1xui32> loc(#loc298) | |
| %1558 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1559 = "mhlo.broadcast_in_dim"(%1558) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1560 = mhlo.shift_left %1556, %1559 : tensor<1xui32> loc(#loc299) | |
| %1561 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1562 = "mhlo.broadcast_in_dim"(%1561) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1563 = mhlo.shift_right_logical %1556, %1562 : tensor<1xui32> loc(#loc287) | |
| %1564 = mhlo.or %1560, %1563 : tensor<1xui32> loc(#loc300) | |
| %1565 = mhlo.xor %1557, %1564 : tensor<1xui32> loc(#loc296) | |
| %1566 = mhlo.add %1557, %1565 : tensor<1xui32> loc(#loc298) | |
| %1567 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1568 = "mhlo.broadcast_in_dim"(%1567) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1569 = mhlo.shift_left %1565, %1568 : tensor<1xui32> loc(#loc299) | |
| %1570 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1571 = "mhlo.broadcast_in_dim"(%1570) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1572 = mhlo.shift_right_logical %1565, %1571 : tensor<1xui32> loc(#loc287) | |
| %1573 = mhlo.or %1569, %1572 : tensor<1xui32> loc(#loc300) | |
| %1574 = mhlo.xor %1566, %1573 : tensor<1xui32> loc(#loc296) | |
| %1575 = "mhlo.broadcast_in_dim"(%1529) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1576 = mhlo.add %1566, %1575 : tensor<1xui32> loc(#loc298) | |
| %1577 = "mhlo.broadcast_in_dim"(%1534) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1578 = mhlo.add %1574, %1577 : tensor<1xui32> loc(#loc298) | |
| %1579 = mhlo.constant dense<1> : tensor<ui32> loc(#loc297) | |
| %1580 = "mhlo.broadcast_in_dim"(%1579) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1581 = mhlo.add %1578, %1580 : tensor<1xui32> loc(#loc298) | |
| %1582 = mhlo.add %1576, %1581 : tensor<1xui32> loc(#loc298) | |
| %1583 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1584 = "mhlo.broadcast_in_dim"(%1583) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1585 = mhlo.shift_left %1581, %1584 : tensor<1xui32> loc(#loc299) | |
| %1586 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1587 = "mhlo.broadcast_in_dim"(%1586) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1588 = mhlo.shift_right_logical %1581, %1587 : tensor<1xui32> loc(#loc287) | |
| %1589 = mhlo.or %1585, %1588 : tensor<1xui32> loc(#loc300) | |
| %1590 = mhlo.xor %1582, %1589 : tensor<1xui32> loc(#loc296) | |
| %1591 = mhlo.add %1582, %1590 : tensor<1xui32> loc(#loc298) | |
| %1592 = mhlo.constant dense<29> : tensor<ui32> loc(#loc297) | |
| %1593 = "mhlo.broadcast_in_dim"(%1592) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1594 = mhlo.shift_left %1590, %1593 : tensor<1xui32> loc(#loc299) | |
| %1595 = mhlo.constant dense<3> : tensor<ui32> loc(#loc297) | |
| %1596 = "mhlo.broadcast_in_dim"(%1595) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1597 = mhlo.shift_right_logical %1590, %1596 : tensor<1xui32> loc(#loc287) | |
| %1598 = mhlo.or %1594, %1597 : tensor<1xui32> loc(#loc300) | |
| %1599 = mhlo.xor %1591, %1598 : tensor<1xui32> loc(#loc296) | |
| %1600 = mhlo.add %1591, %1599 : tensor<1xui32> loc(#loc298) | |
| %1601 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1602 = "mhlo.broadcast_in_dim"(%1601) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1603 = mhlo.shift_left %1599, %1602 : tensor<1xui32> loc(#loc299) | |
| %1604 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1605 = "mhlo.broadcast_in_dim"(%1604) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1606 = mhlo.shift_right_logical %1599, %1605 : tensor<1xui32> loc(#loc287) | |
| %1607 = mhlo.or %1603, %1606 : tensor<1xui32> loc(#loc300) | |
| %1608 = mhlo.xor %1600, %1607 : tensor<1xui32> loc(#loc296) | |
| %1609 = mhlo.add %1600, %1608 : tensor<1xui32> loc(#loc298) | |
| %1610 = mhlo.constant dense<24> : tensor<ui32> loc(#loc297) | |
| %1611 = "mhlo.broadcast_in_dim"(%1610) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1612 = mhlo.shift_left %1608, %1611 : tensor<1xui32> loc(#loc299) | |
| %1613 = mhlo.constant dense<8> : tensor<ui32> loc(#loc297) | |
| %1614 = "mhlo.broadcast_in_dim"(%1613) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1615 = mhlo.shift_right_logical %1608, %1614 : tensor<1xui32> loc(#loc287) | |
| %1616 = mhlo.or %1612, %1615 : tensor<1xui32> loc(#loc300) | |
| %1617 = mhlo.xor %1609, %1616 : tensor<1xui32> loc(#loc296) | |
| %1618 = "mhlo.broadcast_in_dim"(%1534) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1619 = mhlo.add %1609, %1618 : tensor<1xui32> loc(#loc298) | |
| %1620 = "mhlo.broadcast_in_dim"(%1527) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1621 = mhlo.add %1617, %1620 : tensor<1xui32> loc(#loc298) | |
| %1622 = mhlo.constant dense<2> : tensor<ui32> loc(#loc297) | |
| %1623 = "mhlo.broadcast_in_dim"(%1622) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1624 = mhlo.add %1621, %1623 : tensor<1xui32> loc(#loc298) | |
| %1625 = mhlo.add %1619, %1624 : tensor<1xui32> loc(#loc298) | |
| %1626 = mhlo.constant dense<13> : tensor<ui32> loc(#loc297) | |
| %1627 = "mhlo.broadcast_in_dim"(%1626) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1628 = mhlo.shift_left %1624, %1627 : tensor<1xui32> loc(#loc299) | |
| %1629 = mhlo.constant dense<19> : tensor<ui32> loc(#loc297) | |
| %1630 = "mhlo.broadcast_in_dim"(%1629) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1631 = mhlo.shift_right_logical %1624, %1630 : tensor<1xui32> loc(#loc287) | |
| %1632 = mhlo.or %1628, %1631 : tensor<1xui32> loc(#loc300) | |
| %1633 = mhlo.xor %1625, %1632 : tensor<1xui32> loc(#loc296) | |
| %1634 = mhlo.add %1625, %1633 : tensor<1xui32> loc(#loc298) | |
| %1635 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1636 = "mhlo.broadcast_in_dim"(%1635) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1637 = mhlo.shift_left %1633, %1636 : tensor<1xui32> loc(#loc299) | |
| %1638 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1639 = "mhlo.broadcast_in_dim"(%1638) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1640 = mhlo.shift_right_logical %1633, %1639 : tensor<1xui32> loc(#loc287) | |
| %1641 = mhlo.or %1637, %1640 : tensor<1xui32> loc(#loc300) | |
| %1642 = mhlo.xor %1634, %1641 : tensor<1xui32> loc(#loc296) | |
| %1643 = mhlo.add %1634, %1642 : tensor<1xui32> loc(#loc298) | |
| %1644 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1645 = "mhlo.broadcast_in_dim"(%1644) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1646 = mhlo.shift_left %1642, %1645 : tensor<1xui32> loc(#loc299) | |
| %1647 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1648 = "mhlo.broadcast_in_dim"(%1647) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1649 = mhlo.shift_right_logical %1642, %1648 : tensor<1xui32> loc(#loc287) | |
| %1650 = mhlo.or %1646, %1649 : tensor<1xui32> loc(#loc300) | |
| %1651 = mhlo.xor %1643, %1650 : tensor<1xui32> loc(#loc296) | |
| %1652 = mhlo.add %1643, %1651 : tensor<1xui32> loc(#loc298) | |
| %1653 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1654 = "mhlo.broadcast_in_dim"(%1653) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1655 = mhlo.shift_left %1651, %1654 : tensor<1xui32> loc(#loc299) | |
| %1656 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1657 = "mhlo.broadcast_in_dim"(%1656) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1658 = mhlo.shift_right_logical %1651, %1657 : tensor<1xui32> loc(#loc287) | |
| %1659 = mhlo.or %1655, %1658 : tensor<1xui32> loc(#loc300) | |
| %1660 = mhlo.xor %1652, %1659 : tensor<1xui32> loc(#loc296) | |
| %1661 = "mhlo.broadcast_in_dim"(%1527) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1662 = mhlo.add %1652, %1661 : tensor<1xui32> loc(#loc298) | |
| %1663 = "mhlo.broadcast_in_dim"(%1529) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1664 = mhlo.add %1660, %1663 : tensor<1xui32> loc(#loc298) | |
| %1665 = mhlo.constant dense<3> : tensor<ui32> loc(#loc297) | |
| %1666 = "mhlo.broadcast_in_dim"(%1665) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1667 = mhlo.add %1664, %1666 : tensor<1xui32> loc(#loc298) | |
| %1668 = mhlo.add %1662, %1667 : tensor<1xui32> loc(#loc298) | |
| %1669 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1670 = "mhlo.broadcast_in_dim"(%1669) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1671 = mhlo.shift_left %1667, %1670 : tensor<1xui32> loc(#loc299) | |
| %1672 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1673 = "mhlo.broadcast_in_dim"(%1672) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1674 = mhlo.shift_right_logical %1667, %1673 : tensor<1xui32> loc(#loc287) | |
| %1675 = mhlo.or %1671, %1674 : tensor<1xui32> loc(#loc300) | |
| %1676 = mhlo.xor %1668, %1675 : tensor<1xui32> loc(#loc296) | |
| %1677 = mhlo.add %1668, %1676 : tensor<1xui32> loc(#loc298) | |
| %1678 = mhlo.constant dense<29> : tensor<ui32> loc(#loc297) | |
| %1679 = "mhlo.broadcast_in_dim"(%1678) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1680 = mhlo.shift_left %1676, %1679 : tensor<1xui32> loc(#loc299) | |
| %1681 = mhlo.constant dense<3> : tensor<ui32> loc(#loc297) | |
| %1682 = "mhlo.broadcast_in_dim"(%1681) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1683 = mhlo.shift_right_logical %1676, %1682 : tensor<1xui32> loc(#loc287) | |
| %1684 = mhlo.or %1680, %1683 : tensor<1xui32> loc(#loc300) | |
| %1685 = mhlo.xor %1677, %1684 : tensor<1xui32> loc(#loc296) | |
| %1686 = mhlo.add %1677, %1685 : tensor<1xui32> loc(#loc298) | |
| %1687 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1688 = "mhlo.broadcast_in_dim"(%1687) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1689 = mhlo.shift_left %1685, %1688 : tensor<1xui32> loc(#loc299) | |
| %1690 = mhlo.constant dense<16> : tensor<ui32> loc(#loc297) | |
| %1691 = "mhlo.broadcast_in_dim"(%1690) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1692 = mhlo.shift_right_logical %1685, %1691 : tensor<1xui32> loc(#loc287) | |
| %1693 = mhlo.or %1689, %1692 : tensor<1xui32> loc(#loc300) | |
| %1694 = mhlo.xor %1686, %1693 : tensor<1xui32> loc(#loc296) | |
| %1695 = mhlo.add %1686, %1694 : tensor<1xui32> loc(#loc298) | |
| %1696 = mhlo.constant dense<24> : tensor<ui32> loc(#loc297) | |
| %1697 = "mhlo.broadcast_in_dim"(%1696) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1698 = mhlo.shift_left %1694, %1697 : tensor<1xui32> loc(#loc299) | |
| %1699 = mhlo.constant dense<8> : tensor<ui32> loc(#loc297) | |
| %1700 = "mhlo.broadcast_in_dim"(%1699) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1701 = mhlo.shift_right_logical %1694, %1700 : tensor<1xui32> loc(#loc287) | |
| %1702 = mhlo.or %1698, %1701 : tensor<1xui32> loc(#loc300) | |
| %1703 = mhlo.xor %1695, %1702 : tensor<1xui32> loc(#loc296) | |
| %1704 = "mhlo.broadcast_in_dim"(%1529) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1705 = mhlo.add %1695, %1704 : tensor<1xui32> loc(#loc298) | |
| %1706 = "mhlo.broadcast_in_dim"(%1534) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1707 = mhlo.add %1703, %1706 : tensor<1xui32> loc(#loc298) | |
| %1708 = mhlo.constant dense<4> : tensor<ui32> loc(#loc297) | |
| %1709 = "mhlo.broadcast_in_dim"(%1708) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1710 = mhlo.add %1707, %1709 : tensor<1xui32> loc(#loc298) | |
| %1711 = mhlo.add %1705, %1710 : tensor<1xui32> loc(#loc298) | |
| %1712 = mhlo.constant dense<13> : tensor<ui32> loc(#loc297) | |
| %1713 = "mhlo.broadcast_in_dim"(%1712) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1714 = mhlo.shift_left %1710, %1713 : tensor<1xui32> loc(#loc299) | |
| %1715 = mhlo.constant dense<19> : tensor<ui32> loc(#loc297) | |
| %1716 = "mhlo.broadcast_in_dim"(%1715) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1717 = mhlo.shift_right_logical %1710, %1716 : tensor<1xui32> loc(#loc287) | |
| %1718 = mhlo.or %1714, %1717 : tensor<1xui32> loc(#loc300) | |
| %1719 = mhlo.xor %1711, %1718 : tensor<1xui32> loc(#loc296) | |
| %1720 = mhlo.add %1711, %1719 : tensor<1xui32> loc(#loc298) | |
| %1721 = mhlo.constant dense<15> : tensor<ui32> loc(#loc297) | |
| %1722 = "mhlo.broadcast_in_dim"(%1721) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1723 = mhlo.shift_left %1719, %1722 : tensor<1xui32> loc(#loc299) | |
| %1724 = mhlo.constant dense<17> : tensor<ui32> loc(#loc297) | |
| %1725 = "mhlo.broadcast_in_dim"(%1724) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1726 = mhlo.shift_right_logical %1719, %1725 : tensor<1xui32> loc(#loc287) | |
| %1727 = mhlo.or %1723, %1726 : tensor<1xui32> loc(#loc300) | |
| %1728 = mhlo.xor %1720, %1727 : tensor<1xui32> loc(#loc296) | |
| %1729 = mhlo.add %1720, %1728 : tensor<1xui32> loc(#loc298) | |
| %1730 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1731 = "mhlo.broadcast_in_dim"(%1730) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1732 = mhlo.shift_left %1728, %1731 : tensor<1xui32> loc(#loc299) | |
| %1733 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1734 = "mhlo.broadcast_in_dim"(%1733) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1735 = mhlo.shift_right_logical %1728, %1734 : tensor<1xui32> loc(#loc287) | |
| %1736 = mhlo.or %1732, %1735 : tensor<1xui32> loc(#loc300) | |
| %1737 = mhlo.xor %1729, %1736 : tensor<1xui32> loc(#loc296) | |
| %1738 = mhlo.add %1729, %1737 : tensor<1xui32> loc(#loc298) | |
| %1739 = mhlo.constant dense<6> : tensor<ui32> loc(#loc297) | |
| %1740 = "mhlo.broadcast_in_dim"(%1739) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc299) | |
| %1741 = mhlo.shift_left %1737, %1740 : tensor<1xui32> loc(#loc299) | |
| %1742 = mhlo.constant dense<26> : tensor<ui32> loc(#loc297) | |
| %1743 = "mhlo.broadcast_in_dim"(%1742) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc287) | |
| %1744 = mhlo.shift_right_logical %1737, %1743 : tensor<1xui32> loc(#loc287) | |
| %1745 = mhlo.or %1741, %1744 : tensor<1xui32> loc(#loc300) | |
| %1746 = mhlo.xor %1738, %1745 : tensor<1xui32> loc(#loc296) | |
| %1747 = "mhlo.broadcast_in_dim"(%1534) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1748 = mhlo.add %1738, %1747 : tensor<1xui32> loc(#loc298) | |
| %1749 = "mhlo.broadcast_in_dim"(%1527) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1750 = mhlo.add %1746, %1749 : tensor<1xui32> loc(#loc298) | |
| %1751 = mhlo.constant dense<5> : tensor<ui32> loc(#loc297) | |
| %1752 = "mhlo.broadcast_in_dim"(%1751) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc298) | |
| %1753 = mhlo.add %1750, %1752 : tensor<1xui32> loc(#loc298) | |
| %1754 = "mhlo.concatenate"(%1748, %1753) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc290) | |
| %1755 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc0) | |
| %1756 = "mhlo.broadcast_in_dim"(%1755) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc301) | |
| %1757 = "mhlo.reshape"(%1756) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc305) | |
| %1758 = "mhlo.broadcast_in_dim"(%1757) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc306) | |
| %1759 = mhlo.add %1517, %1758 : tensor<1x256x2048xf32> loc(#loc306) | |
| %1760 = mhlo.convert(%1759) : (tensor<1x256x2048xf32>) -> tensor<1x256x2048xf16> loc(#loc307) | |
| %1761 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<48xui32> loc(#loc308) | |
| %1762 = "mhlo.slice"(%248) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc309) | |
| %1763 = "mhlo.reshape"(%1762) : (tensor<1xui32>) -> tensor<ui32> loc(#loc310) | |
| %1764 = "mhlo.slice"(%248) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc311) | |
| %1765 = "mhlo.reshape"(%1764) : (tensor<1xui32>) -> tensor<ui32> loc(#loc310) | |
| %1766 = "mhlo.slice"(%1761) {limit_indices = dense<24> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<48xui32>) -> tensor<24xui32> loc(#loc312) | |
| %1767 = "mhlo.slice"(%1761) {limit_indices = dense<48> : tensor<1xi64>, start_indices = dense<24> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<48xui32>) -> tensor<24xui32> loc(#loc313) | |
| %1768 = mhlo.xor %1763, %1765 : tensor<ui32> loc(#loc314) | |
| %1769 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc315) | |
| %1770 = mhlo.xor %1768, %1769 : tensor<ui32> loc(#loc314) | |
| %1771 = "mhlo.broadcast_in_dim"(%1763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1772 = mhlo.add %1766, %1771 : tensor<24xui32> loc(#loc316) | |
| %1773 = "mhlo.broadcast_in_dim"(%1765) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1774 = mhlo.add %1767, %1773 : tensor<24xui32> loc(#loc316) | |
| %1775 = mhlo.add %1772, %1774 : tensor<24xui32> loc(#loc316) | |
| %1776 = mhlo.constant dense<13> : tensor<ui32> loc(#loc315) | |
| %1777 = "mhlo.broadcast_in_dim"(%1776) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1778 = mhlo.shift_left %1774, %1777 : tensor<24xui32> loc(#loc317) | |
| %1779 = mhlo.constant dense<19> : tensor<ui32> loc(#loc315) | |
| %1780 = "mhlo.broadcast_in_dim"(%1779) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1781 = mhlo.shift_right_logical %1774, %1780 : tensor<24xui32> loc(#loc318) | |
| %1782 = mhlo.or %1778, %1781 : tensor<24xui32> loc(#loc319) | |
| %1783 = mhlo.xor %1775, %1782 : tensor<24xui32> loc(#loc314) | |
| %1784 = mhlo.add %1775, %1783 : tensor<24xui32> loc(#loc316) | |
| %1785 = mhlo.constant dense<15> : tensor<ui32> loc(#loc315) | |
| %1786 = "mhlo.broadcast_in_dim"(%1785) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1787 = mhlo.shift_left %1783, %1786 : tensor<24xui32> loc(#loc317) | |
| %1788 = mhlo.constant dense<17> : tensor<ui32> loc(#loc315) | |
| %1789 = "mhlo.broadcast_in_dim"(%1788) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1790 = mhlo.shift_right_logical %1783, %1789 : tensor<24xui32> loc(#loc318) | |
| %1791 = mhlo.or %1787, %1790 : tensor<24xui32> loc(#loc319) | |
| %1792 = mhlo.xor %1784, %1791 : tensor<24xui32> loc(#loc314) | |
| %1793 = mhlo.add %1784, %1792 : tensor<24xui32> loc(#loc316) | |
| %1794 = mhlo.constant dense<26> : tensor<ui32> loc(#loc315) | |
| %1795 = "mhlo.broadcast_in_dim"(%1794) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1796 = mhlo.shift_left %1792, %1795 : tensor<24xui32> loc(#loc317) | |
| %1797 = mhlo.constant dense<6> : tensor<ui32> loc(#loc315) | |
| %1798 = "mhlo.broadcast_in_dim"(%1797) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1799 = mhlo.shift_right_logical %1792, %1798 : tensor<24xui32> loc(#loc318) | |
| %1800 = mhlo.or %1796, %1799 : tensor<24xui32> loc(#loc319) | |
| %1801 = mhlo.xor %1793, %1800 : tensor<24xui32> loc(#loc314) | |
| %1802 = mhlo.add %1793, %1801 : tensor<24xui32> loc(#loc316) | |
| %1803 = mhlo.constant dense<6> : tensor<ui32> loc(#loc315) | |
| %1804 = "mhlo.broadcast_in_dim"(%1803) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1805 = mhlo.shift_left %1801, %1804 : tensor<24xui32> loc(#loc317) | |
| %1806 = mhlo.constant dense<26> : tensor<ui32> loc(#loc315) | |
| %1807 = "mhlo.broadcast_in_dim"(%1806) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1808 = mhlo.shift_right_logical %1801, %1807 : tensor<24xui32> loc(#loc318) | |
| %1809 = mhlo.or %1805, %1808 : tensor<24xui32> loc(#loc319) | |
| %1810 = mhlo.xor %1802, %1809 : tensor<24xui32> loc(#loc314) | |
| %1811 = "mhlo.broadcast_in_dim"(%1765) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1812 = mhlo.add %1802, %1811 : tensor<24xui32> loc(#loc316) | |
| %1813 = "mhlo.broadcast_in_dim"(%1770) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1814 = mhlo.add %1810, %1813 : tensor<24xui32> loc(#loc316) | |
| %1815 = mhlo.constant dense<1> : tensor<ui32> loc(#loc315) | |
| %1816 = "mhlo.broadcast_in_dim"(%1815) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1817 = mhlo.add %1814, %1816 : tensor<24xui32> loc(#loc316) | |
| %1818 = mhlo.add %1812, %1817 : tensor<24xui32> loc(#loc316) | |
| %1819 = mhlo.constant dense<17> : tensor<ui32> loc(#loc315) | |
| %1820 = "mhlo.broadcast_in_dim"(%1819) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1821 = mhlo.shift_left %1817, %1820 : tensor<24xui32> loc(#loc317) | |
| %1822 = mhlo.constant dense<15> : tensor<ui32> loc(#loc315) | |
| %1823 = "mhlo.broadcast_in_dim"(%1822) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1824 = mhlo.shift_right_logical %1817, %1823 : tensor<24xui32> loc(#loc318) | |
| %1825 = mhlo.or %1821, %1824 : tensor<24xui32> loc(#loc319) | |
| %1826 = mhlo.xor %1818, %1825 : tensor<24xui32> loc(#loc314) | |
| %1827 = mhlo.add %1818, %1826 : tensor<24xui32> loc(#loc316) | |
| %1828 = mhlo.constant dense<29> : tensor<ui32> loc(#loc315) | |
| %1829 = "mhlo.broadcast_in_dim"(%1828) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1830 = mhlo.shift_left %1826, %1829 : tensor<24xui32> loc(#loc317) | |
| %1831 = mhlo.constant dense<3> : tensor<ui32> loc(#loc315) | |
| %1832 = "mhlo.broadcast_in_dim"(%1831) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1833 = mhlo.shift_right_logical %1826, %1832 : tensor<24xui32> loc(#loc318) | |
| %1834 = mhlo.or %1830, %1833 : tensor<24xui32> loc(#loc319) | |
| %1835 = mhlo.xor %1827, %1834 : tensor<24xui32> loc(#loc314) | |
| %1836 = mhlo.add %1827, %1835 : tensor<24xui32> loc(#loc316) | |
| %1837 = mhlo.constant dense<16> : tensor<ui32> loc(#loc315) | |
| %1838 = "mhlo.broadcast_in_dim"(%1837) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1839 = mhlo.shift_left %1835, %1838 : tensor<24xui32> loc(#loc317) | |
| %1840 = mhlo.constant dense<16> : tensor<ui32> loc(#loc315) | |
| %1841 = "mhlo.broadcast_in_dim"(%1840) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1842 = mhlo.shift_right_logical %1835, %1841 : tensor<24xui32> loc(#loc318) | |
| %1843 = mhlo.or %1839, %1842 : tensor<24xui32> loc(#loc319) | |
| %1844 = mhlo.xor %1836, %1843 : tensor<24xui32> loc(#loc314) | |
| %1845 = mhlo.add %1836, %1844 : tensor<24xui32> loc(#loc316) | |
| %1846 = mhlo.constant dense<24> : tensor<ui32> loc(#loc315) | |
| %1847 = "mhlo.broadcast_in_dim"(%1846) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1848 = mhlo.shift_left %1844, %1847 : tensor<24xui32> loc(#loc317) | |
| %1849 = mhlo.constant dense<8> : tensor<ui32> loc(#loc315) | |
| %1850 = "mhlo.broadcast_in_dim"(%1849) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1851 = mhlo.shift_right_logical %1844, %1850 : tensor<24xui32> loc(#loc318) | |
| %1852 = mhlo.or %1848, %1851 : tensor<24xui32> loc(#loc319) | |
| %1853 = mhlo.xor %1845, %1852 : tensor<24xui32> loc(#loc314) | |
| %1854 = "mhlo.broadcast_in_dim"(%1770) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1855 = mhlo.add %1845, %1854 : tensor<24xui32> loc(#loc316) | |
| %1856 = "mhlo.broadcast_in_dim"(%1763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1857 = mhlo.add %1853, %1856 : tensor<24xui32> loc(#loc316) | |
| %1858 = mhlo.constant dense<2> : tensor<ui32> loc(#loc315) | |
| %1859 = "mhlo.broadcast_in_dim"(%1858) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1860 = mhlo.add %1857, %1859 : tensor<24xui32> loc(#loc316) | |
| %1861 = mhlo.add %1855, %1860 : tensor<24xui32> loc(#loc316) | |
| %1862 = mhlo.constant dense<13> : tensor<ui32> loc(#loc315) | |
| %1863 = "mhlo.broadcast_in_dim"(%1862) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1864 = mhlo.shift_left %1860, %1863 : tensor<24xui32> loc(#loc317) | |
| %1865 = mhlo.constant dense<19> : tensor<ui32> loc(#loc315) | |
| %1866 = "mhlo.broadcast_in_dim"(%1865) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1867 = mhlo.shift_right_logical %1860, %1866 : tensor<24xui32> loc(#loc318) | |
| %1868 = mhlo.or %1864, %1867 : tensor<24xui32> loc(#loc319) | |
| %1869 = mhlo.xor %1861, %1868 : tensor<24xui32> loc(#loc314) | |
| %1870 = mhlo.add %1861, %1869 : tensor<24xui32> loc(#loc316) | |
| %1871 = mhlo.constant dense<15> : tensor<ui32> loc(#loc315) | |
| %1872 = "mhlo.broadcast_in_dim"(%1871) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1873 = mhlo.shift_left %1869, %1872 : tensor<24xui32> loc(#loc317) | |
| %1874 = mhlo.constant dense<17> : tensor<ui32> loc(#loc315) | |
| %1875 = "mhlo.broadcast_in_dim"(%1874) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1876 = mhlo.shift_right_logical %1869, %1875 : tensor<24xui32> loc(#loc318) | |
| %1877 = mhlo.or %1873, %1876 : tensor<24xui32> loc(#loc319) | |
| %1878 = mhlo.xor %1870, %1877 : tensor<24xui32> loc(#loc314) | |
| %1879 = mhlo.add %1870, %1878 : tensor<24xui32> loc(#loc316) | |
| %1880 = mhlo.constant dense<26> : tensor<ui32> loc(#loc315) | |
| %1881 = "mhlo.broadcast_in_dim"(%1880) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1882 = mhlo.shift_left %1878, %1881 : tensor<24xui32> loc(#loc317) | |
| %1883 = mhlo.constant dense<6> : tensor<ui32> loc(#loc315) | |
| %1884 = "mhlo.broadcast_in_dim"(%1883) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1885 = mhlo.shift_right_logical %1878, %1884 : tensor<24xui32> loc(#loc318) | |
| %1886 = mhlo.or %1882, %1885 : tensor<24xui32> loc(#loc319) | |
| %1887 = mhlo.xor %1879, %1886 : tensor<24xui32> loc(#loc314) | |
| %1888 = mhlo.add %1879, %1887 : tensor<24xui32> loc(#loc316) | |
| %1889 = mhlo.constant dense<6> : tensor<ui32> loc(#loc315) | |
| %1890 = "mhlo.broadcast_in_dim"(%1889) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1891 = mhlo.shift_left %1887, %1890 : tensor<24xui32> loc(#loc317) | |
| %1892 = mhlo.constant dense<26> : tensor<ui32> loc(#loc315) | |
| %1893 = "mhlo.broadcast_in_dim"(%1892) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1894 = mhlo.shift_right_logical %1887, %1893 : tensor<24xui32> loc(#loc318) | |
| %1895 = mhlo.or %1891, %1894 : tensor<24xui32> loc(#loc319) | |
| %1896 = mhlo.xor %1888, %1895 : tensor<24xui32> loc(#loc314) | |
| %1897 = "mhlo.broadcast_in_dim"(%1763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1898 = mhlo.add %1888, %1897 : tensor<24xui32> loc(#loc316) | |
| %1899 = "mhlo.broadcast_in_dim"(%1765) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1900 = mhlo.add %1896, %1899 : tensor<24xui32> loc(#loc316) | |
| %1901 = mhlo.constant dense<3> : tensor<ui32> loc(#loc315) | |
| %1902 = "mhlo.broadcast_in_dim"(%1901) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1903 = mhlo.add %1900, %1902 : tensor<24xui32> loc(#loc316) | |
| %1904 = mhlo.add %1898, %1903 : tensor<24xui32> loc(#loc316) | |
| %1905 = mhlo.constant dense<17> : tensor<ui32> loc(#loc315) | |
| %1906 = "mhlo.broadcast_in_dim"(%1905) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1907 = mhlo.shift_left %1903, %1906 : tensor<24xui32> loc(#loc317) | |
| %1908 = mhlo.constant dense<15> : tensor<ui32> loc(#loc315) | |
| %1909 = "mhlo.broadcast_in_dim"(%1908) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1910 = mhlo.shift_right_logical %1903, %1909 : tensor<24xui32> loc(#loc318) | |
| %1911 = mhlo.or %1907, %1910 : tensor<24xui32> loc(#loc319) | |
| %1912 = mhlo.xor %1904, %1911 : tensor<24xui32> loc(#loc314) | |
| %1913 = mhlo.add %1904, %1912 : tensor<24xui32> loc(#loc316) | |
| %1914 = mhlo.constant dense<29> : tensor<ui32> loc(#loc315) | |
| %1915 = "mhlo.broadcast_in_dim"(%1914) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1916 = mhlo.shift_left %1912, %1915 : tensor<24xui32> loc(#loc317) | |
| %1917 = mhlo.constant dense<3> : tensor<ui32> loc(#loc315) | |
| %1918 = "mhlo.broadcast_in_dim"(%1917) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1919 = mhlo.shift_right_logical %1912, %1918 : tensor<24xui32> loc(#loc318) | |
| %1920 = mhlo.or %1916, %1919 : tensor<24xui32> loc(#loc319) | |
| %1921 = mhlo.xor %1913, %1920 : tensor<24xui32> loc(#loc314) | |
| %1922 = mhlo.add %1913, %1921 : tensor<24xui32> loc(#loc316) | |
| %1923 = mhlo.constant dense<16> : tensor<ui32> loc(#loc315) | |
| %1924 = "mhlo.broadcast_in_dim"(%1923) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1925 = mhlo.shift_left %1921, %1924 : tensor<24xui32> loc(#loc317) | |
| %1926 = mhlo.constant dense<16> : tensor<ui32> loc(#loc315) | |
| %1927 = "mhlo.broadcast_in_dim"(%1926) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1928 = mhlo.shift_right_logical %1921, %1927 : tensor<24xui32> loc(#loc318) | |
| %1929 = mhlo.or %1925, %1928 : tensor<24xui32> loc(#loc319) | |
| %1930 = mhlo.xor %1922, %1929 : tensor<24xui32> loc(#loc314) | |
| %1931 = mhlo.add %1922, %1930 : tensor<24xui32> loc(#loc316) | |
| %1932 = mhlo.constant dense<24> : tensor<ui32> loc(#loc315) | |
| %1933 = "mhlo.broadcast_in_dim"(%1932) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1934 = mhlo.shift_left %1930, %1933 : tensor<24xui32> loc(#loc317) | |
| %1935 = mhlo.constant dense<8> : tensor<ui32> loc(#loc315) | |
| %1936 = "mhlo.broadcast_in_dim"(%1935) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1937 = mhlo.shift_right_logical %1930, %1936 : tensor<24xui32> loc(#loc318) | |
| %1938 = mhlo.or %1934, %1937 : tensor<24xui32> loc(#loc319) | |
| %1939 = mhlo.xor %1931, %1938 : tensor<24xui32> loc(#loc314) | |
| %1940 = "mhlo.broadcast_in_dim"(%1765) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1941 = mhlo.add %1931, %1940 : tensor<24xui32> loc(#loc316) | |
| %1942 = "mhlo.broadcast_in_dim"(%1770) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1943 = mhlo.add %1939, %1942 : tensor<24xui32> loc(#loc316) | |
| %1944 = mhlo.constant dense<4> : tensor<ui32> loc(#loc315) | |
| %1945 = "mhlo.broadcast_in_dim"(%1944) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1946 = mhlo.add %1943, %1945 : tensor<24xui32> loc(#loc316) | |
| %1947 = mhlo.add %1941, %1946 : tensor<24xui32> loc(#loc316) | |
| %1948 = mhlo.constant dense<13> : tensor<ui32> loc(#loc315) | |
| %1949 = "mhlo.broadcast_in_dim"(%1948) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1950 = mhlo.shift_left %1946, %1949 : tensor<24xui32> loc(#loc317) | |
| %1951 = mhlo.constant dense<19> : tensor<ui32> loc(#loc315) | |
| %1952 = "mhlo.broadcast_in_dim"(%1951) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1953 = mhlo.shift_right_logical %1946, %1952 : tensor<24xui32> loc(#loc318) | |
| %1954 = mhlo.or %1950, %1953 : tensor<24xui32> loc(#loc319) | |
| %1955 = mhlo.xor %1947, %1954 : tensor<24xui32> loc(#loc314) | |
| %1956 = mhlo.add %1947, %1955 : tensor<24xui32> loc(#loc316) | |
| %1957 = mhlo.constant dense<15> : tensor<ui32> loc(#loc315) | |
| %1958 = "mhlo.broadcast_in_dim"(%1957) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1959 = mhlo.shift_left %1955, %1958 : tensor<24xui32> loc(#loc317) | |
| %1960 = mhlo.constant dense<17> : tensor<ui32> loc(#loc315) | |
| %1961 = "mhlo.broadcast_in_dim"(%1960) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1962 = mhlo.shift_right_logical %1955, %1961 : tensor<24xui32> loc(#loc318) | |
| %1963 = mhlo.or %1959, %1962 : tensor<24xui32> loc(#loc319) | |
| %1964 = mhlo.xor %1956, %1963 : tensor<24xui32> loc(#loc314) | |
| %1965 = mhlo.add %1956, %1964 : tensor<24xui32> loc(#loc316) | |
| %1966 = mhlo.constant dense<26> : tensor<ui32> loc(#loc315) | |
| %1967 = "mhlo.broadcast_in_dim"(%1966) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1968 = mhlo.shift_left %1964, %1967 : tensor<24xui32> loc(#loc317) | |
| %1969 = mhlo.constant dense<6> : tensor<ui32> loc(#loc315) | |
| %1970 = "mhlo.broadcast_in_dim"(%1969) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1971 = mhlo.shift_right_logical %1964, %1970 : tensor<24xui32> loc(#loc318) | |
| %1972 = mhlo.or %1968, %1971 : tensor<24xui32> loc(#loc319) | |
| %1973 = mhlo.xor %1965, %1972 : tensor<24xui32> loc(#loc314) | |
| %1974 = mhlo.add %1965, %1973 : tensor<24xui32> loc(#loc316) | |
| %1975 = mhlo.constant dense<6> : tensor<ui32> loc(#loc315) | |
| %1976 = "mhlo.broadcast_in_dim"(%1975) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc317) | |
| %1977 = mhlo.shift_left %1973, %1976 : tensor<24xui32> loc(#loc317) | |
| %1978 = mhlo.constant dense<26> : tensor<ui32> loc(#loc315) | |
| %1979 = "mhlo.broadcast_in_dim"(%1978) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc318) | |
| %1980 = mhlo.shift_right_logical %1973, %1979 : tensor<24xui32> loc(#loc318) | |
| %1981 = mhlo.or %1977, %1980 : tensor<24xui32> loc(#loc319) | |
| %1982 = mhlo.xor %1974, %1981 : tensor<24xui32> loc(#loc314) | |
| %1983 = "mhlo.broadcast_in_dim"(%1770) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1984 = mhlo.add %1974, %1983 : tensor<24xui32> loc(#loc316) | |
| %1985 = "mhlo.broadcast_in_dim"(%1763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1986 = mhlo.add %1982, %1985 : tensor<24xui32> loc(#loc316) | |
| %1987 = mhlo.constant dense<5> : tensor<ui32> loc(#loc315) | |
| %1988 = "mhlo.broadcast_in_dim"(%1987) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<24xui32> loc(#loc316) | |
| %1989 = mhlo.add %1986, %1988 : tensor<24xui32> loc(#loc316) | |
| %1990 = "mhlo.concatenate"(%1984, %1989) {dimension = 0 : i64} : (tensor<24xui32>, tensor<24xui32>) -> tensor<48xui32> loc(#loc320) | |
| %1991 = "mhlo.reshape"(%1990) : (tensor<48xui32>) -> tensor<24x2xui32> loc(#loc321) | |
| %1992 = mhlo.constant dense<3919164554> : tensor<ui32> loc(#loc322) | |
| %1993 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %1994 = mhlo.shift_right_logical %1992, %1993 : tensor<ui32> loc(#loc323) | |
| %1995 = "mhlo.reshape"(%1994) : (tensor<ui32>) -> tensor<1xui32> loc(#loc324) | |
| %1996 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %1997 = mhlo.and %1992, %1996 : tensor<ui32> loc(#loc325) | |
| %1998 = "mhlo.reshape"(%1997) : (tensor<ui32>) -> tensor<1xui32> loc(#loc324) | |
| %1999 = "mhlo.concatenate"(%1995, %1998) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc326) | |
| %2000 = "mhlo.slice"(%1999) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc327) | |
| %2001 = "mhlo.slice"(%1999) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc328) | |
| %2002 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2003 = "mhlo.broadcast_in_dim"(%2002) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc329) | |
| %2004 = "mhlo.reshape"(%2003) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc330) | |
| %2005 = mhlo.constant dense<true> : tensor<i1> loc(#loc322) | |
| %2006 = "mhlo.broadcast_in_dim"(%2005) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i1>) -> tensor<1x256xi1> loc(#loc331) | |
| %2007 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<256xi32> loc(#loc332) | |
| %2008 = "mhlo.broadcast_in_dim"(%2007) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xi32>) -> tensor<1x256xi32> loc(#loc333) | |
| %2009 = "mhlo.broadcast_in_dim"(%2008) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x256xi32>) -> tensor<1x256x1xi32> loc(#loc334) | |
| %2010 = "mhlo.broadcast_in_dim"(%2008) {broadcast_dimensions = dense<[0, 2]> : tensor<2xi64>} : (tensor<1x256xi32>) -> tensor<1x1x256xi32> loc(#loc335) | |
| %2011 = "mhlo.broadcast_in_dim"(%2009) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xi32>) -> tensor<1x256x256xi32> loc(#loc336) | |
| %2012 = "mhlo.broadcast_in_dim"(%2010) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256xi32>) -> tensor<1x256x256xi32> loc(#loc336) | |
| %2013 = "mhlo.compare"(%2011, %2012) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction GE">} : (tensor<1x256x256xi32>, tensor<1x256x256xi32>) -> tensor<1x256x256xi1> loc(#loc336) | |
| %2014 = "mhlo.broadcast_in_dim"(%2013) {broadcast_dimensions = dense<[0, 2, 3]> : tensor<3xi64>} : (tensor<1x256x256xi1>) -> tensor<1x1x256x256xi1> loc(#loc337) | |
| %2015 = mhlo.constant dense<2770093708> : tensor<ui32> loc(#loc322) | |
| %2016 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2017 = mhlo.shift_right_logical %2015, %2016 : tensor<ui32> loc(#loc338) | |
| %2018 = "mhlo.reshape"(%2017) : (tensor<ui32>) -> tensor<1xui32> loc(#loc339) | |
| %2019 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2020 = mhlo.and %2015, %2019 : tensor<ui32> loc(#loc340) | |
| %2021 = "mhlo.reshape"(%2020) : (tensor<ui32>) -> tensor<1xui32> loc(#loc339) | |
| %2022 = "mhlo.concatenate"(%2018, %2021) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc341) | |
| %2023 = "mhlo.slice"(%2022) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc342) | |
| %2024 = "mhlo.slice"(%2022) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc343) | |
| %2025 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2026 = "mhlo.broadcast_in_dim"(%2025) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc344) | |
| %2027 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2028 = "mhlo.broadcast_in_dim"(%2027) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc344) | |
| %2029 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc345) | |
| %2030 = "mhlo.slice"(%2029) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc346) | |
| %2031 = "mhlo.slice"(%2029) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc347) | |
| %2032 = mhlo.subtract %2028, %2026 : tensor<1x1xf32> loc(#loc348) | |
| %2033 = mhlo.constant dense<765858160> : tensor<ui32> loc(#loc322) | |
| %2034 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2035 = mhlo.shift_right_logical %2033, %2034 : tensor<ui32> loc(#loc349) | |
| %2036 = "mhlo.reshape"(%2035) : (tensor<ui32>) -> tensor<1xui32> loc(#loc350) | |
| %2037 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2038 = mhlo.and %2033, %2037 : tensor<ui32> loc(#loc351) | |
| %2039 = "mhlo.reshape"(%2038) : (tensor<ui32>) -> tensor<1xui32> loc(#loc350) | |
| %2040 = "mhlo.concatenate"(%2036, %2039) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc352) | |
| %2041 = "mhlo.slice"(%2040) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc353) | |
| %2042 = "mhlo.slice"(%2040) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc354) | |
| %2043 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2044 = "mhlo.broadcast_in_dim"(%2043) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc355) | |
| %2045 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2046 = "mhlo.broadcast_in_dim"(%2045) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc355) | |
| %2047 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc356) | |
| %2048 = "mhlo.slice"(%2047) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc357) | |
| %2049 = "mhlo.slice"(%2047) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc358) | |
| %2050 = mhlo.subtract %2046, %2044 : tensor<1x1xf32> loc(#loc359) | |
| %2051 = mhlo.constant dense<100406128> : tensor<ui32> loc(#loc322) | |
| %2052 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2053 = mhlo.shift_right_logical %2051, %2052 : tensor<ui32> loc(#loc360) | |
| %2054 = "mhlo.reshape"(%2053) : (tensor<ui32>) -> tensor<1xui32> loc(#loc361) | |
| %2055 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2056 = mhlo.and %2051, %2055 : tensor<ui32> loc(#loc362) | |
| %2057 = "mhlo.reshape"(%2056) : (tensor<ui32>) -> tensor<1xui32> loc(#loc361) | |
| %2058 = "mhlo.concatenate"(%2054, %2057) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc363) | |
| %2059 = "mhlo.slice"(%2058) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc364) | |
| %2060 = "mhlo.slice"(%2058) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc365) | |
| %2061 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2062 = "mhlo.broadcast_in_dim"(%2061) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc366) | |
| %2063 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2064 = "mhlo.broadcast_in_dim"(%2063) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc366) | |
| %2065 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc367) | |
| %2066 = "mhlo.slice"(%2065) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc368) | |
| %2067 = "mhlo.slice"(%2065) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc369) | |
| %2068 = mhlo.subtract %2064, %2062 : tensor<1x1xf32> loc(#loc370) | |
| %2069 = mhlo.constant dense<0.000000e+00> : tensor<f16> loc(#loc322) | |
| %2070 = "mhlo.broadcast_in_dim"(%2069) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x32x64xf16> loc(#loc371) | |
| %2071 = mhlo.constant dense<0.000000e+00> : tensor<f16> loc(#loc322) | |
| %2072 = "mhlo.broadcast_in_dim"(%2071) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x32x64xf16> loc(#loc371) | |
| %2073 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2074 = "mhlo.broadcast_in_dim"(%2073) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x256xf32> loc(#loc372) | |
| %2075 = mhlo.convert(%2074) : (tensor<1x1x256x256xf32>) -> tensor<1x1x256x256xf16> loc(#loc373) | |
| %2076 = mhlo.constant dense<0xFF800000> : tensor<f32> loc(#loc322) | |
| %2077 = "mhlo.broadcast_in_dim"(%2076) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x256xf32> loc(#loc374) | |
| %2078 = mhlo.convert(%2077) : (tensor<1x1x256x256xf32>) -> tensor<1x1x256x256xf16> loc(#loc375) | |
| %2079 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc322) | |
| %2080 = mhlo.sqrt %2079 : tensor<f32> loc(#loc376) | |
| %2081 = mhlo.convert(%2080) : (tensor<f32>) -> tensor<f16> loc(#loc377) | |
| call @_einsum_18() : () -> () loc(#loc378) | |
| call @_einsum_19() : () -> () loc(#loc379) | |
| %2082 = mhlo.constant dense<1760901733> : tensor<ui32> loc(#loc322) | |
| %2083 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2084 = mhlo.shift_right_logical %2082, %2083 : tensor<ui32> loc(#loc380) | |
| %2085 = "mhlo.reshape"(%2084) : (tensor<ui32>) -> tensor<1xui32> loc(#loc381) | |
| %2086 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2087 = mhlo.and %2082, %2086 : tensor<ui32> loc(#loc382) | |
| %2088 = "mhlo.reshape"(%2087) : (tensor<ui32>) -> tensor<1xui32> loc(#loc381) | |
| %2089 = "mhlo.concatenate"(%2085, %2088) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc383) | |
| %2090 = "mhlo.slice"(%2089) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc384) | |
| %2091 = "mhlo.slice"(%2089) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc385) | |
| %2092 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2093 = "mhlo.broadcast_in_dim"(%2092) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc386) | |
| %2094 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2095 = "mhlo.broadcast_in_dim"(%2094) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc386) | |
| %2096 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc387) | |
| %2097 = "mhlo.slice"(%2096) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc388) | |
| %2098 = "mhlo.slice"(%2096) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc389) | |
| %2099 = mhlo.subtract %2095, %2093 : tensor<1x1xf32> loc(#loc390) | |
| %2100 = mhlo.constant dense<3282253737> : tensor<ui32> loc(#loc322) | |
| %2101 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2102 = mhlo.shift_right_logical %2100, %2101 : tensor<ui32> loc(#loc391) | |
| %2103 = "mhlo.reshape"(%2102) : (tensor<ui32>) -> tensor<1xui32> loc(#loc392) | |
| %2104 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2105 = mhlo.and %2100, %2104 : tensor<ui32> loc(#loc393) | |
| %2106 = "mhlo.reshape"(%2105) : (tensor<ui32>) -> tensor<1xui32> loc(#loc392) | |
| %2107 = "mhlo.concatenate"(%2103, %2106) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc394) | |
| %2108 = "mhlo.slice"(%2107) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc395) | |
| %2109 = "mhlo.slice"(%2107) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc396) | |
| %2110 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2111 = "mhlo.broadcast_in_dim"(%2110) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc397) | |
| %2112 = "mhlo.reshape"(%2111) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc398) | |
| %2113 = mhlo.constant dense<2734489451> : tensor<ui32> loc(#loc322) | |
| %2114 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2115 = mhlo.shift_right_logical %2113, %2114 : tensor<ui32> loc(#loc391) | |
| %2116 = "mhlo.reshape"(%2115) : (tensor<ui32>) -> tensor<1xui32> loc(#loc392) | |
| %2117 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2118 = mhlo.and %2113, %2117 : tensor<ui32> loc(#loc393) | |
| %2119 = "mhlo.reshape"(%2118) : (tensor<ui32>) -> tensor<1xui32> loc(#loc392) | |
| %2120 = "mhlo.concatenate"(%2116, %2119) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc394) | |
| %2121 = "mhlo.slice"(%2120) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc395) | |
| %2122 = "mhlo.slice"(%2120) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc396) | |
| %2123 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2124 = "mhlo.broadcast_in_dim"(%2123) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc397) | |
| %2125 = "mhlo.reshape"(%2124) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc399) | |
| %2126 = mhlo.constant dense<410921832> : tensor<ui32> loc(#loc322) | |
| %2127 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2128 = mhlo.shift_right_logical %2126, %2127 : tensor<ui32> loc(#loc400) | |
| %2129 = "mhlo.reshape"(%2128) : (tensor<ui32>) -> tensor<1xui32> loc(#loc401) | |
| %2130 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2131 = mhlo.and %2126, %2130 : tensor<ui32> loc(#loc402) | |
| %2132 = "mhlo.reshape"(%2131) : (tensor<ui32>) -> tensor<1xui32> loc(#loc401) | |
| %2133 = "mhlo.concatenate"(%2129, %2132) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc403) | |
| %2134 = "mhlo.slice"(%2133) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc404) | |
| %2135 = "mhlo.slice"(%2133) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc405) | |
| %2136 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2137 = "mhlo.broadcast_in_dim"(%2136) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc406) | |
| %2138 = "mhlo.reshape"(%2137) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc407) | |
| %2139 = mhlo.constant dense<3178097723> : tensor<ui32> loc(#loc322) | |
| %2140 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2141 = mhlo.shift_right_logical %2139, %2140 : tensor<ui32> loc(#loc408) | |
| %2142 = "mhlo.reshape"(%2141) : (tensor<ui32>) -> tensor<1xui32> loc(#loc409) | |
| %2143 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2144 = mhlo.and %2139, %2143 : tensor<ui32> loc(#loc410) | |
| %2145 = "mhlo.reshape"(%2144) : (tensor<ui32>) -> tensor<1xui32> loc(#loc409) | |
| %2146 = "mhlo.concatenate"(%2142, %2145) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc411) | |
| %2147 = "mhlo.slice"(%2146) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc412) | |
| %2148 = "mhlo.slice"(%2146) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc413) | |
| %2149 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2150 = "mhlo.broadcast_in_dim"(%2149) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc414) | |
| %2151 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2152 = "mhlo.broadcast_in_dim"(%2151) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc414) | |
| %2153 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc415) | |
| %2154 = "mhlo.slice"(%2153) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc416) | |
| %2155 = "mhlo.slice"(%2153) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc417) | |
| %2156 = mhlo.subtract %2152, %2150 : tensor<1x1xf32> loc(#loc418) | |
| %2157 = mhlo.constant dense<2142163785> : tensor<ui32> loc(#loc322) | |
| %2158 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2159 = mhlo.shift_right_logical %2157, %2158 : tensor<ui32> loc(#loc419) | |
| %2160 = "mhlo.reshape"(%2159) : (tensor<ui32>) -> tensor<1xui32> loc(#loc420) | |
| %2161 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2162 = mhlo.and %2157, %2161 : tensor<ui32> loc(#loc421) | |
| %2163 = "mhlo.reshape"(%2162) : (tensor<ui32>) -> tensor<1xui32> loc(#loc420) | |
| %2164 = "mhlo.concatenate"(%2160, %2163) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc422) | |
| %2165 = "mhlo.slice"(%2164) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc423) | |
| %2166 = "mhlo.slice"(%2164) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc424) | |
| %2167 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2168 = "mhlo.broadcast_in_dim"(%2167) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc425) | |
| %2169 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2170 = "mhlo.broadcast_in_dim"(%2169) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc425) | |
| %2171 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc426) | |
| %2172 = "mhlo.slice"(%2171) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc427) | |
| %2173 = "mhlo.slice"(%2171) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc428) | |
| %2174 = mhlo.subtract %2170, %2168 : tensor<1x1xf32> loc(#loc429) | |
| %2175 = mhlo.constant dense<4234400552> : tensor<ui32> loc(#loc322) | |
| %2176 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2177 = mhlo.shift_right_logical %2175, %2176 : tensor<ui32> loc(#loc430) | |
| %2178 = "mhlo.reshape"(%2177) : (tensor<ui32>) -> tensor<1xui32> loc(#loc431) | |
| %2179 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2180 = mhlo.and %2175, %2179 : tensor<ui32> loc(#loc432) | |
| %2181 = "mhlo.reshape"(%2180) : (tensor<ui32>) -> tensor<1xui32> loc(#loc431) | |
| %2182 = "mhlo.concatenate"(%2178, %2181) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc433) | |
| %2183 = "mhlo.slice"(%2182) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc434) | |
| %2184 = "mhlo.slice"(%2182) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc435) | |
| %2185 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2186 = "mhlo.broadcast_in_dim"(%2185) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc436) | |
| %2187 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2188 = "mhlo.broadcast_in_dim"(%2187) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc436) | |
| %2189 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc437) | |
| %2190 = "mhlo.slice"(%2189) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc438) | |
| %2191 = "mhlo.slice"(%2189) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc439) | |
| %2192 = mhlo.subtract %2188, %2186 : tensor<1x1xf32> loc(#loc440) | |
| %2193 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc322) | |
| %2194 = mhlo.sqrt %2193 : tensor<f32> loc(#loc441) | |
| %2195 = mhlo.convert(%2194) : (tensor<f32>) -> tensor<f16> loc(#loc442) | |
| call @_einsum_20() : () -> () loc(#loc443) | |
| call @_einsum_21() : () -> () loc(#loc444) | |
| %2196 = mhlo.constant dense<4068095876> : tensor<ui32> loc(#loc322) | |
| %2197 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2198 = mhlo.shift_right_logical %2196, %2197 : tensor<ui32> loc(#loc445) | |
| %2199 = "mhlo.reshape"(%2198) : (tensor<ui32>) -> tensor<1xui32> loc(#loc446) | |
| %2200 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2201 = mhlo.and %2196, %2200 : tensor<ui32> loc(#loc447) | |
| %2202 = "mhlo.reshape"(%2201) : (tensor<ui32>) -> tensor<1xui32> loc(#loc446) | |
| %2203 = "mhlo.concatenate"(%2199, %2202) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc448) | |
| %2204 = "mhlo.slice"(%2203) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc449) | |
| %2205 = "mhlo.slice"(%2203) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc450) | |
| %2206 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2207 = "mhlo.broadcast_in_dim"(%2206) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc451) | |
| %2208 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2209 = "mhlo.broadcast_in_dim"(%2208) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc451) | |
| %2210 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc452) | |
| %2211 = "mhlo.slice"(%2210) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc453) | |
| %2212 = "mhlo.slice"(%2210) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc454) | |
| %2213 = mhlo.subtract %2209, %2207 : tensor<1x1xf32> loc(#loc455) | |
| %2214 = mhlo.constant dense<3714940994> : tensor<ui32> loc(#loc322) | |
| %2215 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2216 = mhlo.shift_right_logical %2214, %2215 : tensor<ui32> loc(#loc456) | |
| %2217 = "mhlo.reshape"(%2216) : (tensor<ui32>) -> tensor<1xui32> loc(#loc457) | |
| %2218 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2219 = mhlo.and %2214, %2218 : tensor<ui32> loc(#loc458) | |
| %2220 = "mhlo.reshape"(%2219) : (tensor<ui32>) -> tensor<1xui32> loc(#loc457) | |
| %2221 = "mhlo.concatenate"(%2217, %2220) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc459) | |
| %2222 = "mhlo.slice"(%2221) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc460) | |
| %2223 = "mhlo.slice"(%2221) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc461) | |
| %2224 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2225 = "mhlo.broadcast_in_dim"(%2224) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc462) | |
| %2226 = "mhlo.reshape"(%2225) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc463) | |
| %2227 = mhlo.constant dense<640852316> : tensor<ui32> loc(#loc322) | |
| %2228 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2229 = mhlo.shift_right_logical %2227, %2228 : tensor<ui32> loc(#loc456) | |
| %2230 = "mhlo.reshape"(%2229) : (tensor<ui32>) -> tensor<1xui32> loc(#loc457) | |
| %2231 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2232 = mhlo.and %2227, %2231 : tensor<ui32> loc(#loc458) | |
| %2233 = "mhlo.reshape"(%2232) : (tensor<ui32>) -> tensor<1xui32> loc(#loc457) | |
| %2234 = "mhlo.concatenate"(%2230, %2233) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc459) | |
| %2235 = "mhlo.slice"(%2234) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc460) | |
| %2236 = "mhlo.slice"(%2234) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc461) | |
| %2237 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2238 = "mhlo.broadcast_in_dim"(%2237) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc462) | |
| %2239 = "mhlo.reshape"(%2238) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc464) | |
| %2240 = mhlo.constant dense<603271431> : tensor<ui32> loc(#loc322) | |
| %2241 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2242 = mhlo.shift_right_logical %2240, %2241 : tensor<ui32> loc(#loc465) | |
| %2243 = "mhlo.reshape"(%2242) : (tensor<ui32>) -> tensor<1xui32> loc(#loc466) | |
| %2244 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2245 = mhlo.and %2240, %2244 : tensor<ui32> loc(#loc467) | |
| %2246 = "mhlo.reshape"(%2245) : (tensor<ui32>) -> tensor<1xui32> loc(#loc466) | |
| %2247 = "mhlo.concatenate"(%2243, %2246) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc468) | |
| %2248 = "mhlo.slice"(%2247) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc469) | |
| %2249 = "mhlo.slice"(%2247) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc470) | |
| %2250 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2251 = "mhlo.broadcast_in_dim"(%2250) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc471) | |
| %2252 = "mhlo.reshape"(%2251) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc472) | |
| %2253 = mhlo.constant dense<2273230458> : tensor<ui32> loc(#loc322) | |
| %2254 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2255 = mhlo.shift_right_logical %2253, %2254 : tensor<ui32> loc(#loc473) | |
| %2256 = "mhlo.reshape"(%2255) : (tensor<ui32>) -> tensor<1xui32> loc(#loc474) | |
| %2257 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2258 = mhlo.and %2253, %2257 : tensor<ui32> loc(#loc475) | |
| %2259 = "mhlo.reshape"(%2258) : (tensor<ui32>) -> tensor<1xui32> loc(#loc474) | |
| %2260 = "mhlo.concatenate"(%2256, %2259) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc476) | |
| %2261 = "mhlo.slice"(%2260) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc477) | |
| %2262 = "mhlo.slice"(%2260) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc478) | |
| %2263 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2264 = "mhlo.broadcast_in_dim"(%2263) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc479) | |
| %2265 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2266 = "mhlo.broadcast_in_dim"(%2265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc479) | |
| %2267 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<8388608xui32> loc(#loc480) | |
| %2268 = "mhlo.slice"(%2267) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc481) | |
| %2269 = "mhlo.slice"(%2267) {limit_indices = dense<8388608> : tensor<1xi64>, start_indices = dense<4194304> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc482) | |
| %2270 = mhlo.subtract %2266, %2264 : tensor<1x1xf32> loc(#loc483) | |
| %2271 = mhlo.constant dense<3288960962> : tensor<ui32> loc(#loc322) | |
| %2272 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2273 = mhlo.shift_right_logical %2271, %2272 : tensor<ui32> loc(#loc484) | |
| %2274 = "mhlo.reshape"(%2273) : (tensor<ui32>) -> tensor<1xui32> loc(#loc485) | |
| %2275 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2276 = mhlo.and %2271, %2275 : tensor<ui32> loc(#loc486) | |
| %2277 = "mhlo.reshape"(%2276) : (tensor<ui32>) -> tensor<1xui32> loc(#loc485) | |
| %2278 = "mhlo.concatenate"(%2274, %2277) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc487) | |
| %2279 = "mhlo.slice"(%2278) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc488) | |
| %2280 = "mhlo.slice"(%2278) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc489) | |
| %2281 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2282 = "mhlo.broadcast_in_dim"(%2281) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc490) | |
| %2283 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2284 = "mhlo.broadcast_in_dim"(%2283) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc490) | |
| %2285 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<8388608xui32> loc(#loc491) | |
| %2286 = "mhlo.slice"(%2285) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc492) | |
| %2287 = "mhlo.slice"(%2285) {limit_indices = dense<8388608> : tensor<1xi64>, start_indices = dense<4194304> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc493) | |
| %2288 = mhlo.subtract %2284, %2282 : tensor<1x1xf32> loc(#loc494) | |
| %2289 = mhlo.constant dense<1071643095> : tensor<ui32> loc(#loc322) | |
| %2290 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2291 = mhlo.shift_right_logical %2289, %2290 : tensor<ui32> loc(#loc495) | |
| %2292 = "mhlo.reshape"(%2291) : (tensor<ui32>) -> tensor<1xui32> loc(#loc496) | |
| %2293 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2294 = mhlo.and %2289, %2293 : tensor<ui32> loc(#loc497) | |
| %2295 = "mhlo.reshape"(%2294) : (tensor<ui32>) -> tensor<1xui32> loc(#loc496) | |
| %2296 = "mhlo.concatenate"(%2292, %2295) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc498) | |
| %2297 = "mhlo.slice"(%2296) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc499) | |
| %2298 = "mhlo.slice"(%2296) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc500) | |
| %2299 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2300 = "mhlo.broadcast_in_dim"(%2299) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<4096xf32> loc(#loc501) | |
| %2301 = "mhlo.reshape"(%2300) : (tensor<4096xf32>) -> tensor<1x1x4096xf32> loc(#loc502) | |
| %2302 = mhlo.constant dense<3882838635> : tensor<ui32> loc(#loc322) | |
| %2303 = mhlo.constant dense<32> : tensor<ui32> loc(#loc322) | |
| %2304 = mhlo.shift_right_logical %2302, %2303 : tensor<ui32> loc(#loc503) | |
| %2305 = "mhlo.reshape"(%2304) : (tensor<ui32>) -> tensor<1xui32> loc(#loc504) | |
| %2306 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc322) | |
| %2307 = mhlo.and %2302, %2306 : tensor<ui32> loc(#loc505) | |
| %2308 = "mhlo.reshape"(%2307) : (tensor<ui32>) -> tensor<1xui32> loc(#loc504) | |
| %2309 = "mhlo.concatenate"(%2305, %2308) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc506) | |
| %2310 = "mhlo.slice"(%2309) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc507) | |
| %2311 = "mhlo.slice"(%2309) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc508) | |
| %2312 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc322) | |
| %2313 = "mhlo.broadcast_in_dim"(%2312) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc509) | |
| %2314 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2315 = "mhlo.broadcast_in_dim"(%2314) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc509) | |
| %2316 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<8388608xui32> loc(#loc510) | |
| %2317 = "mhlo.slice"(%2316) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc511) | |
| %2318 = "mhlo.slice"(%2316) {limit_indices = dense<8388608> : tensor<1xi64>, start_indices = dense<4194304> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc512) | |
| %2319 = mhlo.subtract %2315, %2313 : tensor<1x1xf32> loc(#loc513) | |
| %2320 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc322) | |
| %2321 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc322) | |
| %2322 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc322) | |
| %2323 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2324 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2325 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc322) | |
| %2326 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2327 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2328 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2329 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2330 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2331 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2332 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2333 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2334 = mhlo.constant dense<0> : tensor<i32> loc(#loc322) | |
| %2335 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2336 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2337 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2338 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2339 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2340 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2341 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2342 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc322) | |
| %2343 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2344 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2345 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2346 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2347 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc322) | |
| %2348 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2349 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2350 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2351 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2352 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2353 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2354 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2355 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2356 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2357 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2358 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2359 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2360 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2361 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2362 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc322) | |
| %2363 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2364 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2365 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc322) | |
| %2366 = mhlo.constant dense<2.000000e+00> : tensor<f16> loc(#loc322) | |
| %2367 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc322) | |
| %2368 = mhlo.constant dense<1.414060e+00> : tensor<f16> loc(#loc322) | |
| %2369 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2370 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc322) | |
| %2371 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2372 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc322) | |
| %2373 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2374 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2375 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2376 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2377 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2378 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2379 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc322) | |
| %2380 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc322) | |
| %2381 = mhlo.constant dense<4.096000e+03> : tensor<f32> loc(#loc322) | |
| %2382 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc322) | |
| %2383 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc322) | |
| %2384 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc322) | |
| %2385 = mhlo.constant dense<0> : tensor<i32> loc(#loc322) | |
| %2386 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2387 = "mhlo.broadcast_in_dim"(%2386) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2388 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2389 = "mhlo.broadcast_in_dim"(%2388) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2390 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2391 = "mhlo.broadcast_in_dim"(%2390) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2392 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2393 = "mhlo.broadcast_in_dim"(%2392) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2394 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2395 = "mhlo.broadcast_in_dim"(%2394) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2396 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2397 = "mhlo.broadcast_in_dim"(%2396) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2398 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2399 = "mhlo.broadcast_in_dim"(%2398) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2400 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2401 = "mhlo.broadcast_in_dim"(%2400) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x2048xf32> loc(#loc515) | |
| %2402 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2403 = "mhlo.broadcast_in_dim"(%2402) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x4096xf32> loc(#loc516) | |
| %2404 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2405 = "mhlo.broadcast_in_dim"(%2404) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048x4096xf32> loc(#loc516) | |
| %2406 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2407 = "mhlo.broadcast_in_dim"(%2406) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x4096x2048xf32> loc(#loc517) | |
| %2408 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2409 = "mhlo.broadcast_in_dim"(%2408) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048xf32> loc(#loc518) | |
| %2410 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2411 = "mhlo.broadcast_in_dim"(%2410) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x4096xf32> loc(#loc519) | |
| %2412 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2413 = "mhlo.broadcast_in_dim"(%2412) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048xf32> loc(#loc518) | |
| %2414 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2415 = "mhlo.broadcast_in_dim"(%2414) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048xf32> loc(#loc518) | |
| %2416 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2417 = "mhlo.broadcast_in_dim"(%2416) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048xf32> loc(#loc518) | |
| %2418 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2419 = "mhlo.broadcast_in_dim"(%2418) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048xf32> loc(#loc518) | |
| %2420 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2421 = "mhlo.broadcast_in_dim"(%2420) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048xf32> loc(#loc518) | |
| %2422 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc514) | |
| %2423 = "mhlo.broadcast_in_dim"(%2422) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<24x2048xf32> loc(#loc518) | |
| %2424 = mhlo.constant dense<0> : tensor<i32> loc(#loc514) | |
| %2425 = "mhlo.broadcast_in_dim"(%2424) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<24xi32> loc(#loc520) | |
| %2426 = mhlo.constant dense<0.000000e+00> : tensor<f16> loc(#loc514) | |
| %2427 = "mhlo.broadcast_in_dim"(%2426) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<24x1x256x32x64xf16> loc(#loc521) | |
| %2428 = mhlo.constant dense<0.000000e+00> : tensor<f16> loc(#loc514) | |
| %2429 = "mhlo.broadcast_in_dim"(%2428) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<24x1x256x32x64xf16> loc(#loc521) | |
| %2430 = mhlo.constant dense<0> : tensor<i32> loc(#loc514) | |
| %2431:27 = mhlo.while(%iterArg = %1991, %iterArg_0 = %233, %iterArg_1 = %108, %iterArg_2 = %2430, %iterArg_3 = %1760, %iterArg_4 = %2387, %iterArg_5 = %2389, %iterArg_6 = %2391, %iterArg_7 = %2393, %iterArg_8 = %2395, %iterArg_9 = %2397, %iterArg_10 = %2399, %iterArg_11 = %2401, %iterArg_12 = %2403, %iterArg_13 = %2405, %iterArg_14 = %2407, %iterArg_15 = %2409, %iterArg_16 = %2411, %iterArg_17 = %2413, %iterArg_18 = %2415, %iterArg_19 = %2417, %iterArg_20 = %2419, %iterArg_21 = %2421, %iterArg_22 = %2423, %iterArg_23 = %2425, %iterArg_24 = %2427, %iterArg_25 = %2429) : tensor<24x2xui32>, tensor<1x256xi32>, tensor<1x64x2048xf16>, tensor<i32>, tensor<1x256x2048xf16>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x2048xf32>, tensor<24x2048x4096xf32>, tensor<24x2048x4096xf32>, tensor<24x4096x2048xf32>, tensor<24x2048xf32>, tensor<24x4096xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24x2048xf32>, tensor<24xi32>, tensor<24x1x256x32x64xf16>, tensor<24x1x256x32x64xf16> | |
| cond { | |
| %5188 = mhlo.constant dense<24> : tensor<i32> loc(#loc522) | |
| %5189 = "mhlo.compare"(%iterArg_2, %5188) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc523) | |
| "mhlo.return"(%5189) : (tensor<i1>) -> () loc(#loc522) | |
| } do { | |
| %5188 = mhlo.constant dense<0> : tensor<i32> loc(#loc522) | |
| %5189 = "mhlo.compare"(%iterArg_2, %5188) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc524) | |
| %5190 = mhlo.constant dense<24> : tensor<i32> loc(#loc522) | |
| %5191 = mhlo.add %iterArg_2, %5190 : tensor<i32> loc(#loc525) | |
| %5192 = "mhlo.select"(%5189, %5191, %iterArg_2) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc526) | |
| %5193 = mhlo.constant dense<0> : tensor<i32> loc(#loc522) | |
| %5194 = mhlo.constant dense<0> : tensor<i32> loc(#loc522) | |
| %5195 = "mhlo.compare"(%5193, %5194) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction LT">} : (tensor<i32>, tensor<i32>) -> tensor<i1> loc(#loc524) | |
| %5196 = mhlo.constant dense<0> : tensor<i32> loc(#loc522) | |
| %5197 = mhlo.constant dense<2> : tensor<i32> loc(#loc522) | |
| %5198 = mhlo.add %5196, %5197 : tensor<i32> loc(#loc525) | |
| %5199 = mhlo.constant dense<0> : tensor<i32> loc(#loc522) | |
| %5200 = "mhlo.select"(%5195, %5198, %5199) : (tensor<i1>, tensor<i32>, tensor<i32>) -> tensor<i32> loc(#loc526) | |
| %5201 = "mhlo.dynamic-slice"(%iterArg, %5192, %5200) {slice_sizes = dense<[1, 2]> : tensor<2xi64>} : (tensor<24x2xui32>, tensor<i32>, tensor<i32>) -> tensor<1x2xui32> loc(#loc527) | |
| %5202 = "mhlo.reshape"(%5201) : (tensor<1x2xui32>) -> tensor<2xui32> loc(#loc528) | |
| %5203 = mhlo.convert(%iterArg_3) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc529) | |
| %5204 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc530) | |
| %5205 = mhlo.reduce(%5203 init: %5204) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc530) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc530) | |
| } loc(#loc530) | |
| %5206 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %5207 = "mhlo.broadcast_in_dim"(%5206) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc532) | |
| %5208 = mhlo.divide %5205, %5207 : tensor<1x256xf32> loc(#loc532) | |
| %5209 = mhlo.multiply %5203, %5203 : tensor<1x256x2048xf32> loc(#loc533) | |
| %5210 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc534) | |
| %5211 = mhlo.reduce(%5209 init: %5210) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc534) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc534) | |
| } loc(#loc534) | |
| %5212 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %5213 = "mhlo.broadcast_in_dim"(%5212) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc535) | |
| %5214 = mhlo.divide %5211, %5213 : tensor<1x256xf32> loc(#loc535) | |
| %5215 = mhlo.multiply %5208, %5208 : tensor<1x256xf32> loc(#loc533) | |
| %5216 = mhlo.subtract %5214, %5215 : tensor<1x256xf32> loc(#loc536) | |
| %5217 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %5218 = "mhlo.broadcast_in_dim"(%5217) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc537) | |
| %5219 = mhlo.maximum %5218, %5216 : tensor<1x256xf32> loc(#loc537) | |
| %5220 = "mhlo.reshape"(%5208) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc538) | |
| %5221 = "mhlo.reshape"(%5219) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc539) | |
| %5222 = mhlo.convert(%iterArg_3) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc540) | |
| %5223 = "mhlo.broadcast_in_dim"(%5220) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc541) | |
| %5224 = mhlo.subtract %5222, %5223 : tensor<1x256x2048xf32> loc(#loc541) | |
| %5225 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc531) | |
| %5226 = "mhlo.broadcast_in_dim"(%5225) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256x1xf32> loc(#loc542) | |
| %5227 = mhlo.add %5221, %5226 : tensor<1x256x1xf32> loc(#loc542) | |
| %5228 = mhlo.rsqrt %5227 : tensor<1x256x1xf32> loc(#loc543) | |
| %5229 = "mhlo.broadcast_in_dim"(%5228) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc544) | |
| %5230 = mhlo.multiply %5224, %5229 : tensor<1x256x2048xf32> loc(#loc544) | |
| %5231 = mhlo.constant dense<3001501508> : tensor<ui32> loc(#loc531) | |
| %5232 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %5233 = mhlo.shift_right_logical %5231, %5232 : tensor<ui32> loc(#loc545) | |
| %5234 = "mhlo.reshape"(%5233) : (tensor<ui32>) -> tensor<1xui32> loc(#loc546) | |
| %5235 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %5236 = mhlo.and %5231, %5235 : tensor<ui32> loc(#loc547) | |
| %5237 = "mhlo.reshape"(%5236) : (tensor<ui32>) -> tensor<1xui32> loc(#loc546) | |
| %5238 = "mhlo.concatenate"(%5234, %5237) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc548) | |
| %5239 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc549) | |
| %5240 = "mhlo.reshape"(%5239) : (tensor<1xui32>) -> tensor<ui32> loc(#loc550) | |
| %5241 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc551) | |
| %5242 = "mhlo.reshape"(%5241) : (tensor<1xui32>) -> tensor<ui32> loc(#loc550) | |
| %5243 = "mhlo.slice"(%5238) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc552) | |
| %5244 = "mhlo.slice"(%5238) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc553) | |
| %5245 = mhlo.xor %5240, %5242 : tensor<ui32> loc(#loc554) | |
| %5246 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc555) | |
| %5247 = mhlo.xor %5245, %5246 : tensor<ui32> loc(#loc554) | |
| %5248 = "mhlo.broadcast_in_dim"(%5240) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5249 = mhlo.add %5243, %5248 : tensor<1xui32> loc(#loc556) | |
| %5250 = "mhlo.broadcast_in_dim"(%5242) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5251 = mhlo.add %5244, %5250 : tensor<1xui32> loc(#loc556) | |
| %5252 = mhlo.add %5249, %5251 : tensor<1xui32> loc(#loc556) | |
| %5253 = mhlo.constant dense<13> : tensor<ui32> loc(#loc555) | |
| %5254 = "mhlo.broadcast_in_dim"(%5253) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5255 = mhlo.shift_left %5251, %5254 : tensor<1xui32> loc(#loc557) | |
| %5256 = mhlo.constant dense<19> : tensor<ui32> loc(#loc555) | |
| %5257 = "mhlo.broadcast_in_dim"(%5256) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5258 = mhlo.shift_right_logical %5251, %5257 : tensor<1xui32> loc(#loc545) | |
| %5259 = mhlo.or %5255, %5258 : tensor<1xui32> loc(#loc558) | |
| %5260 = mhlo.xor %5252, %5259 : tensor<1xui32> loc(#loc554) | |
| %5261 = mhlo.add %5252, %5260 : tensor<1xui32> loc(#loc556) | |
| %5262 = mhlo.constant dense<15> : tensor<ui32> loc(#loc555) | |
| %5263 = "mhlo.broadcast_in_dim"(%5262) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5264 = mhlo.shift_left %5260, %5263 : tensor<1xui32> loc(#loc557) | |
| %5265 = mhlo.constant dense<17> : tensor<ui32> loc(#loc555) | |
| %5266 = "mhlo.broadcast_in_dim"(%5265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5267 = mhlo.shift_right_logical %5260, %5266 : tensor<1xui32> loc(#loc545) | |
| %5268 = mhlo.or %5264, %5267 : tensor<1xui32> loc(#loc558) | |
| %5269 = mhlo.xor %5261, %5268 : tensor<1xui32> loc(#loc554) | |
| %5270 = mhlo.add %5261, %5269 : tensor<1xui32> loc(#loc556) | |
| %5271 = mhlo.constant dense<26> : tensor<ui32> loc(#loc555) | |
| %5272 = "mhlo.broadcast_in_dim"(%5271) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5273 = mhlo.shift_left %5269, %5272 : tensor<1xui32> loc(#loc557) | |
| %5274 = mhlo.constant dense<6> : tensor<ui32> loc(#loc555) | |
| %5275 = "mhlo.broadcast_in_dim"(%5274) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5276 = mhlo.shift_right_logical %5269, %5275 : tensor<1xui32> loc(#loc545) | |
| %5277 = mhlo.or %5273, %5276 : tensor<1xui32> loc(#loc558) | |
| %5278 = mhlo.xor %5270, %5277 : tensor<1xui32> loc(#loc554) | |
| %5279 = mhlo.add %5270, %5278 : tensor<1xui32> loc(#loc556) | |
| %5280 = mhlo.constant dense<6> : tensor<ui32> loc(#loc555) | |
| %5281 = "mhlo.broadcast_in_dim"(%5280) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5282 = mhlo.shift_left %5278, %5281 : tensor<1xui32> loc(#loc557) | |
| %5283 = mhlo.constant dense<26> : tensor<ui32> loc(#loc555) | |
| %5284 = "mhlo.broadcast_in_dim"(%5283) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5285 = mhlo.shift_right_logical %5278, %5284 : tensor<1xui32> loc(#loc545) | |
| %5286 = mhlo.or %5282, %5285 : tensor<1xui32> loc(#loc558) | |
| %5287 = mhlo.xor %5279, %5286 : tensor<1xui32> loc(#loc554) | |
| %5288 = "mhlo.broadcast_in_dim"(%5242) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5289 = mhlo.add %5279, %5288 : tensor<1xui32> loc(#loc556) | |
| %5290 = "mhlo.broadcast_in_dim"(%5247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5291 = mhlo.add %5287, %5290 : tensor<1xui32> loc(#loc556) | |
| %5292 = mhlo.constant dense<1> : tensor<ui32> loc(#loc555) | |
| %5293 = "mhlo.broadcast_in_dim"(%5292) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5294 = mhlo.add %5291, %5293 : tensor<1xui32> loc(#loc556) | |
| %5295 = mhlo.add %5289, %5294 : tensor<1xui32> loc(#loc556) | |
| %5296 = mhlo.constant dense<17> : tensor<ui32> loc(#loc555) | |
| %5297 = "mhlo.broadcast_in_dim"(%5296) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5298 = mhlo.shift_left %5294, %5297 : tensor<1xui32> loc(#loc557) | |
| %5299 = mhlo.constant dense<15> : tensor<ui32> loc(#loc555) | |
| %5300 = "mhlo.broadcast_in_dim"(%5299) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5301 = mhlo.shift_right_logical %5294, %5300 : tensor<1xui32> loc(#loc545) | |
| %5302 = mhlo.or %5298, %5301 : tensor<1xui32> loc(#loc558) | |
| %5303 = mhlo.xor %5295, %5302 : tensor<1xui32> loc(#loc554) | |
| %5304 = mhlo.add %5295, %5303 : tensor<1xui32> loc(#loc556) | |
| %5305 = mhlo.constant dense<29> : tensor<ui32> loc(#loc555) | |
| %5306 = "mhlo.broadcast_in_dim"(%5305) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5307 = mhlo.shift_left %5303, %5306 : tensor<1xui32> loc(#loc557) | |
| %5308 = mhlo.constant dense<3> : tensor<ui32> loc(#loc555) | |
| %5309 = "mhlo.broadcast_in_dim"(%5308) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5310 = mhlo.shift_right_logical %5303, %5309 : tensor<1xui32> loc(#loc545) | |
| %5311 = mhlo.or %5307, %5310 : tensor<1xui32> loc(#loc558) | |
| %5312 = mhlo.xor %5304, %5311 : tensor<1xui32> loc(#loc554) | |
| %5313 = mhlo.add %5304, %5312 : tensor<1xui32> loc(#loc556) | |
| %5314 = mhlo.constant dense<16> : tensor<ui32> loc(#loc555) | |
| %5315 = "mhlo.broadcast_in_dim"(%5314) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5316 = mhlo.shift_left %5312, %5315 : tensor<1xui32> loc(#loc557) | |
| %5317 = mhlo.constant dense<16> : tensor<ui32> loc(#loc555) | |
| %5318 = "mhlo.broadcast_in_dim"(%5317) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5319 = mhlo.shift_right_logical %5312, %5318 : tensor<1xui32> loc(#loc545) | |
| %5320 = mhlo.or %5316, %5319 : tensor<1xui32> loc(#loc558) | |
| %5321 = mhlo.xor %5313, %5320 : tensor<1xui32> loc(#loc554) | |
| %5322 = mhlo.add %5313, %5321 : tensor<1xui32> loc(#loc556) | |
| %5323 = mhlo.constant dense<24> : tensor<ui32> loc(#loc555) | |
| %5324 = "mhlo.broadcast_in_dim"(%5323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5325 = mhlo.shift_left %5321, %5324 : tensor<1xui32> loc(#loc557) | |
| %5326 = mhlo.constant dense<8> : tensor<ui32> loc(#loc555) | |
| %5327 = "mhlo.broadcast_in_dim"(%5326) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5328 = mhlo.shift_right_logical %5321, %5327 : tensor<1xui32> loc(#loc545) | |
| %5329 = mhlo.or %5325, %5328 : tensor<1xui32> loc(#loc558) | |
| %5330 = mhlo.xor %5322, %5329 : tensor<1xui32> loc(#loc554) | |
| %5331 = "mhlo.broadcast_in_dim"(%5247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5332 = mhlo.add %5322, %5331 : tensor<1xui32> loc(#loc556) | |
| %5333 = "mhlo.broadcast_in_dim"(%5240) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5334 = mhlo.add %5330, %5333 : tensor<1xui32> loc(#loc556) | |
| %5335 = mhlo.constant dense<2> : tensor<ui32> loc(#loc555) | |
| %5336 = "mhlo.broadcast_in_dim"(%5335) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5337 = mhlo.add %5334, %5336 : tensor<1xui32> loc(#loc556) | |
| %5338 = mhlo.add %5332, %5337 : tensor<1xui32> loc(#loc556) | |
| %5339 = mhlo.constant dense<13> : tensor<ui32> loc(#loc555) | |
| %5340 = "mhlo.broadcast_in_dim"(%5339) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5341 = mhlo.shift_left %5337, %5340 : tensor<1xui32> loc(#loc557) | |
| %5342 = mhlo.constant dense<19> : tensor<ui32> loc(#loc555) | |
| %5343 = "mhlo.broadcast_in_dim"(%5342) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5344 = mhlo.shift_right_logical %5337, %5343 : tensor<1xui32> loc(#loc545) | |
| %5345 = mhlo.or %5341, %5344 : tensor<1xui32> loc(#loc558) | |
| %5346 = mhlo.xor %5338, %5345 : tensor<1xui32> loc(#loc554) | |
| %5347 = mhlo.add %5338, %5346 : tensor<1xui32> loc(#loc556) | |
| %5348 = mhlo.constant dense<15> : tensor<ui32> loc(#loc555) | |
| %5349 = "mhlo.broadcast_in_dim"(%5348) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5350 = mhlo.shift_left %5346, %5349 : tensor<1xui32> loc(#loc557) | |
| %5351 = mhlo.constant dense<17> : tensor<ui32> loc(#loc555) | |
| %5352 = "mhlo.broadcast_in_dim"(%5351) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5353 = mhlo.shift_right_logical %5346, %5352 : tensor<1xui32> loc(#loc545) | |
| %5354 = mhlo.or %5350, %5353 : tensor<1xui32> loc(#loc558) | |
| %5355 = mhlo.xor %5347, %5354 : tensor<1xui32> loc(#loc554) | |
| %5356 = mhlo.add %5347, %5355 : tensor<1xui32> loc(#loc556) | |
| %5357 = mhlo.constant dense<26> : tensor<ui32> loc(#loc555) | |
| %5358 = "mhlo.broadcast_in_dim"(%5357) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5359 = mhlo.shift_left %5355, %5358 : tensor<1xui32> loc(#loc557) | |
| %5360 = mhlo.constant dense<6> : tensor<ui32> loc(#loc555) | |
| %5361 = "mhlo.broadcast_in_dim"(%5360) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5362 = mhlo.shift_right_logical %5355, %5361 : tensor<1xui32> loc(#loc545) | |
| %5363 = mhlo.or %5359, %5362 : tensor<1xui32> loc(#loc558) | |
| %5364 = mhlo.xor %5356, %5363 : tensor<1xui32> loc(#loc554) | |
| %5365 = mhlo.add %5356, %5364 : tensor<1xui32> loc(#loc556) | |
| %5366 = mhlo.constant dense<6> : tensor<ui32> loc(#loc555) | |
| %5367 = "mhlo.broadcast_in_dim"(%5366) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5368 = mhlo.shift_left %5364, %5367 : tensor<1xui32> loc(#loc557) | |
| %5369 = mhlo.constant dense<26> : tensor<ui32> loc(#loc555) | |
| %5370 = "mhlo.broadcast_in_dim"(%5369) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5371 = mhlo.shift_right_logical %5364, %5370 : tensor<1xui32> loc(#loc545) | |
| %5372 = mhlo.or %5368, %5371 : tensor<1xui32> loc(#loc558) | |
| %5373 = mhlo.xor %5365, %5372 : tensor<1xui32> loc(#loc554) | |
| %5374 = "mhlo.broadcast_in_dim"(%5240) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5375 = mhlo.add %5365, %5374 : tensor<1xui32> loc(#loc556) | |
| %5376 = "mhlo.broadcast_in_dim"(%5242) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5377 = mhlo.add %5373, %5376 : tensor<1xui32> loc(#loc556) | |
| %5378 = mhlo.constant dense<3> : tensor<ui32> loc(#loc555) | |
| %5379 = "mhlo.broadcast_in_dim"(%5378) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5380 = mhlo.add %5377, %5379 : tensor<1xui32> loc(#loc556) | |
| %5381 = mhlo.add %5375, %5380 : tensor<1xui32> loc(#loc556) | |
| %5382 = mhlo.constant dense<17> : tensor<ui32> loc(#loc555) | |
| %5383 = "mhlo.broadcast_in_dim"(%5382) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5384 = mhlo.shift_left %5380, %5383 : tensor<1xui32> loc(#loc557) | |
| %5385 = mhlo.constant dense<15> : tensor<ui32> loc(#loc555) | |
| %5386 = "mhlo.broadcast_in_dim"(%5385) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5387 = mhlo.shift_right_logical %5380, %5386 : tensor<1xui32> loc(#loc545) | |
| %5388 = mhlo.or %5384, %5387 : tensor<1xui32> loc(#loc558) | |
| %5389 = mhlo.xor %5381, %5388 : tensor<1xui32> loc(#loc554) | |
| %5390 = mhlo.add %5381, %5389 : tensor<1xui32> loc(#loc556) | |
| %5391 = mhlo.constant dense<29> : tensor<ui32> loc(#loc555) | |
| %5392 = "mhlo.broadcast_in_dim"(%5391) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5393 = mhlo.shift_left %5389, %5392 : tensor<1xui32> loc(#loc557) | |
| %5394 = mhlo.constant dense<3> : tensor<ui32> loc(#loc555) | |
| %5395 = "mhlo.broadcast_in_dim"(%5394) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5396 = mhlo.shift_right_logical %5389, %5395 : tensor<1xui32> loc(#loc545) | |
| %5397 = mhlo.or %5393, %5396 : tensor<1xui32> loc(#loc558) | |
| %5398 = mhlo.xor %5390, %5397 : tensor<1xui32> loc(#loc554) | |
| %5399 = mhlo.add %5390, %5398 : tensor<1xui32> loc(#loc556) | |
| %5400 = mhlo.constant dense<16> : tensor<ui32> loc(#loc555) | |
| %5401 = "mhlo.broadcast_in_dim"(%5400) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5402 = mhlo.shift_left %5398, %5401 : tensor<1xui32> loc(#loc557) | |
| %5403 = mhlo.constant dense<16> : tensor<ui32> loc(#loc555) | |
| %5404 = "mhlo.broadcast_in_dim"(%5403) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5405 = mhlo.shift_right_logical %5398, %5404 : tensor<1xui32> loc(#loc545) | |
| %5406 = mhlo.or %5402, %5405 : tensor<1xui32> loc(#loc558) | |
| %5407 = mhlo.xor %5399, %5406 : tensor<1xui32> loc(#loc554) | |
| %5408 = mhlo.add %5399, %5407 : tensor<1xui32> loc(#loc556) | |
| %5409 = mhlo.constant dense<24> : tensor<ui32> loc(#loc555) | |
| %5410 = "mhlo.broadcast_in_dim"(%5409) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5411 = mhlo.shift_left %5407, %5410 : tensor<1xui32> loc(#loc557) | |
| %5412 = mhlo.constant dense<8> : tensor<ui32> loc(#loc555) | |
| %5413 = "mhlo.broadcast_in_dim"(%5412) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5414 = mhlo.shift_right_logical %5407, %5413 : tensor<1xui32> loc(#loc545) | |
| %5415 = mhlo.or %5411, %5414 : tensor<1xui32> loc(#loc558) | |
| %5416 = mhlo.xor %5408, %5415 : tensor<1xui32> loc(#loc554) | |
| %5417 = "mhlo.broadcast_in_dim"(%5242) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5418 = mhlo.add %5408, %5417 : tensor<1xui32> loc(#loc556) | |
| %5419 = "mhlo.broadcast_in_dim"(%5247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5420 = mhlo.add %5416, %5419 : tensor<1xui32> loc(#loc556) | |
| %5421 = mhlo.constant dense<4> : tensor<ui32> loc(#loc555) | |
| %5422 = "mhlo.broadcast_in_dim"(%5421) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5423 = mhlo.add %5420, %5422 : tensor<1xui32> loc(#loc556) | |
| %5424 = mhlo.add %5418, %5423 : tensor<1xui32> loc(#loc556) | |
| %5425 = mhlo.constant dense<13> : tensor<ui32> loc(#loc555) | |
| %5426 = "mhlo.broadcast_in_dim"(%5425) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5427 = mhlo.shift_left %5423, %5426 : tensor<1xui32> loc(#loc557) | |
| %5428 = mhlo.constant dense<19> : tensor<ui32> loc(#loc555) | |
| %5429 = "mhlo.broadcast_in_dim"(%5428) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5430 = mhlo.shift_right_logical %5423, %5429 : tensor<1xui32> loc(#loc545) | |
| %5431 = mhlo.or %5427, %5430 : tensor<1xui32> loc(#loc558) | |
| %5432 = mhlo.xor %5424, %5431 : tensor<1xui32> loc(#loc554) | |
| %5433 = mhlo.add %5424, %5432 : tensor<1xui32> loc(#loc556) | |
| %5434 = mhlo.constant dense<15> : tensor<ui32> loc(#loc555) | |
| %5435 = "mhlo.broadcast_in_dim"(%5434) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5436 = mhlo.shift_left %5432, %5435 : tensor<1xui32> loc(#loc557) | |
| %5437 = mhlo.constant dense<17> : tensor<ui32> loc(#loc555) | |
| %5438 = "mhlo.broadcast_in_dim"(%5437) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5439 = mhlo.shift_right_logical %5432, %5438 : tensor<1xui32> loc(#loc545) | |
| %5440 = mhlo.or %5436, %5439 : tensor<1xui32> loc(#loc558) | |
| %5441 = mhlo.xor %5433, %5440 : tensor<1xui32> loc(#loc554) | |
| %5442 = mhlo.add %5433, %5441 : tensor<1xui32> loc(#loc556) | |
| %5443 = mhlo.constant dense<26> : tensor<ui32> loc(#loc555) | |
| %5444 = "mhlo.broadcast_in_dim"(%5443) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5445 = mhlo.shift_left %5441, %5444 : tensor<1xui32> loc(#loc557) | |
| %5446 = mhlo.constant dense<6> : tensor<ui32> loc(#loc555) | |
| %5447 = "mhlo.broadcast_in_dim"(%5446) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5448 = mhlo.shift_right_logical %5441, %5447 : tensor<1xui32> loc(#loc545) | |
| %5449 = mhlo.or %5445, %5448 : tensor<1xui32> loc(#loc558) | |
| %5450 = mhlo.xor %5442, %5449 : tensor<1xui32> loc(#loc554) | |
| %5451 = mhlo.add %5442, %5450 : tensor<1xui32> loc(#loc556) | |
| %5452 = mhlo.constant dense<6> : tensor<ui32> loc(#loc555) | |
| %5453 = "mhlo.broadcast_in_dim"(%5452) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc557) | |
| %5454 = mhlo.shift_left %5450, %5453 : tensor<1xui32> loc(#loc557) | |
| %5455 = mhlo.constant dense<26> : tensor<ui32> loc(#loc555) | |
| %5456 = "mhlo.broadcast_in_dim"(%5455) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc545) | |
| %5457 = mhlo.shift_right_logical %5450, %5456 : tensor<1xui32> loc(#loc545) | |
| %5458 = mhlo.or %5454, %5457 : tensor<1xui32> loc(#loc558) | |
| %5459 = mhlo.xor %5451, %5458 : tensor<1xui32> loc(#loc554) | |
| %5460 = "mhlo.broadcast_in_dim"(%5247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5461 = mhlo.add %5451, %5460 : tensor<1xui32> loc(#loc556) | |
| %5462 = "mhlo.broadcast_in_dim"(%5240) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5463 = mhlo.add %5459, %5462 : tensor<1xui32> loc(#loc556) | |
| %5464 = mhlo.constant dense<5> : tensor<ui32> loc(#loc555) | |
| %5465 = "mhlo.broadcast_in_dim"(%5464) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc556) | |
| %5466 = mhlo.add %5463, %5465 : tensor<1xui32> loc(#loc556) | |
| %5467 = "mhlo.concatenate"(%5461, %5466) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc548) | |
| %5468 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %5469 = "mhlo.broadcast_in_dim"(%5468) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc559) | |
| %5470 = "mhlo.reshape"(%5469) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc560) | |
| %5471 = "mhlo.broadcast_in_dim"(%5470) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc561) | |
| %5472 = mhlo.add %5230, %5471 : tensor<1x256x2048xf32> loc(#loc561) | |
| %5473 = mhlo.convert(%5472) : (tensor<1x256x2048xf32>) -> tensor<1x256x2048xf16> loc(#loc562) | |
| %5474 = mhlo.constant dense<true> : tensor<i1> loc(#loc531) | |
| %5475 = "mhlo.broadcast_in_dim"(%5474) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i1>) -> tensor<1x256xi1> loc(#loc563) | |
| %5476 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<256xi32> loc(#loc564) | |
| %5477 = "mhlo.broadcast_in_dim"(%5476) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xi32>) -> tensor<1x256xi32> loc(#loc565) | |
| %5478 = "mhlo.broadcast_in_dim"(%5477) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x256xi32>) -> tensor<1x256x1xi32> loc(#loc566) | |
| %5479 = "mhlo.broadcast_in_dim"(%5477) {broadcast_dimensions = dense<[0, 2]> : tensor<2xi64>} : (tensor<1x256xi32>) -> tensor<1x1x256xi32> loc(#loc567) | |
| %5480 = "mhlo.broadcast_in_dim"(%5478) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xi32>) -> tensor<1x256x256xi32> loc(#loc568) | |
| %5481 = "mhlo.broadcast_in_dim"(%5479) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256xi32>) -> tensor<1x256x256xi32> loc(#loc568) | |
| %5482 = "mhlo.compare"(%5480, %5481) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction GE">} : (tensor<1x256x256xi32>, tensor<1x256x256xi32>) -> tensor<1x256x256xi1> loc(#loc568) | |
| %5483 = "mhlo.broadcast_in_dim"(%5482) {broadcast_dimensions = dense<[0, 2, 3]> : tensor<3xi64>} : (tensor<1x256x256xi1>) -> tensor<1x1x256x256xi1> loc(#loc569) | |
| %5484 = mhlo.constant dense<2728363194> : tensor<ui32> loc(#loc531) | |
| %5485 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %5486 = mhlo.shift_right_logical %5484, %5485 : tensor<ui32> loc(#loc570) | |
| %5487 = "mhlo.reshape"(%5486) : (tensor<ui32>) -> tensor<1xui32> loc(#loc571) | |
| %5488 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %5489 = mhlo.and %5484, %5488 : tensor<ui32> loc(#loc572) | |
| %5490 = "mhlo.reshape"(%5489) : (tensor<ui32>) -> tensor<1xui32> loc(#loc571) | |
| %5491 = "mhlo.concatenate"(%5487, %5490) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc573) | |
| %5492 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc574) | |
| %5493 = "mhlo.reshape"(%5492) : (tensor<1xui32>) -> tensor<ui32> loc(#loc575) | |
| %5494 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc576) | |
| %5495 = "mhlo.reshape"(%5494) : (tensor<1xui32>) -> tensor<ui32> loc(#loc575) | |
| %5496 = "mhlo.slice"(%5491) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc577) | |
| %5497 = "mhlo.slice"(%5491) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc578) | |
| %5498 = mhlo.xor %5493, %5495 : tensor<ui32> loc(#loc579) | |
| %5499 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc580) | |
| %5500 = mhlo.xor %5498, %5499 : tensor<ui32> loc(#loc579) | |
| %5501 = "mhlo.broadcast_in_dim"(%5493) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5502 = mhlo.add %5496, %5501 : tensor<1xui32> loc(#loc581) | |
| %5503 = "mhlo.broadcast_in_dim"(%5495) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5504 = mhlo.add %5497, %5503 : tensor<1xui32> loc(#loc581) | |
| %5505 = mhlo.add %5502, %5504 : tensor<1xui32> loc(#loc581) | |
| %5506 = mhlo.constant dense<13> : tensor<ui32> loc(#loc580) | |
| %5507 = "mhlo.broadcast_in_dim"(%5506) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5508 = mhlo.shift_left %5504, %5507 : tensor<1xui32> loc(#loc582) | |
| %5509 = mhlo.constant dense<19> : tensor<ui32> loc(#loc580) | |
| %5510 = "mhlo.broadcast_in_dim"(%5509) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5511 = mhlo.shift_right_logical %5504, %5510 : tensor<1xui32> loc(#loc570) | |
| %5512 = mhlo.or %5508, %5511 : tensor<1xui32> loc(#loc583) | |
| %5513 = mhlo.xor %5505, %5512 : tensor<1xui32> loc(#loc579) | |
| %5514 = mhlo.add %5505, %5513 : tensor<1xui32> loc(#loc581) | |
| %5515 = mhlo.constant dense<15> : tensor<ui32> loc(#loc580) | |
| %5516 = "mhlo.broadcast_in_dim"(%5515) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5517 = mhlo.shift_left %5513, %5516 : tensor<1xui32> loc(#loc582) | |
| %5518 = mhlo.constant dense<17> : tensor<ui32> loc(#loc580) | |
| %5519 = "mhlo.broadcast_in_dim"(%5518) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5520 = mhlo.shift_right_logical %5513, %5519 : tensor<1xui32> loc(#loc570) | |
| %5521 = mhlo.or %5517, %5520 : tensor<1xui32> loc(#loc583) | |
| %5522 = mhlo.xor %5514, %5521 : tensor<1xui32> loc(#loc579) | |
| %5523 = mhlo.add %5514, %5522 : tensor<1xui32> loc(#loc581) | |
| %5524 = mhlo.constant dense<26> : tensor<ui32> loc(#loc580) | |
| %5525 = "mhlo.broadcast_in_dim"(%5524) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5526 = mhlo.shift_left %5522, %5525 : tensor<1xui32> loc(#loc582) | |
| %5527 = mhlo.constant dense<6> : tensor<ui32> loc(#loc580) | |
| %5528 = "mhlo.broadcast_in_dim"(%5527) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5529 = mhlo.shift_right_logical %5522, %5528 : tensor<1xui32> loc(#loc570) | |
| %5530 = mhlo.or %5526, %5529 : tensor<1xui32> loc(#loc583) | |
| %5531 = mhlo.xor %5523, %5530 : tensor<1xui32> loc(#loc579) | |
| %5532 = mhlo.add %5523, %5531 : tensor<1xui32> loc(#loc581) | |
| %5533 = mhlo.constant dense<6> : tensor<ui32> loc(#loc580) | |
| %5534 = "mhlo.broadcast_in_dim"(%5533) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5535 = mhlo.shift_left %5531, %5534 : tensor<1xui32> loc(#loc582) | |
| %5536 = mhlo.constant dense<26> : tensor<ui32> loc(#loc580) | |
| %5537 = "mhlo.broadcast_in_dim"(%5536) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5538 = mhlo.shift_right_logical %5531, %5537 : tensor<1xui32> loc(#loc570) | |
| %5539 = mhlo.or %5535, %5538 : tensor<1xui32> loc(#loc583) | |
| %5540 = mhlo.xor %5532, %5539 : tensor<1xui32> loc(#loc579) | |
| %5541 = "mhlo.broadcast_in_dim"(%5495) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5542 = mhlo.add %5532, %5541 : tensor<1xui32> loc(#loc581) | |
| %5543 = "mhlo.broadcast_in_dim"(%5500) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5544 = mhlo.add %5540, %5543 : tensor<1xui32> loc(#loc581) | |
| %5545 = mhlo.constant dense<1> : tensor<ui32> loc(#loc580) | |
| %5546 = "mhlo.broadcast_in_dim"(%5545) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5547 = mhlo.add %5544, %5546 : tensor<1xui32> loc(#loc581) | |
| %5548 = mhlo.add %5542, %5547 : tensor<1xui32> loc(#loc581) | |
| %5549 = mhlo.constant dense<17> : tensor<ui32> loc(#loc580) | |
| %5550 = "mhlo.broadcast_in_dim"(%5549) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5551 = mhlo.shift_left %5547, %5550 : tensor<1xui32> loc(#loc582) | |
| %5552 = mhlo.constant dense<15> : tensor<ui32> loc(#loc580) | |
| %5553 = "mhlo.broadcast_in_dim"(%5552) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5554 = mhlo.shift_right_logical %5547, %5553 : tensor<1xui32> loc(#loc570) | |
| %5555 = mhlo.or %5551, %5554 : tensor<1xui32> loc(#loc583) | |
| %5556 = mhlo.xor %5548, %5555 : tensor<1xui32> loc(#loc579) | |
| %5557 = mhlo.add %5548, %5556 : tensor<1xui32> loc(#loc581) | |
| %5558 = mhlo.constant dense<29> : tensor<ui32> loc(#loc580) | |
| %5559 = "mhlo.broadcast_in_dim"(%5558) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5560 = mhlo.shift_left %5556, %5559 : tensor<1xui32> loc(#loc582) | |
| %5561 = mhlo.constant dense<3> : tensor<ui32> loc(#loc580) | |
| %5562 = "mhlo.broadcast_in_dim"(%5561) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5563 = mhlo.shift_right_logical %5556, %5562 : tensor<1xui32> loc(#loc570) | |
| %5564 = mhlo.or %5560, %5563 : tensor<1xui32> loc(#loc583) | |
| %5565 = mhlo.xor %5557, %5564 : tensor<1xui32> loc(#loc579) | |
| %5566 = mhlo.add %5557, %5565 : tensor<1xui32> loc(#loc581) | |
| %5567 = mhlo.constant dense<16> : tensor<ui32> loc(#loc580) | |
| %5568 = "mhlo.broadcast_in_dim"(%5567) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5569 = mhlo.shift_left %5565, %5568 : tensor<1xui32> loc(#loc582) | |
| %5570 = mhlo.constant dense<16> : tensor<ui32> loc(#loc580) | |
| %5571 = "mhlo.broadcast_in_dim"(%5570) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5572 = mhlo.shift_right_logical %5565, %5571 : tensor<1xui32> loc(#loc570) | |
| %5573 = mhlo.or %5569, %5572 : tensor<1xui32> loc(#loc583) | |
| %5574 = mhlo.xor %5566, %5573 : tensor<1xui32> loc(#loc579) | |
| %5575 = mhlo.add %5566, %5574 : tensor<1xui32> loc(#loc581) | |
| %5576 = mhlo.constant dense<24> : tensor<ui32> loc(#loc580) | |
| %5577 = "mhlo.broadcast_in_dim"(%5576) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5578 = mhlo.shift_left %5574, %5577 : tensor<1xui32> loc(#loc582) | |
| %5579 = mhlo.constant dense<8> : tensor<ui32> loc(#loc580) | |
| %5580 = "mhlo.broadcast_in_dim"(%5579) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5581 = mhlo.shift_right_logical %5574, %5580 : tensor<1xui32> loc(#loc570) | |
| %5582 = mhlo.or %5578, %5581 : tensor<1xui32> loc(#loc583) | |
| %5583 = mhlo.xor %5575, %5582 : tensor<1xui32> loc(#loc579) | |
| %5584 = "mhlo.broadcast_in_dim"(%5500) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5585 = mhlo.add %5575, %5584 : tensor<1xui32> loc(#loc581) | |
| %5586 = "mhlo.broadcast_in_dim"(%5493) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5587 = mhlo.add %5583, %5586 : tensor<1xui32> loc(#loc581) | |
| %5588 = mhlo.constant dense<2> : tensor<ui32> loc(#loc580) | |
| %5589 = "mhlo.broadcast_in_dim"(%5588) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5590 = mhlo.add %5587, %5589 : tensor<1xui32> loc(#loc581) | |
| %5591 = mhlo.add %5585, %5590 : tensor<1xui32> loc(#loc581) | |
| %5592 = mhlo.constant dense<13> : tensor<ui32> loc(#loc580) | |
| %5593 = "mhlo.broadcast_in_dim"(%5592) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5594 = mhlo.shift_left %5590, %5593 : tensor<1xui32> loc(#loc582) | |
| %5595 = mhlo.constant dense<19> : tensor<ui32> loc(#loc580) | |
| %5596 = "mhlo.broadcast_in_dim"(%5595) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5597 = mhlo.shift_right_logical %5590, %5596 : tensor<1xui32> loc(#loc570) | |
| %5598 = mhlo.or %5594, %5597 : tensor<1xui32> loc(#loc583) | |
| %5599 = mhlo.xor %5591, %5598 : tensor<1xui32> loc(#loc579) | |
| %5600 = mhlo.add %5591, %5599 : tensor<1xui32> loc(#loc581) | |
| %5601 = mhlo.constant dense<15> : tensor<ui32> loc(#loc580) | |
| %5602 = "mhlo.broadcast_in_dim"(%5601) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5603 = mhlo.shift_left %5599, %5602 : tensor<1xui32> loc(#loc582) | |
| %5604 = mhlo.constant dense<17> : tensor<ui32> loc(#loc580) | |
| %5605 = "mhlo.broadcast_in_dim"(%5604) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5606 = mhlo.shift_right_logical %5599, %5605 : tensor<1xui32> loc(#loc570) | |
| %5607 = mhlo.or %5603, %5606 : tensor<1xui32> loc(#loc583) | |
| %5608 = mhlo.xor %5600, %5607 : tensor<1xui32> loc(#loc579) | |
| %5609 = mhlo.add %5600, %5608 : tensor<1xui32> loc(#loc581) | |
| %5610 = mhlo.constant dense<26> : tensor<ui32> loc(#loc580) | |
| %5611 = "mhlo.broadcast_in_dim"(%5610) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5612 = mhlo.shift_left %5608, %5611 : tensor<1xui32> loc(#loc582) | |
| %5613 = mhlo.constant dense<6> : tensor<ui32> loc(#loc580) | |
| %5614 = "mhlo.broadcast_in_dim"(%5613) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5615 = mhlo.shift_right_logical %5608, %5614 : tensor<1xui32> loc(#loc570) | |
| %5616 = mhlo.or %5612, %5615 : tensor<1xui32> loc(#loc583) | |
| %5617 = mhlo.xor %5609, %5616 : tensor<1xui32> loc(#loc579) | |
| %5618 = mhlo.add %5609, %5617 : tensor<1xui32> loc(#loc581) | |
| %5619 = mhlo.constant dense<6> : tensor<ui32> loc(#loc580) | |
| %5620 = "mhlo.broadcast_in_dim"(%5619) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5621 = mhlo.shift_left %5617, %5620 : tensor<1xui32> loc(#loc582) | |
| %5622 = mhlo.constant dense<26> : tensor<ui32> loc(#loc580) | |
| %5623 = "mhlo.broadcast_in_dim"(%5622) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5624 = mhlo.shift_right_logical %5617, %5623 : tensor<1xui32> loc(#loc570) | |
| %5625 = mhlo.or %5621, %5624 : tensor<1xui32> loc(#loc583) | |
| %5626 = mhlo.xor %5618, %5625 : tensor<1xui32> loc(#loc579) | |
| %5627 = "mhlo.broadcast_in_dim"(%5493) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5628 = mhlo.add %5618, %5627 : tensor<1xui32> loc(#loc581) | |
| %5629 = "mhlo.broadcast_in_dim"(%5495) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5630 = mhlo.add %5626, %5629 : tensor<1xui32> loc(#loc581) | |
| %5631 = mhlo.constant dense<3> : tensor<ui32> loc(#loc580) | |
| %5632 = "mhlo.broadcast_in_dim"(%5631) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5633 = mhlo.add %5630, %5632 : tensor<1xui32> loc(#loc581) | |
| %5634 = mhlo.add %5628, %5633 : tensor<1xui32> loc(#loc581) | |
| %5635 = mhlo.constant dense<17> : tensor<ui32> loc(#loc580) | |
| %5636 = "mhlo.broadcast_in_dim"(%5635) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5637 = mhlo.shift_left %5633, %5636 : tensor<1xui32> loc(#loc582) | |
| %5638 = mhlo.constant dense<15> : tensor<ui32> loc(#loc580) | |
| %5639 = "mhlo.broadcast_in_dim"(%5638) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5640 = mhlo.shift_right_logical %5633, %5639 : tensor<1xui32> loc(#loc570) | |
| %5641 = mhlo.or %5637, %5640 : tensor<1xui32> loc(#loc583) | |
| %5642 = mhlo.xor %5634, %5641 : tensor<1xui32> loc(#loc579) | |
| %5643 = mhlo.add %5634, %5642 : tensor<1xui32> loc(#loc581) | |
| %5644 = mhlo.constant dense<29> : tensor<ui32> loc(#loc580) | |
| %5645 = "mhlo.broadcast_in_dim"(%5644) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5646 = mhlo.shift_left %5642, %5645 : tensor<1xui32> loc(#loc582) | |
| %5647 = mhlo.constant dense<3> : tensor<ui32> loc(#loc580) | |
| %5648 = "mhlo.broadcast_in_dim"(%5647) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5649 = mhlo.shift_right_logical %5642, %5648 : tensor<1xui32> loc(#loc570) | |
| %5650 = mhlo.or %5646, %5649 : tensor<1xui32> loc(#loc583) | |
| %5651 = mhlo.xor %5643, %5650 : tensor<1xui32> loc(#loc579) | |
| %5652 = mhlo.add %5643, %5651 : tensor<1xui32> loc(#loc581) | |
| %5653 = mhlo.constant dense<16> : tensor<ui32> loc(#loc580) | |
| %5654 = "mhlo.broadcast_in_dim"(%5653) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5655 = mhlo.shift_left %5651, %5654 : tensor<1xui32> loc(#loc582) | |
| %5656 = mhlo.constant dense<16> : tensor<ui32> loc(#loc580) | |
| %5657 = "mhlo.broadcast_in_dim"(%5656) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5658 = mhlo.shift_right_logical %5651, %5657 : tensor<1xui32> loc(#loc570) | |
| %5659 = mhlo.or %5655, %5658 : tensor<1xui32> loc(#loc583) | |
| %5660 = mhlo.xor %5652, %5659 : tensor<1xui32> loc(#loc579) | |
| %5661 = mhlo.add %5652, %5660 : tensor<1xui32> loc(#loc581) | |
| %5662 = mhlo.constant dense<24> : tensor<ui32> loc(#loc580) | |
| %5663 = "mhlo.broadcast_in_dim"(%5662) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5664 = mhlo.shift_left %5660, %5663 : tensor<1xui32> loc(#loc582) | |
| %5665 = mhlo.constant dense<8> : tensor<ui32> loc(#loc580) | |
| %5666 = "mhlo.broadcast_in_dim"(%5665) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5667 = mhlo.shift_right_logical %5660, %5666 : tensor<1xui32> loc(#loc570) | |
| %5668 = mhlo.or %5664, %5667 : tensor<1xui32> loc(#loc583) | |
| %5669 = mhlo.xor %5661, %5668 : tensor<1xui32> loc(#loc579) | |
| %5670 = "mhlo.broadcast_in_dim"(%5495) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5671 = mhlo.add %5661, %5670 : tensor<1xui32> loc(#loc581) | |
| %5672 = "mhlo.broadcast_in_dim"(%5500) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5673 = mhlo.add %5669, %5672 : tensor<1xui32> loc(#loc581) | |
| %5674 = mhlo.constant dense<4> : tensor<ui32> loc(#loc580) | |
| %5675 = "mhlo.broadcast_in_dim"(%5674) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5676 = mhlo.add %5673, %5675 : tensor<1xui32> loc(#loc581) | |
| %5677 = mhlo.add %5671, %5676 : tensor<1xui32> loc(#loc581) | |
| %5678 = mhlo.constant dense<13> : tensor<ui32> loc(#loc580) | |
| %5679 = "mhlo.broadcast_in_dim"(%5678) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5680 = mhlo.shift_left %5676, %5679 : tensor<1xui32> loc(#loc582) | |
| %5681 = mhlo.constant dense<19> : tensor<ui32> loc(#loc580) | |
| %5682 = "mhlo.broadcast_in_dim"(%5681) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5683 = mhlo.shift_right_logical %5676, %5682 : tensor<1xui32> loc(#loc570) | |
| %5684 = mhlo.or %5680, %5683 : tensor<1xui32> loc(#loc583) | |
| %5685 = mhlo.xor %5677, %5684 : tensor<1xui32> loc(#loc579) | |
| %5686 = mhlo.add %5677, %5685 : tensor<1xui32> loc(#loc581) | |
| %5687 = mhlo.constant dense<15> : tensor<ui32> loc(#loc580) | |
| %5688 = "mhlo.broadcast_in_dim"(%5687) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5689 = mhlo.shift_left %5685, %5688 : tensor<1xui32> loc(#loc582) | |
| %5690 = mhlo.constant dense<17> : tensor<ui32> loc(#loc580) | |
| %5691 = "mhlo.broadcast_in_dim"(%5690) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5692 = mhlo.shift_right_logical %5685, %5691 : tensor<1xui32> loc(#loc570) | |
| %5693 = mhlo.or %5689, %5692 : tensor<1xui32> loc(#loc583) | |
| %5694 = mhlo.xor %5686, %5693 : tensor<1xui32> loc(#loc579) | |
| %5695 = mhlo.add %5686, %5694 : tensor<1xui32> loc(#loc581) | |
| %5696 = mhlo.constant dense<26> : tensor<ui32> loc(#loc580) | |
| %5697 = "mhlo.broadcast_in_dim"(%5696) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5698 = mhlo.shift_left %5694, %5697 : tensor<1xui32> loc(#loc582) | |
| %5699 = mhlo.constant dense<6> : tensor<ui32> loc(#loc580) | |
| %5700 = "mhlo.broadcast_in_dim"(%5699) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5701 = mhlo.shift_right_logical %5694, %5700 : tensor<1xui32> loc(#loc570) | |
| %5702 = mhlo.or %5698, %5701 : tensor<1xui32> loc(#loc583) | |
| %5703 = mhlo.xor %5695, %5702 : tensor<1xui32> loc(#loc579) | |
| %5704 = mhlo.add %5695, %5703 : tensor<1xui32> loc(#loc581) | |
| %5705 = mhlo.constant dense<6> : tensor<ui32> loc(#loc580) | |
| %5706 = "mhlo.broadcast_in_dim"(%5705) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc582) | |
| %5707 = mhlo.shift_left %5703, %5706 : tensor<1xui32> loc(#loc582) | |
| %5708 = mhlo.constant dense<26> : tensor<ui32> loc(#loc580) | |
| %5709 = "mhlo.broadcast_in_dim"(%5708) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc570) | |
| %5710 = mhlo.shift_right_logical %5703, %5709 : tensor<1xui32> loc(#loc570) | |
| %5711 = mhlo.or %5707, %5710 : tensor<1xui32> loc(#loc583) | |
| %5712 = mhlo.xor %5704, %5711 : tensor<1xui32> loc(#loc579) | |
| %5713 = "mhlo.broadcast_in_dim"(%5500) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5714 = mhlo.add %5704, %5713 : tensor<1xui32> loc(#loc581) | |
| %5715 = "mhlo.broadcast_in_dim"(%5493) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5716 = mhlo.add %5712, %5715 : tensor<1xui32> loc(#loc581) | |
| %5717 = mhlo.constant dense<5> : tensor<ui32> loc(#loc580) | |
| %5718 = "mhlo.broadcast_in_dim"(%5717) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc581) | |
| %5719 = mhlo.add %5716, %5718 : tensor<1xui32> loc(#loc581) | |
| %5720 = "mhlo.concatenate"(%5714, %5719) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc573) | |
| %5721 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %5722 = "mhlo.broadcast_in_dim"(%5721) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc584) | |
| %5723 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %5724 = "mhlo.broadcast_in_dim"(%5723) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc584) | |
| %5725 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc585) | |
| %5726 = "mhlo.slice"(%5720) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc586) | |
| %5727 = "mhlo.reshape"(%5726) : (tensor<1xui32>) -> tensor<ui32> loc(#loc587) | |
| %5728 = "mhlo.slice"(%5720) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc588) | |
| %5729 = "mhlo.reshape"(%5728) : (tensor<1xui32>) -> tensor<ui32> loc(#loc587) | |
| %5730 = "mhlo.slice"(%5725) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc589) | |
| %5731 = "mhlo.slice"(%5725) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc590) | |
| %5732 = mhlo.xor %5727, %5729 : tensor<ui32> loc(#loc591) | |
| %5733 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc592) | |
| %5734 = mhlo.xor %5732, %5733 : tensor<ui32> loc(#loc591) | |
| %5735 = "mhlo.broadcast_in_dim"(%5727) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5736 = mhlo.add %5730, %5735 : tensor<2097152xui32> loc(#loc593) | |
| %5737 = "mhlo.broadcast_in_dim"(%5729) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5738 = mhlo.add %5731, %5737 : tensor<2097152xui32> loc(#loc593) | |
| %5739 = mhlo.add %5736, %5738 : tensor<2097152xui32> loc(#loc593) | |
| %5740 = mhlo.constant dense<13> : tensor<ui32> loc(#loc592) | |
| %5741 = "mhlo.broadcast_in_dim"(%5740) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5742 = mhlo.shift_left %5738, %5741 : tensor<2097152xui32> loc(#loc594) | |
| %5743 = mhlo.constant dense<19> : tensor<ui32> loc(#loc592) | |
| %5744 = "mhlo.broadcast_in_dim"(%5743) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5745 = mhlo.shift_right_logical %5738, %5744 : tensor<2097152xui32> loc(#loc595) | |
| %5746 = mhlo.or %5742, %5745 : tensor<2097152xui32> loc(#loc596) | |
| %5747 = mhlo.xor %5739, %5746 : tensor<2097152xui32> loc(#loc591) | |
| %5748 = mhlo.add %5739, %5747 : tensor<2097152xui32> loc(#loc593) | |
| %5749 = mhlo.constant dense<15> : tensor<ui32> loc(#loc592) | |
| %5750 = "mhlo.broadcast_in_dim"(%5749) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5751 = mhlo.shift_left %5747, %5750 : tensor<2097152xui32> loc(#loc594) | |
| %5752 = mhlo.constant dense<17> : tensor<ui32> loc(#loc592) | |
| %5753 = "mhlo.broadcast_in_dim"(%5752) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5754 = mhlo.shift_right_logical %5747, %5753 : tensor<2097152xui32> loc(#loc595) | |
| %5755 = mhlo.or %5751, %5754 : tensor<2097152xui32> loc(#loc596) | |
| %5756 = mhlo.xor %5748, %5755 : tensor<2097152xui32> loc(#loc591) | |
| %5757 = mhlo.add %5748, %5756 : tensor<2097152xui32> loc(#loc593) | |
| %5758 = mhlo.constant dense<26> : tensor<ui32> loc(#loc592) | |
| %5759 = "mhlo.broadcast_in_dim"(%5758) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5760 = mhlo.shift_left %5756, %5759 : tensor<2097152xui32> loc(#loc594) | |
| %5761 = mhlo.constant dense<6> : tensor<ui32> loc(#loc592) | |
| %5762 = "mhlo.broadcast_in_dim"(%5761) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5763 = mhlo.shift_right_logical %5756, %5762 : tensor<2097152xui32> loc(#loc595) | |
| %5764 = mhlo.or %5760, %5763 : tensor<2097152xui32> loc(#loc596) | |
| %5765 = mhlo.xor %5757, %5764 : tensor<2097152xui32> loc(#loc591) | |
| %5766 = mhlo.add %5757, %5765 : tensor<2097152xui32> loc(#loc593) | |
| %5767 = mhlo.constant dense<6> : tensor<ui32> loc(#loc592) | |
| %5768 = "mhlo.broadcast_in_dim"(%5767) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5769 = mhlo.shift_left %5765, %5768 : tensor<2097152xui32> loc(#loc594) | |
| %5770 = mhlo.constant dense<26> : tensor<ui32> loc(#loc592) | |
| %5771 = "mhlo.broadcast_in_dim"(%5770) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5772 = mhlo.shift_right_logical %5765, %5771 : tensor<2097152xui32> loc(#loc595) | |
| %5773 = mhlo.or %5769, %5772 : tensor<2097152xui32> loc(#loc596) | |
| %5774 = mhlo.xor %5766, %5773 : tensor<2097152xui32> loc(#loc591) | |
| %5775 = "mhlo.broadcast_in_dim"(%5729) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5776 = mhlo.add %5766, %5775 : tensor<2097152xui32> loc(#loc593) | |
| %5777 = "mhlo.broadcast_in_dim"(%5734) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5778 = mhlo.add %5774, %5777 : tensor<2097152xui32> loc(#loc593) | |
| %5779 = mhlo.constant dense<1> : tensor<ui32> loc(#loc592) | |
| %5780 = "mhlo.broadcast_in_dim"(%5779) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5781 = mhlo.add %5778, %5780 : tensor<2097152xui32> loc(#loc593) | |
| %5782 = mhlo.add %5776, %5781 : tensor<2097152xui32> loc(#loc593) | |
| %5783 = mhlo.constant dense<17> : tensor<ui32> loc(#loc592) | |
| %5784 = "mhlo.broadcast_in_dim"(%5783) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5785 = mhlo.shift_left %5781, %5784 : tensor<2097152xui32> loc(#loc594) | |
| %5786 = mhlo.constant dense<15> : tensor<ui32> loc(#loc592) | |
| %5787 = "mhlo.broadcast_in_dim"(%5786) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5788 = mhlo.shift_right_logical %5781, %5787 : tensor<2097152xui32> loc(#loc595) | |
| %5789 = mhlo.or %5785, %5788 : tensor<2097152xui32> loc(#loc596) | |
| %5790 = mhlo.xor %5782, %5789 : tensor<2097152xui32> loc(#loc591) | |
| %5791 = mhlo.add %5782, %5790 : tensor<2097152xui32> loc(#loc593) | |
| %5792 = mhlo.constant dense<29> : tensor<ui32> loc(#loc592) | |
| %5793 = "mhlo.broadcast_in_dim"(%5792) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5794 = mhlo.shift_left %5790, %5793 : tensor<2097152xui32> loc(#loc594) | |
| %5795 = mhlo.constant dense<3> : tensor<ui32> loc(#loc592) | |
| %5796 = "mhlo.broadcast_in_dim"(%5795) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5797 = mhlo.shift_right_logical %5790, %5796 : tensor<2097152xui32> loc(#loc595) | |
| %5798 = mhlo.or %5794, %5797 : tensor<2097152xui32> loc(#loc596) | |
| %5799 = mhlo.xor %5791, %5798 : tensor<2097152xui32> loc(#loc591) | |
| %5800 = mhlo.add %5791, %5799 : tensor<2097152xui32> loc(#loc593) | |
| %5801 = mhlo.constant dense<16> : tensor<ui32> loc(#loc592) | |
| %5802 = "mhlo.broadcast_in_dim"(%5801) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5803 = mhlo.shift_left %5799, %5802 : tensor<2097152xui32> loc(#loc594) | |
| %5804 = mhlo.constant dense<16> : tensor<ui32> loc(#loc592) | |
| %5805 = "mhlo.broadcast_in_dim"(%5804) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5806 = mhlo.shift_right_logical %5799, %5805 : tensor<2097152xui32> loc(#loc595) | |
| %5807 = mhlo.or %5803, %5806 : tensor<2097152xui32> loc(#loc596) | |
| %5808 = mhlo.xor %5800, %5807 : tensor<2097152xui32> loc(#loc591) | |
| %5809 = mhlo.add %5800, %5808 : tensor<2097152xui32> loc(#loc593) | |
| %5810 = mhlo.constant dense<24> : tensor<ui32> loc(#loc592) | |
| %5811 = "mhlo.broadcast_in_dim"(%5810) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5812 = mhlo.shift_left %5808, %5811 : tensor<2097152xui32> loc(#loc594) | |
| %5813 = mhlo.constant dense<8> : tensor<ui32> loc(#loc592) | |
| %5814 = "mhlo.broadcast_in_dim"(%5813) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5815 = mhlo.shift_right_logical %5808, %5814 : tensor<2097152xui32> loc(#loc595) | |
| %5816 = mhlo.or %5812, %5815 : tensor<2097152xui32> loc(#loc596) | |
| %5817 = mhlo.xor %5809, %5816 : tensor<2097152xui32> loc(#loc591) | |
| %5818 = "mhlo.broadcast_in_dim"(%5734) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5819 = mhlo.add %5809, %5818 : tensor<2097152xui32> loc(#loc593) | |
| %5820 = "mhlo.broadcast_in_dim"(%5727) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5821 = mhlo.add %5817, %5820 : tensor<2097152xui32> loc(#loc593) | |
| %5822 = mhlo.constant dense<2> : tensor<ui32> loc(#loc592) | |
| %5823 = "mhlo.broadcast_in_dim"(%5822) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5824 = mhlo.add %5821, %5823 : tensor<2097152xui32> loc(#loc593) | |
| %5825 = mhlo.add %5819, %5824 : tensor<2097152xui32> loc(#loc593) | |
| %5826 = mhlo.constant dense<13> : tensor<ui32> loc(#loc592) | |
| %5827 = "mhlo.broadcast_in_dim"(%5826) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5828 = mhlo.shift_left %5824, %5827 : tensor<2097152xui32> loc(#loc594) | |
| %5829 = mhlo.constant dense<19> : tensor<ui32> loc(#loc592) | |
| %5830 = "mhlo.broadcast_in_dim"(%5829) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5831 = mhlo.shift_right_logical %5824, %5830 : tensor<2097152xui32> loc(#loc595) | |
| %5832 = mhlo.or %5828, %5831 : tensor<2097152xui32> loc(#loc596) | |
| %5833 = mhlo.xor %5825, %5832 : tensor<2097152xui32> loc(#loc591) | |
| %5834 = mhlo.add %5825, %5833 : tensor<2097152xui32> loc(#loc593) | |
| %5835 = mhlo.constant dense<15> : tensor<ui32> loc(#loc592) | |
| %5836 = "mhlo.broadcast_in_dim"(%5835) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5837 = mhlo.shift_left %5833, %5836 : tensor<2097152xui32> loc(#loc594) | |
| %5838 = mhlo.constant dense<17> : tensor<ui32> loc(#loc592) | |
| %5839 = "mhlo.broadcast_in_dim"(%5838) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5840 = mhlo.shift_right_logical %5833, %5839 : tensor<2097152xui32> loc(#loc595) | |
| %5841 = mhlo.or %5837, %5840 : tensor<2097152xui32> loc(#loc596) | |
| %5842 = mhlo.xor %5834, %5841 : tensor<2097152xui32> loc(#loc591) | |
| %5843 = mhlo.add %5834, %5842 : tensor<2097152xui32> loc(#loc593) | |
| %5844 = mhlo.constant dense<26> : tensor<ui32> loc(#loc592) | |
| %5845 = "mhlo.broadcast_in_dim"(%5844) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5846 = mhlo.shift_left %5842, %5845 : tensor<2097152xui32> loc(#loc594) | |
| %5847 = mhlo.constant dense<6> : tensor<ui32> loc(#loc592) | |
| %5848 = "mhlo.broadcast_in_dim"(%5847) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5849 = mhlo.shift_right_logical %5842, %5848 : tensor<2097152xui32> loc(#loc595) | |
| %5850 = mhlo.or %5846, %5849 : tensor<2097152xui32> loc(#loc596) | |
| %5851 = mhlo.xor %5843, %5850 : tensor<2097152xui32> loc(#loc591) | |
| %5852 = mhlo.add %5843, %5851 : tensor<2097152xui32> loc(#loc593) | |
| %5853 = mhlo.constant dense<6> : tensor<ui32> loc(#loc592) | |
| %5854 = "mhlo.broadcast_in_dim"(%5853) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5855 = mhlo.shift_left %5851, %5854 : tensor<2097152xui32> loc(#loc594) | |
| %5856 = mhlo.constant dense<26> : tensor<ui32> loc(#loc592) | |
| %5857 = "mhlo.broadcast_in_dim"(%5856) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5858 = mhlo.shift_right_logical %5851, %5857 : tensor<2097152xui32> loc(#loc595) | |
| %5859 = mhlo.or %5855, %5858 : tensor<2097152xui32> loc(#loc596) | |
| %5860 = mhlo.xor %5852, %5859 : tensor<2097152xui32> loc(#loc591) | |
| %5861 = "mhlo.broadcast_in_dim"(%5727) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5862 = mhlo.add %5852, %5861 : tensor<2097152xui32> loc(#loc593) | |
| %5863 = "mhlo.broadcast_in_dim"(%5729) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5864 = mhlo.add %5860, %5863 : tensor<2097152xui32> loc(#loc593) | |
| %5865 = mhlo.constant dense<3> : tensor<ui32> loc(#loc592) | |
| %5866 = "mhlo.broadcast_in_dim"(%5865) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5867 = mhlo.add %5864, %5866 : tensor<2097152xui32> loc(#loc593) | |
| %5868 = mhlo.add %5862, %5867 : tensor<2097152xui32> loc(#loc593) | |
| %5869 = mhlo.constant dense<17> : tensor<ui32> loc(#loc592) | |
| %5870 = "mhlo.broadcast_in_dim"(%5869) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5871 = mhlo.shift_left %5867, %5870 : tensor<2097152xui32> loc(#loc594) | |
| %5872 = mhlo.constant dense<15> : tensor<ui32> loc(#loc592) | |
| %5873 = "mhlo.broadcast_in_dim"(%5872) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5874 = mhlo.shift_right_logical %5867, %5873 : tensor<2097152xui32> loc(#loc595) | |
| %5875 = mhlo.or %5871, %5874 : tensor<2097152xui32> loc(#loc596) | |
| %5876 = mhlo.xor %5868, %5875 : tensor<2097152xui32> loc(#loc591) | |
| %5877 = mhlo.add %5868, %5876 : tensor<2097152xui32> loc(#loc593) | |
| %5878 = mhlo.constant dense<29> : tensor<ui32> loc(#loc592) | |
| %5879 = "mhlo.broadcast_in_dim"(%5878) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5880 = mhlo.shift_left %5876, %5879 : tensor<2097152xui32> loc(#loc594) | |
| %5881 = mhlo.constant dense<3> : tensor<ui32> loc(#loc592) | |
| %5882 = "mhlo.broadcast_in_dim"(%5881) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5883 = mhlo.shift_right_logical %5876, %5882 : tensor<2097152xui32> loc(#loc595) | |
| %5884 = mhlo.or %5880, %5883 : tensor<2097152xui32> loc(#loc596) | |
| %5885 = mhlo.xor %5877, %5884 : tensor<2097152xui32> loc(#loc591) | |
| %5886 = mhlo.add %5877, %5885 : tensor<2097152xui32> loc(#loc593) | |
| %5887 = mhlo.constant dense<16> : tensor<ui32> loc(#loc592) | |
| %5888 = "mhlo.broadcast_in_dim"(%5887) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5889 = mhlo.shift_left %5885, %5888 : tensor<2097152xui32> loc(#loc594) | |
| %5890 = mhlo.constant dense<16> : tensor<ui32> loc(#loc592) | |
| %5891 = "mhlo.broadcast_in_dim"(%5890) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5892 = mhlo.shift_right_logical %5885, %5891 : tensor<2097152xui32> loc(#loc595) | |
| %5893 = mhlo.or %5889, %5892 : tensor<2097152xui32> loc(#loc596) | |
| %5894 = mhlo.xor %5886, %5893 : tensor<2097152xui32> loc(#loc591) | |
| %5895 = mhlo.add %5886, %5894 : tensor<2097152xui32> loc(#loc593) | |
| %5896 = mhlo.constant dense<24> : tensor<ui32> loc(#loc592) | |
| %5897 = "mhlo.broadcast_in_dim"(%5896) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5898 = mhlo.shift_left %5894, %5897 : tensor<2097152xui32> loc(#loc594) | |
| %5899 = mhlo.constant dense<8> : tensor<ui32> loc(#loc592) | |
| %5900 = "mhlo.broadcast_in_dim"(%5899) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5901 = mhlo.shift_right_logical %5894, %5900 : tensor<2097152xui32> loc(#loc595) | |
| %5902 = mhlo.or %5898, %5901 : tensor<2097152xui32> loc(#loc596) | |
| %5903 = mhlo.xor %5895, %5902 : tensor<2097152xui32> loc(#loc591) | |
| %5904 = "mhlo.broadcast_in_dim"(%5729) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5905 = mhlo.add %5895, %5904 : tensor<2097152xui32> loc(#loc593) | |
| %5906 = "mhlo.broadcast_in_dim"(%5734) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5907 = mhlo.add %5903, %5906 : tensor<2097152xui32> loc(#loc593) | |
| %5908 = mhlo.constant dense<4> : tensor<ui32> loc(#loc592) | |
| %5909 = "mhlo.broadcast_in_dim"(%5908) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5910 = mhlo.add %5907, %5909 : tensor<2097152xui32> loc(#loc593) | |
| %5911 = mhlo.add %5905, %5910 : tensor<2097152xui32> loc(#loc593) | |
| %5912 = mhlo.constant dense<13> : tensor<ui32> loc(#loc592) | |
| %5913 = "mhlo.broadcast_in_dim"(%5912) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5914 = mhlo.shift_left %5910, %5913 : tensor<2097152xui32> loc(#loc594) | |
| %5915 = mhlo.constant dense<19> : tensor<ui32> loc(#loc592) | |
| %5916 = "mhlo.broadcast_in_dim"(%5915) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5917 = mhlo.shift_right_logical %5910, %5916 : tensor<2097152xui32> loc(#loc595) | |
| %5918 = mhlo.or %5914, %5917 : tensor<2097152xui32> loc(#loc596) | |
| %5919 = mhlo.xor %5911, %5918 : tensor<2097152xui32> loc(#loc591) | |
| %5920 = mhlo.add %5911, %5919 : tensor<2097152xui32> loc(#loc593) | |
| %5921 = mhlo.constant dense<15> : tensor<ui32> loc(#loc592) | |
| %5922 = "mhlo.broadcast_in_dim"(%5921) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5923 = mhlo.shift_left %5919, %5922 : tensor<2097152xui32> loc(#loc594) | |
| %5924 = mhlo.constant dense<17> : tensor<ui32> loc(#loc592) | |
| %5925 = "mhlo.broadcast_in_dim"(%5924) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5926 = mhlo.shift_right_logical %5919, %5925 : tensor<2097152xui32> loc(#loc595) | |
| %5927 = mhlo.or %5923, %5926 : tensor<2097152xui32> loc(#loc596) | |
| %5928 = mhlo.xor %5920, %5927 : tensor<2097152xui32> loc(#loc591) | |
| %5929 = mhlo.add %5920, %5928 : tensor<2097152xui32> loc(#loc593) | |
| %5930 = mhlo.constant dense<26> : tensor<ui32> loc(#loc592) | |
| %5931 = "mhlo.broadcast_in_dim"(%5930) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5932 = mhlo.shift_left %5928, %5931 : tensor<2097152xui32> loc(#loc594) | |
| %5933 = mhlo.constant dense<6> : tensor<ui32> loc(#loc592) | |
| %5934 = "mhlo.broadcast_in_dim"(%5933) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5935 = mhlo.shift_right_logical %5928, %5934 : tensor<2097152xui32> loc(#loc595) | |
| %5936 = mhlo.or %5932, %5935 : tensor<2097152xui32> loc(#loc596) | |
| %5937 = mhlo.xor %5929, %5936 : tensor<2097152xui32> loc(#loc591) | |
| %5938 = mhlo.add %5929, %5937 : tensor<2097152xui32> loc(#loc593) | |
| %5939 = mhlo.constant dense<6> : tensor<ui32> loc(#loc592) | |
| %5940 = "mhlo.broadcast_in_dim"(%5939) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc594) | |
| %5941 = mhlo.shift_left %5937, %5940 : tensor<2097152xui32> loc(#loc594) | |
| %5942 = mhlo.constant dense<26> : tensor<ui32> loc(#loc592) | |
| %5943 = "mhlo.broadcast_in_dim"(%5942) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc595) | |
| %5944 = mhlo.shift_right_logical %5937, %5943 : tensor<2097152xui32> loc(#loc595) | |
| %5945 = mhlo.or %5941, %5944 : tensor<2097152xui32> loc(#loc596) | |
| %5946 = mhlo.xor %5938, %5945 : tensor<2097152xui32> loc(#loc591) | |
| %5947 = "mhlo.broadcast_in_dim"(%5734) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5948 = mhlo.add %5938, %5947 : tensor<2097152xui32> loc(#loc593) | |
| %5949 = "mhlo.broadcast_in_dim"(%5727) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5950 = mhlo.add %5946, %5949 : tensor<2097152xui32> loc(#loc593) | |
| %5951 = mhlo.constant dense<5> : tensor<ui32> loc(#loc592) | |
| %5952 = "mhlo.broadcast_in_dim"(%5951) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc593) | |
| %5953 = mhlo.add %5950, %5952 : tensor<2097152xui32> loc(#loc593) | |
| %5954 = "mhlo.concatenate"(%5948, %5953) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc597) | |
| %5955 = "mhlo.reshape"(%5954) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc598) | |
| %5956 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %5957 = "mhlo.broadcast_in_dim"(%5956) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc595) | |
| %5958 = mhlo.shift_right_logical %5955, %5957 : tensor<2048x2048xui32> loc(#loc595) | |
| %5959 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %5960 = "mhlo.broadcast_in_dim"(%5959) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc596) | |
| %5961 = mhlo.or %5958, %5960 : tensor<2048x2048xui32> loc(#loc596) | |
| %5962 = "mhlo.bitcast_convert"(%5961) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc599) | |
| %5963 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %5964 = "mhlo.broadcast_in_dim"(%5963) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc600) | |
| %5965 = mhlo.subtract %5962, %5964 : tensor<2048x2048xf32> loc(#loc600) | |
| %5966 = mhlo.subtract %5724, %5722 : tensor<1x1xf32> loc(#loc600) | |
| %5967 = "mhlo.broadcast_in_dim"(%5966) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc601) | |
| %5968 = mhlo.multiply %5965, %5967 : tensor<2048x2048xf32> loc(#loc601) | |
| %5969 = "mhlo.broadcast_in_dim"(%5722) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc593) | |
| %5970 = mhlo.add %5968, %5969 : tensor<2048x2048xf32> loc(#loc593) | |
| %5971 = "mhlo.broadcast_in_dim"(%5722) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc602) | |
| %5972 = mhlo.maximum %5971, %5970 : tensor<2048x2048xf32> loc(#loc602) | |
| %5973 = func.call @erf_inv_22(%5972) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc603) | |
| %5974 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %5975 = "mhlo.broadcast_in_dim"(%5974) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc601) | |
| %5976 = mhlo.multiply %5973, %5975 : tensor<2048x2048xf32> loc(#loc601) | |
| %5977 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %5978 = "mhlo.broadcast_in_dim"(%5977) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc601) | |
| %5979 = mhlo.multiply %5976, %5978 : tensor<2048x2048xf32> loc(#loc601) | |
| %5980 = mhlo.convert(%5979) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc604) | |
| %5981 = "mhlo.dot_general"(%5473, %5980) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x256x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x256x2048xf16> loc(#loc605) | |
| %5982 = mhlo.constant dense<3443933479> : tensor<ui32> loc(#loc531) | |
| %5983 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %5984 = mhlo.shift_right_logical %5982, %5983 : tensor<ui32> loc(#loc606) | |
| %5985 = "mhlo.reshape"(%5984) : (tensor<ui32>) -> tensor<1xui32> loc(#loc607) | |
| %5986 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %5987 = mhlo.and %5982, %5986 : tensor<ui32> loc(#loc608) | |
| %5988 = "mhlo.reshape"(%5987) : (tensor<ui32>) -> tensor<1xui32> loc(#loc607) | |
| %5989 = "mhlo.concatenate"(%5985, %5988) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc609) | |
| %5990 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc610) | |
| %5991 = "mhlo.reshape"(%5990) : (tensor<1xui32>) -> tensor<ui32> loc(#loc611) | |
| %5992 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc612) | |
| %5993 = "mhlo.reshape"(%5992) : (tensor<1xui32>) -> tensor<ui32> loc(#loc611) | |
| %5994 = "mhlo.slice"(%5989) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc613) | |
| %5995 = "mhlo.slice"(%5989) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc614) | |
| %5996 = mhlo.xor %5991, %5993 : tensor<ui32> loc(#loc615) | |
| %5997 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc616) | |
| %5998 = mhlo.xor %5996, %5997 : tensor<ui32> loc(#loc615) | |
| %5999 = "mhlo.broadcast_in_dim"(%5991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6000 = mhlo.add %5994, %5999 : tensor<1xui32> loc(#loc617) | |
| %6001 = "mhlo.broadcast_in_dim"(%5993) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6002 = mhlo.add %5995, %6001 : tensor<1xui32> loc(#loc617) | |
| %6003 = mhlo.add %6000, %6002 : tensor<1xui32> loc(#loc617) | |
| %6004 = mhlo.constant dense<13> : tensor<ui32> loc(#loc616) | |
| %6005 = "mhlo.broadcast_in_dim"(%6004) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6006 = mhlo.shift_left %6002, %6005 : tensor<1xui32> loc(#loc618) | |
| %6007 = mhlo.constant dense<19> : tensor<ui32> loc(#loc616) | |
| %6008 = "mhlo.broadcast_in_dim"(%6007) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6009 = mhlo.shift_right_logical %6002, %6008 : tensor<1xui32> loc(#loc606) | |
| %6010 = mhlo.or %6006, %6009 : tensor<1xui32> loc(#loc619) | |
| %6011 = mhlo.xor %6003, %6010 : tensor<1xui32> loc(#loc615) | |
| %6012 = mhlo.add %6003, %6011 : tensor<1xui32> loc(#loc617) | |
| %6013 = mhlo.constant dense<15> : tensor<ui32> loc(#loc616) | |
| %6014 = "mhlo.broadcast_in_dim"(%6013) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6015 = mhlo.shift_left %6011, %6014 : tensor<1xui32> loc(#loc618) | |
| %6016 = mhlo.constant dense<17> : tensor<ui32> loc(#loc616) | |
| %6017 = "mhlo.broadcast_in_dim"(%6016) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6018 = mhlo.shift_right_logical %6011, %6017 : tensor<1xui32> loc(#loc606) | |
| %6019 = mhlo.or %6015, %6018 : tensor<1xui32> loc(#loc619) | |
| %6020 = mhlo.xor %6012, %6019 : tensor<1xui32> loc(#loc615) | |
| %6021 = mhlo.add %6012, %6020 : tensor<1xui32> loc(#loc617) | |
| %6022 = mhlo.constant dense<26> : tensor<ui32> loc(#loc616) | |
| %6023 = "mhlo.broadcast_in_dim"(%6022) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6024 = mhlo.shift_left %6020, %6023 : tensor<1xui32> loc(#loc618) | |
| %6025 = mhlo.constant dense<6> : tensor<ui32> loc(#loc616) | |
| %6026 = "mhlo.broadcast_in_dim"(%6025) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6027 = mhlo.shift_right_logical %6020, %6026 : tensor<1xui32> loc(#loc606) | |
| %6028 = mhlo.or %6024, %6027 : tensor<1xui32> loc(#loc619) | |
| %6029 = mhlo.xor %6021, %6028 : tensor<1xui32> loc(#loc615) | |
| %6030 = mhlo.add %6021, %6029 : tensor<1xui32> loc(#loc617) | |
| %6031 = mhlo.constant dense<6> : tensor<ui32> loc(#loc616) | |
| %6032 = "mhlo.broadcast_in_dim"(%6031) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6033 = mhlo.shift_left %6029, %6032 : tensor<1xui32> loc(#loc618) | |
| %6034 = mhlo.constant dense<26> : tensor<ui32> loc(#loc616) | |
| %6035 = "mhlo.broadcast_in_dim"(%6034) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6036 = mhlo.shift_right_logical %6029, %6035 : tensor<1xui32> loc(#loc606) | |
| %6037 = mhlo.or %6033, %6036 : tensor<1xui32> loc(#loc619) | |
| %6038 = mhlo.xor %6030, %6037 : tensor<1xui32> loc(#loc615) | |
| %6039 = "mhlo.broadcast_in_dim"(%5993) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6040 = mhlo.add %6030, %6039 : tensor<1xui32> loc(#loc617) | |
| %6041 = "mhlo.broadcast_in_dim"(%5998) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6042 = mhlo.add %6038, %6041 : tensor<1xui32> loc(#loc617) | |
| %6043 = mhlo.constant dense<1> : tensor<ui32> loc(#loc616) | |
| %6044 = "mhlo.broadcast_in_dim"(%6043) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6045 = mhlo.add %6042, %6044 : tensor<1xui32> loc(#loc617) | |
| %6046 = mhlo.add %6040, %6045 : tensor<1xui32> loc(#loc617) | |
| %6047 = mhlo.constant dense<17> : tensor<ui32> loc(#loc616) | |
| %6048 = "mhlo.broadcast_in_dim"(%6047) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6049 = mhlo.shift_left %6045, %6048 : tensor<1xui32> loc(#loc618) | |
| %6050 = mhlo.constant dense<15> : tensor<ui32> loc(#loc616) | |
| %6051 = "mhlo.broadcast_in_dim"(%6050) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6052 = mhlo.shift_right_logical %6045, %6051 : tensor<1xui32> loc(#loc606) | |
| %6053 = mhlo.or %6049, %6052 : tensor<1xui32> loc(#loc619) | |
| %6054 = mhlo.xor %6046, %6053 : tensor<1xui32> loc(#loc615) | |
| %6055 = mhlo.add %6046, %6054 : tensor<1xui32> loc(#loc617) | |
| %6056 = mhlo.constant dense<29> : tensor<ui32> loc(#loc616) | |
| %6057 = "mhlo.broadcast_in_dim"(%6056) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6058 = mhlo.shift_left %6054, %6057 : tensor<1xui32> loc(#loc618) | |
| %6059 = mhlo.constant dense<3> : tensor<ui32> loc(#loc616) | |
| %6060 = "mhlo.broadcast_in_dim"(%6059) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6061 = mhlo.shift_right_logical %6054, %6060 : tensor<1xui32> loc(#loc606) | |
| %6062 = mhlo.or %6058, %6061 : tensor<1xui32> loc(#loc619) | |
| %6063 = mhlo.xor %6055, %6062 : tensor<1xui32> loc(#loc615) | |
| %6064 = mhlo.add %6055, %6063 : tensor<1xui32> loc(#loc617) | |
| %6065 = mhlo.constant dense<16> : tensor<ui32> loc(#loc616) | |
| %6066 = "mhlo.broadcast_in_dim"(%6065) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6067 = mhlo.shift_left %6063, %6066 : tensor<1xui32> loc(#loc618) | |
| %6068 = mhlo.constant dense<16> : tensor<ui32> loc(#loc616) | |
| %6069 = "mhlo.broadcast_in_dim"(%6068) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6070 = mhlo.shift_right_logical %6063, %6069 : tensor<1xui32> loc(#loc606) | |
| %6071 = mhlo.or %6067, %6070 : tensor<1xui32> loc(#loc619) | |
| %6072 = mhlo.xor %6064, %6071 : tensor<1xui32> loc(#loc615) | |
| %6073 = mhlo.add %6064, %6072 : tensor<1xui32> loc(#loc617) | |
| %6074 = mhlo.constant dense<24> : tensor<ui32> loc(#loc616) | |
| %6075 = "mhlo.broadcast_in_dim"(%6074) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6076 = mhlo.shift_left %6072, %6075 : tensor<1xui32> loc(#loc618) | |
| %6077 = mhlo.constant dense<8> : tensor<ui32> loc(#loc616) | |
| %6078 = "mhlo.broadcast_in_dim"(%6077) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6079 = mhlo.shift_right_logical %6072, %6078 : tensor<1xui32> loc(#loc606) | |
| %6080 = mhlo.or %6076, %6079 : tensor<1xui32> loc(#loc619) | |
| %6081 = mhlo.xor %6073, %6080 : tensor<1xui32> loc(#loc615) | |
| %6082 = "mhlo.broadcast_in_dim"(%5998) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6083 = mhlo.add %6073, %6082 : tensor<1xui32> loc(#loc617) | |
| %6084 = "mhlo.broadcast_in_dim"(%5991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6085 = mhlo.add %6081, %6084 : tensor<1xui32> loc(#loc617) | |
| %6086 = mhlo.constant dense<2> : tensor<ui32> loc(#loc616) | |
| %6087 = "mhlo.broadcast_in_dim"(%6086) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6088 = mhlo.add %6085, %6087 : tensor<1xui32> loc(#loc617) | |
| %6089 = mhlo.add %6083, %6088 : tensor<1xui32> loc(#loc617) | |
| %6090 = mhlo.constant dense<13> : tensor<ui32> loc(#loc616) | |
| %6091 = "mhlo.broadcast_in_dim"(%6090) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6092 = mhlo.shift_left %6088, %6091 : tensor<1xui32> loc(#loc618) | |
| %6093 = mhlo.constant dense<19> : tensor<ui32> loc(#loc616) | |
| %6094 = "mhlo.broadcast_in_dim"(%6093) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6095 = mhlo.shift_right_logical %6088, %6094 : tensor<1xui32> loc(#loc606) | |
| %6096 = mhlo.or %6092, %6095 : tensor<1xui32> loc(#loc619) | |
| %6097 = mhlo.xor %6089, %6096 : tensor<1xui32> loc(#loc615) | |
| %6098 = mhlo.add %6089, %6097 : tensor<1xui32> loc(#loc617) | |
| %6099 = mhlo.constant dense<15> : tensor<ui32> loc(#loc616) | |
| %6100 = "mhlo.broadcast_in_dim"(%6099) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6101 = mhlo.shift_left %6097, %6100 : tensor<1xui32> loc(#loc618) | |
| %6102 = mhlo.constant dense<17> : tensor<ui32> loc(#loc616) | |
| %6103 = "mhlo.broadcast_in_dim"(%6102) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6104 = mhlo.shift_right_logical %6097, %6103 : tensor<1xui32> loc(#loc606) | |
| %6105 = mhlo.or %6101, %6104 : tensor<1xui32> loc(#loc619) | |
| %6106 = mhlo.xor %6098, %6105 : tensor<1xui32> loc(#loc615) | |
| %6107 = mhlo.add %6098, %6106 : tensor<1xui32> loc(#loc617) | |
| %6108 = mhlo.constant dense<26> : tensor<ui32> loc(#loc616) | |
| %6109 = "mhlo.broadcast_in_dim"(%6108) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6110 = mhlo.shift_left %6106, %6109 : tensor<1xui32> loc(#loc618) | |
| %6111 = mhlo.constant dense<6> : tensor<ui32> loc(#loc616) | |
| %6112 = "mhlo.broadcast_in_dim"(%6111) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6113 = mhlo.shift_right_logical %6106, %6112 : tensor<1xui32> loc(#loc606) | |
| %6114 = mhlo.or %6110, %6113 : tensor<1xui32> loc(#loc619) | |
| %6115 = mhlo.xor %6107, %6114 : tensor<1xui32> loc(#loc615) | |
| %6116 = mhlo.add %6107, %6115 : tensor<1xui32> loc(#loc617) | |
| %6117 = mhlo.constant dense<6> : tensor<ui32> loc(#loc616) | |
| %6118 = "mhlo.broadcast_in_dim"(%6117) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6119 = mhlo.shift_left %6115, %6118 : tensor<1xui32> loc(#loc618) | |
| %6120 = mhlo.constant dense<26> : tensor<ui32> loc(#loc616) | |
| %6121 = "mhlo.broadcast_in_dim"(%6120) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6122 = mhlo.shift_right_logical %6115, %6121 : tensor<1xui32> loc(#loc606) | |
| %6123 = mhlo.or %6119, %6122 : tensor<1xui32> loc(#loc619) | |
| %6124 = mhlo.xor %6116, %6123 : tensor<1xui32> loc(#loc615) | |
| %6125 = "mhlo.broadcast_in_dim"(%5991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6126 = mhlo.add %6116, %6125 : tensor<1xui32> loc(#loc617) | |
| %6127 = "mhlo.broadcast_in_dim"(%5993) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6128 = mhlo.add %6124, %6127 : tensor<1xui32> loc(#loc617) | |
| %6129 = mhlo.constant dense<3> : tensor<ui32> loc(#loc616) | |
| %6130 = "mhlo.broadcast_in_dim"(%6129) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6131 = mhlo.add %6128, %6130 : tensor<1xui32> loc(#loc617) | |
| %6132 = mhlo.add %6126, %6131 : tensor<1xui32> loc(#loc617) | |
| %6133 = mhlo.constant dense<17> : tensor<ui32> loc(#loc616) | |
| %6134 = "mhlo.broadcast_in_dim"(%6133) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6135 = mhlo.shift_left %6131, %6134 : tensor<1xui32> loc(#loc618) | |
| %6136 = mhlo.constant dense<15> : tensor<ui32> loc(#loc616) | |
| %6137 = "mhlo.broadcast_in_dim"(%6136) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6138 = mhlo.shift_right_logical %6131, %6137 : tensor<1xui32> loc(#loc606) | |
| %6139 = mhlo.or %6135, %6138 : tensor<1xui32> loc(#loc619) | |
| %6140 = mhlo.xor %6132, %6139 : tensor<1xui32> loc(#loc615) | |
| %6141 = mhlo.add %6132, %6140 : tensor<1xui32> loc(#loc617) | |
| %6142 = mhlo.constant dense<29> : tensor<ui32> loc(#loc616) | |
| %6143 = "mhlo.broadcast_in_dim"(%6142) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6144 = mhlo.shift_left %6140, %6143 : tensor<1xui32> loc(#loc618) | |
| %6145 = mhlo.constant dense<3> : tensor<ui32> loc(#loc616) | |
| %6146 = "mhlo.broadcast_in_dim"(%6145) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6147 = mhlo.shift_right_logical %6140, %6146 : tensor<1xui32> loc(#loc606) | |
| %6148 = mhlo.or %6144, %6147 : tensor<1xui32> loc(#loc619) | |
| %6149 = mhlo.xor %6141, %6148 : tensor<1xui32> loc(#loc615) | |
| %6150 = mhlo.add %6141, %6149 : tensor<1xui32> loc(#loc617) | |
| %6151 = mhlo.constant dense<16> : tensor<ui32> loc(#loc616) | |
| %6152 = "mhlo.broadcast_in_dim"(%6151) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6153 = mhlo.shift_left %6149, %6152 : tensor<1xui32> loc(#loc618) | |
| %6154 = mhlo.constant dense<16> : tensor<ui32> loc(#loc616) | |
| %6155 = "mhlo.broadcast_in_dim"(%6154) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6156 = mhlo.shift_right_logical %6149, %6155 : tensor<1xui32> loc(#loc606) | |
| %6157 = mhlo.or %6153, %6156 : tensor<1xui32> loc(#loc619) | |
| %6158 = mhlo.xor %6150, %6157 : tensor<1xui32> loc(#loc615) | |
| %6159 = mhlo.add %6150, %6158 : tensor<1xui32> loc(#loc617) | |
| %6160 = mhlo.constant dense<24> : tensor<ui32> loc(#loc616) | |
| %6161 = "mhlo.broadcast_in_dim"(%6160) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6162 = mhlo.shift_left %6158, %6161 : tensor<1xui32> loc(#loc618) | |
| %6163 = mhlo.constant dense<8> : tensor<ui32> loc(#loc616) | |
| %6164 = "mhlo.broadcast_in_dim"(%6163) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6165 = mhlo.shift_right_logical %6158, %6164 : tensor<1xui32> loc(#loc606) | |
| %6166 = mhlo.or %6162, %6165 : tensor<1xui32> loc(#loc619) | |
| %6167 = mhlo.xor %6159, %6166 : tensor<1xui32> loc(#loc615) | |
| %6168 = "mhlo.broadcast_in_dim"(%5993) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6169 = mhlo.add %6159, %6168 : tensor<1xui32> loc(#loc617) | |
| %6170 = "mhlo.broadcast_in_dim"(%5998) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6171 = mhlo.add %6167, %6170 : tensor<1xui32> loc(#loc617) | |
| %6172 = mhlo.constant dense<4> : tensor<ui32> loc(#loc616) | |
| %6173 = "mhlo.broadcast_in_dim"(%6172) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6174 = mhlo.add %6171, %6173 : tensor<1xui32> loc(#loc617) | |
| %6175 = mhlo.add %6169, %6174 : tensor<1xui32> loc(#loc617) | |
| %6176 = mhlo.constant dense<13> : tensor<ui32> loc(#loc616) | |
| %6177 = "mhlo.broadcast_in_dim"(%6176) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6178 = mhlo.shift_left %6174, %6177 : tensor<1xui32> loc(#loc618) | |
| %6179 = mhlo.constant dense<19> : tensor<ui32> loc(#loc616) | |
| %6180 = "mhlo.broadcast_in_dim"(%6179) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6181 = mhlo.shift_right_logical %6174, %6180 : tensor<1xui32> loc(#loc606) | |
| %6182 = mhlo.or %6178, %6181 : tensor<1xui32> loc(#loc619) | |
| %6183 = mhlo.xor %6175, %6182 : tensor<1xui32> loc(#loc615) | |
| %6184 = mhlo.add %6175, %6183 : tensor<1xui32> loc(#loc617) | |
| %6185 = mhlo.constant dense<15> : tensor<ui32> loc(#loc616) | |
| %6186 = "mhlo.broadcast_in_dim"(%6185) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6187 = mhlo.shift_left %6183, %6186 : tensor<1xui32> loc(#loc618) | |
| %6188 = mhlo.constant dense<17> : tensor<ui32> loc(#loc616) | |
| %6189 = "mhlo.broadcast_in_dim"(%6188) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6190 = mhlo.shift_right_logical %6183, %6189 : tensor<1xui32> loc(#loc606) | |
| %6191 = mhlo.or %6187, %6190 : tensor<1xui32> loc(#loc619) | |
| %6192 = mhlo.xor %6184, %6191 : tensor<1xui32> loc(#loc615) | |
| %6193 = mhlo.add %6184, %6192 : tensor<1xui32> loc(#loc617) | |
| %6194 = mhlo.constant dense<26> : tensor<ui32> loc(#loc616) | |
| %6195 = "mhlo.broadcast_in_dim"(%6194) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6196 = mhlo.shift_left %6192, %6195 : tensor<1xui32> loc(#loc618) | |
| %6197 = mhlo.constant dense<6> : tensor<ui32> loc(#loc616) | |
| %6198 = "mhlo.broadcast_in_dim"(%6197) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6199 = mhlo.shift_right_logical %6192, %6198 : tensor<1xui32> loc(#loc606) | |
| %6200 = mhlo.or %6196, %6199 : tensor<1xui32> loc(#loc619) | |
| %6201 = mhlo.xor %6193, %6200 : tensor<1xui32> loc(#loc615) | |
| %6202 = mhlo.add %6193, %6201 : tensor<1xui32> loc(#loc617) | |
| %6203 = mhlo.constant dense<6> : tensor<ui32> loc(#loc616) | |
| %6204 = "mhlo.broadcast_in_dim"(%6203) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc618) | |
| %6205 = mhlo.shift_left %6201, %6204 : tensor<1xui32> loc(#loc618) | |
| %6206 = mhlo.constant dense<26> : tensor<ui32> loc(#loc616) | |
| %6207 = "mhlo.broadcast_in_dim"(%6206) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc606) | |
| %6208 = mhlo.shift_right_logical %6201, %6207 : tensor<1xui32> loc(#loc606) | |
| %6209 = mhlo.or %6205, %6208 : tensor<1xui32> loc(#loc619) | |
| %6210 = mhlo.xor %6202, %6209 : tensor<1xui32> loc(#loc615) | |
| %6211 = "mhlo.broadcast_in_dim"(%5998) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6212 = mhlo.add %6202, %6211 : tensor<1xui32> loc(#loc617) | |
| %6213 = "mhlo.broadcast_in_dim"(%5991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6214 = mhlo.add %6210, %6213 : tensor<1xui32> loc(#loc617) | |
| %6215 = mhlo.constant dense<5> : tensor<ui32> loc(#loc616) | |
| %6216 = "mhlo.broadcast_in_dim"(%6215) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc617) | |
| %6217 = mhlo.add %6214, %6216 : tensor<1xui32> loc(#loc617) | |
| %6218 = "mhlo.concatenate"(%6212, %6217) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc609) | |
| %6219 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %6220 = "mhlo.broadcast_in_dim"(%6219) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc620) | |
| %6221 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %6222 = "mhlo.broadcast_in_dim"(%6221) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc620) | |
| %6223 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc621) | |
| %6224 = "mhlo.slice"(%6218) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc622) | |
| %6225 = "mhlo.reshape"(%6224) : (tensor<1xui32>) -> tensor<ui32> loc(#loc623) | |
| %6226 = "mhlo.slice"(%6218) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc624) | |
| %6227 = "mhlo.reshape"(%6226) : (tensor<1xui32>) -> tensor<ui32> loc(#loc623) | |
| %6228 = "mhlo.slice"(%6223) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc625) | |
| %6229 = "mhlo.slice"(%6223) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc626) | |
| %6230 = mhlo.xor %6225, %6227 : tensor<ui32> loc(#loc627) | |
| %6231 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc628) | |
| %6232 = mhlo.xor %6230, %6231 : tensor<ui32> loc(#loc627) | |
| %6233 = "mhlo.broadcast_in_dim"(%6225) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6234 = mhlo.add %6228, %6233 : tensor<2097152xui32> loc(#loc629) | |
| %6235 = "mhlo.broadcast_in_dim"(%6227) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6236 = mhlo.add %6229, %6235 : tensor<2097152xui32> loc(#loc629) | |
| %6237 = mhlo.add %6234, %6236 : tensor<2097152xui32> loc(#loc629) | |
| %6238 = mhlo.constant dense<13> : tensor<ui32> loc(#loc628) | |
| %6239 = "mhlo.broadcast_in_dim"(%6238) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6240 = mhlo.shift_left %6236, %6239 : tensor<2097152xui32> loc(#loc630) | |
| %6241 = mhlo.constant dense<19> : tensor<ui32> loc(#loc628) | |
| %6242 = "mhlo.broadcast_in_dim"(%6241) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6243 = mhlo.shift_right_logical %6236, %6242 : tensor<2097152xui32> loc(#loc631) | |
| %6244 = mhlo.or %6240, %6243 : tensor<2097152xui32> loc(#loc632) | |
| %6245 = mhlo.xor %6237, %6244 : tensor<2097152xui32> loc(#loc627) | |
| %6246 = mhlo.add %6237, %6245 : tensor<2097152xui32> loc(#loc629) | |
| %6247 = mhlo.constant dense<15> : tensor<ui32> loc(#loc628) | |
| %6248 = "mhlo.broadcast_in_dim"(%6247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6249 = mhlo.shift_left %6245, %6248 : tensor<2097152xui32> loc(#loc630) | |
| %6250 = mhlo.constant dense<17> : tensor<ui32> loc(#loc628) | |
| %6251 = "mhlo.broadcast_in_dim"(%6250) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6252 = mhlo.shift_right_logical %6245, %6251 : tensor<2097152xui32> loc(#loc631) | |
| %6253 = mhlo.or %6249, %6252 : tensor<2097152xui32> loc(#loc632) | |
| %6254 = mhlo.xor %6246, %6253 : tensor<2097152xui32> loc(#loc627) | |
| %6255 = mhlo.add %6246, %6254 : tensor<2097152xui32> loc(#loc629) | |
| %6256 = mhlo.constant dense<26> : tensor<ui32> loc(#loc628) | |
| %6257 = "mhlo.broadcast_in_dim"(%6256) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6258 = mhlo.shift_left %6254, %6257 : tensor<2097152xui32> loc(#loc630) | |
| %6259 = mhlo.constant dense<6> : tensor<ui32> loc(#loc628) | |
| %6260 = "mhlo.broadcast_in_dim"(%6259) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6261 = mhlo.shift_right_logical %6254, %6260 : tensor<2097152xui32> loc(#loc631) | |
| %6262 = mhlo.or %6258, %6261 : tensor<2097152xui32> loc(#loc632) | |
| %6263 = mhlo.xor %6255, %6262 : tensor<2097152xui32> loc(#loc627) | |
| %6264 = mhlo.add %6255, %6263 : tensor<2097152xui32> loc(#loc629) | |
| %6265 = mhlo.constant dense<6> : tensor<ui32> loc(#loc628) | |
| %6266 = "mhlo.broadcast_in_dim"(%6265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6267 = mhlo.shift_left %6263, %6266 : tensor<2097152xui32> loc(#loc630) | |
| %6268 = mhlo.constant dense<26> : tensor<ui32> loc(#loc628) | |
| %6269 = "mhlo.broadcast_in_dim"(%6268) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6270 = mhlo.shift_right_logical %6263, %6269 : tensor<2097152xui32> loc(#loc631) | |
| %6271 = mhlo.or %6267, %6270 : tensor<2097152xui32> loc(#loc632) | |
| %6272 = mhlo.xor %6264, %6271 : tensor<2097152xui32> loc(#loc627) | |
| %6273 = "mhlo.broadcast_in_dim"(%6227) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6274 = mhlo.add %6264, %6273 : tensor<2097152xui32> loc(#loc629) | |
| %6275 = "mhlo.broadcast_in_dim"(%6232) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6276 = mhlo.add %6272, %6275 : tensor<2097152xui32> loc(#loc629) | |
| %6277 = mhlo.constant dense<1> : tensor<ui32> loc(#loc628) | |
| %6278 = "mhlo.broadcast_in_dim"(%6277) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6279 = mhlo.add %6276, %6278 : tensor<2097152xui32> loc(#loc629) | |
| %6280 = mhlo.add %6274, %6279 : tensor<2097152xui32> loc(#loc629) | |
| %6281 = mhlo.constant dense<17> : tensor<ui32> loc(#loc628) | |
| %6282 = "mhlo.broadcast_in_dim"(%6281) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6283 = mhlo.shift_left %6279, %6282 : tensor<2097152xui32> loc(#loc630) | |
| %6284 = mhlo.constant dense<15> : tensor<ui32> loc(#loc628) | |
| %6285 = "mhlo.broadcast_in_dim"(%6284) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6286 = mhlo.shift_right_logical %6279, %6285 : tensor<2097152xui32> loc(#loc631) | |
| %6287 = mhlo.or %6283, %6286 : tensor<2097152xui32> loc(#loc632) | |
| %6288 = mhlo.xor %6280, %6287 : tensor<2097152xui32> loc(#loc627) | |
| %6289 = mhlo.add %6280, %6288 : tensor<2097152xui32> loc(#loc629) | |
| %6290 = mhlo.constant dense<29> : tensor<ui32> loc(#loc628) | |
| %6291 = "mhlo.broadcast_in_dim"(%6290) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6292 = mhlo.shift_left %6288, %6291 : tensor<2097152xui32> loc(#loc630) | |
| %6293 = mhlo.constant dense<3> : tensor<ui32> loc(#loc628) | |
| %6294 = "mhlo.broadcast_in_dim"(%6293) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6295 = mhlo.shift_right_logical %6288, %6294 : tensor<2097152xui32> loc(#loc631) | |
| %6296 = mhlo.or %6292, %6295 : tensor<2097152xui32> loc(#loc632) | |
| %6297 = mhlo.xor %6289, %6296 : tensor<2097152xui32> loc(#loc627) | |
| %6298 = mhlo.add %6289, %6297 : tensor<2097152xui32> loc(#loc629) | |
| %6299 = mhlo.constant dense<16> : tensor<ui32> loc(#loc628) | |
| %6300 = "mhlo.broadcast_in_dim"(%6299) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6301 = mhlo.shift_left %6297, %6300 : tensor<2097152xui32> loc(#loc630) | |
| %6302 = mhlo.constant dense<16> : tensor<ui32> loc(#loc628) | |
| %6303 = "mhlo.broadcast_in_dim"(%6302) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6304 = mhlo.shift_right_logical %6297, %6303 : tensor<2097152xui32> loc(#loc631) | |
| %6305 = mhlo.or %6301, %6304 : tensor<2097152xui32> loc(#loc632) | |
| %6306 = mhlo.xor %6298, %6305 : tensor<2097152xui32> loc(#loc627) | |
| %6307 = mhlo.add %6298, %6306 : tensor<2097152xui32> loc(#loc629) | |
| %6308 = mhlo.constant dense<24> : tensor<ui32> loc(#loc628) | |
| %6309 = "mhlo.broadcast_in_dim"(%6308) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6310 = mhlo.shift_left %6306, %6309 : tensor<2097152xui32> loc(#loc630) | |
| %6311 = mhlo.constant dense<8> : tensor<ui32> loc(#loc628) | |
| %6312 = "mhlo.broadcast_in_dim"(%6311) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6313 = mhlo.shift_right_logical %6306, %6312 : tensor<2097152xui32> loc(#loc631) | |
| %6314 = mhlo.or %6310, %6313 : tensor<2097152xui32> loc(#loc632) | |
| %6315 = mhlo.xor %6307, %6314 : tensor<2097152xui32> loc(#loc627) | |
| %6316 = "mhlo.broadcast_in_dim"(%6232) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6317 = mhlo.add %6307, %6316 : tensor<2097152xui32> loc(#loc629) | |
| %6318 = "mhlo.broadcast_in_dim"(%6225) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6319 = mhlo.add %6315, %6318 : tensor<2097152xui32> loc(#loc629) | |
| %6320 = mhlo.constant dense<2> : tensor<ui32> loc(#loc628) | |
| %6321 = "mhlo.broadcast_in_dim"(%6320) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6322 = mhlo.add %6319, %6321 : tensor<2097152xui32> loc(#loc629) | |
| %6323 = mhlo.add %6317, %6322 : tensor<2097152xui32> loc(#loc629) | |
| %6324 = mhlo.constant dense<13> : tensor<ui32> loc(#loc628) | |
| %6325 = "mhlo.broadcast_in_dim"(%6324) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6326 = mhlo.shift_left %6322, %6325 : tensor<2097152xui32> loc(#loc630) | |
| %6327 = mhlo.constant dense<19> : tensor<ui32> loc(#loc628) | |
| %6328 = "mhlo.broadcast_in_dim"(%6327) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6329 = mhlo.shift_right_logical %6322, %6328 : tensor<2097152xui32> loc(#loc631) | |
| %6330 = mhlo.or %6326, %6329 : tensor<2097152xui32> loc(#loc632) | |
| %6331 = mhlo.xor %6323, %6330 : tensor<2097152xui32> loc(#loc627) | |
| %6332 = mhlo.add %6323, %6331 : tensor<2097152xui32> loc(#loc629) | |
| %6333 = mhlo.constant dense<15> : tensor<ui32> loc(#loc628) | |
| %6334 = "mhlo.broadcast_in_dim"(%6333) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6335 = mhlo.shift_left %6331, %6334 : tensor<2097152xui32> loc(#loc630) | |
| %6336 = mhlo.constant dense<17> : tensor<ui32> loc(#loc628) | |
| %6337 = "mhlo.broadcast_in_dim"(%6336) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6338 = mhlo.shift_right_logical %6331, %6337 : tensor<2097152xui32> loc(#loc631) | |
| %6339 = mhlo.or %6335, %6338 : tensor<2097152xui32> loc(#loc632) | |
| %6340 = mhlo.xor %6332, %6339 : tensor<2097152xui32> loc(#loc627) | |
| %6341 = mhlo.add %6332, %6340 : tensor<2097152xui32> loc(#loc629) | |
| %6342 = mhlo.constant dense<26> : tensor<ui32> loc(#loc628) | |
| %6343 = "mhlo.broadcast_in_dim"(%6342) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6344 = mhlo.shift_left %6340, %6343 : tensor<2097152xui32> loc(#loc630) | |
| %6345 = mhlo.constant dense<6> : tensor<ui32> loc(#loc628) | |
| %6346 = "mhlo.broadcast_in_dim"(%6345) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6347 = mhlo.shift_right_logical %6340, %6346 : tensor<2097152xui32> loc(#loc631) | |
| %6348 = mhlo.or %6344, %6347 : tensor<2097152xui32> loc(#loc632) | |
| %6349 = mhlo.xor %6341, %6348 : tensor<2097152xui32> loc(#loc627) | |
| %6350 = mhlo.add %6341, %6349 : tensor<2097152xui32> loc(#loc629) | |
| %6351 = mhlo.constant dense<6> : tensor<ui32> loc(#loc628) | |
| %6352 = "mhlo.broadcast_in_dim"(%6351) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6353 = mhlo.shift_left %6349, %6352 : tensor<2097152xui32> loc(#loc630) | |
| %6354 = mhlo.constant dense<26> : tensor<ui32> loc(#loc628) | |
| %6355 = "mhlo.broadcast_in_dim"(%6354) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6356 = mhlo.shift_right_logical %6349, %6355 : tensor<2097152xui32> loc(#loc631) | |
| %6357 = mhlo.or %6353, %6356 : tensor<2097152xui32> loc(#loc632) | |
| %6358 = mhlo.xor %6350, %6357 : tensor<2097152xui32> loc(#loc627) | |
| %6359 = "mhlo.broadcast_in_dim"(%6225) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6360 = mhlo.add %6350, %6359 : tensor<2097152xui32> loc(#loc629) | |
| %6361 = "mhlo.broadcast_in_dim"(%6227) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6362 = mhlo.add %6358, %6361 : tensor<2097152xui32> loc(#loc629) | |
| %6363 = mhlo.constant dense<3> : tensor<ui32> loc(#loc628) | |
| %6364 = "mhlo.broadcast_in_dim"(%6363) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6365 = mhlo.add %6362, %6364 : tensor<2097152xui32> loc(#loc629) | |
| %6366 = mhlo.add %6360, %6365 : tensor<2097152xui32> loc(#loc629) | |
| %6367 = mhlo.constant dense<17> : tensor<ui32> loc(#loc628) | |
| %6368 = "mhlo.broadcast_in_dim"(%6367) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6369 = mhlo.shift_left %6365, %6368 : tensor<2097152xui32> loc(#loc630) | |
| %6370 = mhlo.constant dense<15> : tensor<ui32> loc(#loc628) | |
| %6371 = "mhlo.broadcast_in_dim"(%6370) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6372 = mhlo.shift_right_logical %6365, %6371 : tensor<2097152xui32> loc(#loc631) | |
| %6373 = mhlo.or %6369, %6372 : tensor<2097152xui32> loc(#loc632) | |
| %6374 = mhlo.xor %6366, %6373 : tensor<2097152xui32> loc(#loc627) | |
| %6375 = mhlo.add %6366, %6374 : tensor<2097152xui32> loc(#loc629) | |
| %6376 = mhlo.constant dense<29> : tensor<ui32> loc(#loc628) | |
| %6377 = "mhlo.broadcast_in_dim"(%6376) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6378 = mhlo.shift_left %6374, %6377 : tensor<2097152xui32> loc(#loc630) | |
| %6379 = mhlo.constant dense<3> : tensor<ui32> loc(#loc628) | |
| %6380 = "mhlo.broadcast_in_dim"(%6379) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6381 = mhlo.shift_right_logical %6374, %6380 : tensor<2097152xui32> loc(#loc631) | |
| %6382 = mhlo.or %6378, %6381 : tensor<2097152xui32> loc(#loc632) | |
| %6383 = mhlo.xor %6375, %6382 : tensor<2097152xui32> loc(#loc627) | |
| %6384 = mhlo.add %6375, %6383 : tensor<2097152xui32> loc(#loc629) | |
| %6385 = mhlo.constant dense<16> : tensor<ui32> loc(#loc628) | |
| %6386 = "mhlo.broadcast_in_dim"(%6385) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6387 = mhlo.shift_left %6383, %6386 : tensor<2097152xui32> loc(#loc630) | |
| %6388 = mhlo.constant dense<16> : tensor<ui32> loc(#loc628) | |
| %6389 = "mhlo.broadcast_in_dim"(%6388) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6390 = mhlo.shift_right_logical %6383, %6389 : tensor<2097152xui32> loc(#loc631) | |
| %6391 = mhlo.or %6387, %6390 : tensor<2097152xui32> loc(#loc632) | |
| %6392 = mhlo.xor %6384, %6391 : tensor<2097152xui32> loc(#loc627) | |
| %6393 = mhlo.add %6384, %6392 : tensor<2097152xui32> loc(#loc629) | |
| %6394 = mhlo.constant dense<24> : tensor<ui32> loc(#loc628) | |
| %6395 = "mhlo.broadcast_in_dim"(%6394) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6396 = mhlo.shift_left %6392, %6395 : tensor<2097152xui32> loc(#loc630) | |
| %6397 = mhlo.constant dense<8> : tensor<ui32> loc(#loc628) | |
| %6398 = "mhlo.broadcast_in_dim"(%6397) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6399 = mhlo.shift_right_logical %6392, %6398 : tensor<2097152xui32> loc(#loc631) | |
| %6400 = mhlo.or %6396, %6399 : tensor<2097152xui32> loc(#loc632) | |
| %6401 = mhlo.xor %6393, %6400 : tensor<2097152xui32> loc(#loc627) | |
| %6402 = "mhlo.broadcast_in_dim"(%6227) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6403 = mhlo.add %6393, %6402 : tensor<2097152xui32> loc(#loc629) | |
| %6404 = "mhlo.broadcast_in_dim"(%6232) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6405 = mhlo.add %6401, %6404 : tensor<2097152xui32> loc(#loc629) | |
| %6406 = mhlo.constant dense<4> : tensor<ui32> loc(#loc628) | |
| %6407 = "mhlo.broadcast_in_dim"(%6406) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6408 = mhlo.add %6405, %6407 : tensor<2097152xui32> loc(#loc629) | |
| %6409 = mhlo.add %6403, %6408 : tensor<2097152xui32> loc(#loc629) | |
| %6410 = mhlo.constant dense<13> : tensor<ui32> loc(#loc628) | |
| %6411 = "mhlo.broadcast_in_dim"(%6410) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6412 = mhlo.shift_left %6408, %6411 : tensor<2097152xui32> loc(#loc630) | |
| %6413 = mhlo.constant dense<19> : tensor<ui32> loc(#loc628) | |
| %6414 = "mhlo.broadcast_in_dim"(%6413) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6415 = mhlo.shift_right_logical %6408, %6414 : tensor<2097152xui32> loc(#loc631) | |
| %6416 = mhlo.or %6412, %6415 : tensor<2097152xui32> loc(#loc632) | |
| %6417 = mhlo.xor %6409, %6416 : tensor<2097152xui32> loc(#loc627) | |
| %6418 = mhlo.add %6409, %6417 : tensor<2097152xui32> loc(#loc629) | |
| %6419 = mhlo.constant dense<15> : tensor<ui32> loc(#loc628) | |
| %6420 = "mhlo.broadcast_in_dim"(%6419) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6421 = mhlo.shift_left %6417, %6420 : tensor<2097152xui32> loc(#loc630) | |
| %6422 = mhlo.constant dense<17> : tensor<ui32> loc(#loc628) | |
| %6423 = "mhlo.broadcast_in_dim"(%6422) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6424 = mhlo.shift_right_logical %6417, %6423 : tensor<2097152xui32> loc(#loc631) | |
| %6425 = mhlo.or %6421, %6424 : tensor<2097152xui32> loc(#loc632) | |
| %6426 = mhlo.xor %6418, %6425 : tensor<2097152xui32> loc(#loc627) | |
| %6427 = mhlo.add %6418, %6426 : tensor<2097152xui32> loc(#loc629) | |
| %6428 = mhlo.constant dense<26> : tensor<ui32> loc(#loc628) | |
| %6429 = "mhlo.broadcast_in_dim"(%6428) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6430 = mhlo.shift_left %6426, %6429 : tensor<2097152xui32> loc(#loc630) | |
| %6431 = mhlo.constant dense<6> : tensor<ui32> loc(#loc628) | |
| %6432 = "mhlo.broadcast_in_dim"(%6431) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6433 = mhlo.shift_right_logical %6426, %6432 : tensor<2097152xui32> loc(#loc631) | |
| %6434 = mhlo.or %6430, %6433 : tensor<2097152xui32> loc(#loc632) | |
| %6435 = mhlo.xor %6427, %6434 : tensor<2097152xui32> loc(#loc627) | |
| %6436 = mhlo.add %6427, %6435 : tensor<2097152xui32> loc(#loc629) | |
| %6437 = mhlo.constant dense<6> : tensor<ui32> loc(#loc628) | |
| %6438 = "mhlo.broadcast_in_dim"(%6437) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc630) | |
| %6439 = mhlo.shift_left %6435, %6438 : tensor<2097152xui32> loc(#loc630) | |
| %6440 = mhlo.constant dense<26> : tensor<ui32> loc(#loc628) | |
| %6441 = "mhlo.broadcast_in_dim"(%6440) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc631) | |
| %6442 = mhlo.shift_right_logical %6435, %6441 : tensor<2097152xui32> loc(#loc631) | |
| %6443 = mhlo.or %6439, %6442 : tensor<2097152xui32> loc(#loc632) | |
| %6444 = mhlo.xor %6436, %6443 : tensor<2097152xui32> loc(#loc627) | |
| %6445 = "mhlo.broadcast_in_dim"(%6232) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6446 = mhlo.add %6436, %6445 : tensor<2097152xui32> loc(#loc629) | |
| %6447 = "mhlo.broadcast_in_dim"(%6225) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6448 = mhlo.add %6444, %6447 : tensor<2097152xui32> loc(#loc629) | |
| %6449 = mhlo.constant dense<5> : tensor<ui32> loc(#loc628) | |
| %6450 = "mhlo.broadcast_in_dim"(%6449) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc629) | |
| %6451 = mhlo.add %6448, %6450 : tensor<2097152xui32> loc(#loc629) | |
| %6452 = "mhlo.concatenate"(%6446, %6451) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc633) | |
| %6453 = "mhlo.reshape"(%6452) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc634) | |
| %6454 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %6455 = "mhlo.broadcast_in_dim"(%6454) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc631) | |
| %6456 = mhlo.shift_right_logical %6453, %6455 : tensor<2048x2048xui32> loc(#loc631) | |
| %6457 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %6458 = "mhlo.broadcast_in_dim"(%6457) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc632) | |
| %6459 = mhlo.or %6456, %6458 : tensor<2048x2048xui32> loc(#loc632) | |
| %6460 = "mhlo.bitcast_convert"(%6459) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc635) | |
| %6461 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %6462 = "mhlo.broadcast_in_dim"(%6461) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc636) | |
| %6463 = mhlo.subtract %6460, %6462 : tensor<2048x2048xf32> loc(#loc636) | |
| %6464 = mhlo.subtract %6222, %6220 : tensor<1x1xf32> loc(#loc636) | |
| %6465 = "mhlo.broadcast_in_dim"(%6464) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc637) | |
| %6466 = mhlo.multiply %6463, %6465 : tensor<2048x2048xf32> loc(#loc637) | |
| %6467 = "mhlo.broadcast_in_dim"(%6220) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc629) | |
| %6468 = mhlo.add %6466, %6467 : tensor<2048x2048xf32> loc(#loc629) | |
| %6469 = "mhlo.broadcast_in_dim"(%6220) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc638) | |
| %6470 = mhlo.maximum %6469, %6468 : tensor<2048x2048xf32> loc(#loc638) | |
| %6471 = func.call @erf_inv_22(%6470) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc639) | |
| %6472 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %6473 = "mhlo.broadcast_in_dim"(%6472) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc637) | |
| %6474 = mhlo.multiply %6471, %6473 : tensor<2048x2048xf32> loc(#loc637) | |
| %6475 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %6476 = "mhlo.broadcast_in_dim"(%6475) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc637) | |
| %6477 = mhlo.multiply %6474, %6476 : tensor<2048x2048xf32> loc(#loc637) | |
| %6478 = mhlo.convert(%6477) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc640) | |
| %6479 = "mhlo.dot_general"(%5473, %6478) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x256x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x256x2048xf16> loc(#loc641) | |
| %6480 = mhlo.constant dense<2007060452> : tensor<ui32> loc(#loc531) | |
| %6481 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %6482 = mhlo.shift_right_logical %6480, %6481 : tensor<ui32> loc(#loc642) | |
| %6483 = "mhlo.reshape"(%6482) : (tensor<ui32>) -> tensor<1xui32> loc(#loc643) | |
| %6484 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %6485 = mhlo.and %6480, %6484 : tensor<ui32> loc(#loc644) | |
| %6486 = "mhlo.reshape"(%6485) : (tensor<ui32>) -> tensor<1xui32> loc(#loc643) | |
| %6487 = "mhlo.concatenate"(%6483, %6486) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc645) | |
| %6488 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc646) | |
| %6489 = "mhlo.reshape"(%6488) : (tensor<1xui32>) -> tensor<ui32> loc(#loc647) | |
| %6490 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc648) | |
| %6491 = "mhlo.reshape"(%6490) : (tensor<1xui32>) -> tensor<ui32> loc(#loc647) | |
| %6492 = "mhlo.slice"(%6487) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc649) | |
| %6493 = "mhlo.slice"(%6487) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc650) | |
| %6494 = mhlo.xor %6489, %6491 : tensor<ui32> loc(#loc651) | |
| %6495 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc652) | |
| %6496 = mhlo.xor %6494, %6495 : tensor<ui32> loc(#loc651) | |
| %6497 = "mhlo.broadcast_in_dim"(%6489) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6498 = mhlo.add %6492, %6497 : tensor<1xui32> loc(#loc653) | |
| %6499 = "mhlo.broadcast_in_dim"(%6491) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6500 = mhlo.add %6493, %6499 : tensor<1xui32> loc(#loc653) | |
| %6501 = mhlo.add %6498, %6500 : tensor<1xui32> loc(#loc653) | |
| %6502 = mhlo.constant dense<13> : tensor<ui32> loc(#loc652) | |
| %6503 = "mhlo.broadcast_in_dim"(%6502) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6504 = mhlo.shift_left %6500, %6503 : tensor<1xui32> loc(#loc654) | |
| %6505 = mhlo.constant dense<19> : tensor<ui32> loc(#loc652) | |
| %6506 = "mhlo.broadcast_in_dim"(%6505) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6507 = mhlo.shift_right_logical %6500, %6506 : tensor<1xui32> loc(#loc642) | |
| %6508 = mhlo.or %6504, %6507 : tensor<1xui32> loc(#loc655) | |
| %6509 = mhlo.xor %6501, %6508 : tensor<1xui32> loc(#loc651) | |
| %6510 = mhlo.add %6501, %6509 : tensor<1xui32> loc(#loc653) | |
| %6511 = mhlo.constant dense<15> : tensor<ui32> loc(#loc652) | |
| %6512 = "mhlo.broadcast_in_dim"(%6511) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6513 = mhlo.shift_left %6509, %6512 : tensor<1xui32> loc(#loc654) | |
| %6514 = mhlo.constant dense<17> : tensor<ui32> loc(#loc652) | |
| %6515 = "mhlo.broadcast_in_dim"(%6514) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6516 = mhlo.shift_right_logical %6509, %6515 : tensor<1xui32> loc(#loc642) | |
| %6517 = mhlo.or %6513, %6516 : tensor<1xui32> loc(#loc655) | |
| %6518 = mhlo.xor %6510, %6517 : tensor<1xui32> loc(#loc651) | |
| %6519 = mhlo.add %6510, %6518 : tensor<1xui32> loc(#loc653) | |
| %6520 = mhlo.constant dense<26> : tensor<ui32> loc(#loc652) | |
| %6521 = "mhlo.broadcast_in_dim"(%6520) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6522 = mhlo.shift_left %6518, %6521 : tensor<1xui32> loc(#loc654) | |
| %6523 = mhlo.constant dense<6> : tensor<ui32> loc(#loc652) | |
| %6524 = "mhlo.broadcast_in_dim"(%6523) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6525 = mhlo.shift_right_logical %6518, %6524 : tensor<1xui32> loc(#loc642) | |
| %6526 = mhlo.or %6522, %6525 : tensor<1xui32> loc(#loc655) | |
| %6527 = mhlo.xor %6519, %6526 : tensor<1xui32> loc(#loc651) | |
| %6528 = mhlo.add %6519, %6527 : tensor<1xui32> loc(#loc653) | |
| %6529 = mhlo.constant dense<6> : tensor<ui32> loc(#loc652) | |
| %6530 = "mhlo.broadcast_in_dim"(%6529) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6531 = mhlo.shift_left %6527, %6530 : tensor<1xui32> loc(#loc654) | |
| %6532 = mhlo.constant dense<26> : tensor<ui32> loc(#loc652) | |
| %6533 = "mhlo.broadcast_in_dim"(%6532) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6534 = mhlo.shift_right_logical %6527, %6533 : tensor<1xui32> loc(#loc642) | |
| %6535 = mhlo.or %6531, %6534 : tensor<1xui32> loc(#loc655) | |
| %6536 = mhlo.xor %6528, %6535 : tensor<1xui32> loc(#loc651) | |
| %6537 = "mhlo.broadcast_in_dim"(%6491) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6538 = mhlo.add %6528, %6537 : tensor<1xui32> loc(#loc653) | |
| %6539 = "mhlo.broadcast_in_dim"(%6496) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6540 = mhlo.add %6536, %6539 : tensor<1xui32> loc(#loc653) | |
| %6541 = mhlo.constant dense<1> : tensor<ui32> loc(#loc652) | |
| %6542 = "mhlo.broadcast_in_dim"(%6541) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6543 = mhlo.add %6540, %6542 : tensor<1xui32> loc(#loc653) | |
| %6544 = mhlo.add %6538, %6543 : tensor<1xui32> loc(#loc653) | |
| %6545 = mhlo.constant dense<17> : tensor<ui32> loc(#loc652) | |
| %6546 = "mhlo.broadcast_in_dim"(%6545) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6547 = mhlo.shift_left %6543, %6546 : tensor<1xui32> loc(#loc654) | |
| %6548 = mhlo.constant dense<15> : tensor<ui32> loc(#loc652) | |
| %6549 = "mhlo.broadcast_in_dim"(%6548) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6550 = mhlo.shift_right_logical %6543, %6549 : tensor<1xui32> loc(#loc642) | |
| %6551 = mhlo.or %6547, %6550 : tensor<1xui32> loc(#loc655) | |
| %6552 = mhlo.xor %6544, %6551 : tensor<1xui32> loc(#loc651) | |
| %6553 = mhlo.add %6544, %6552 : tensor<1xui32> loc(#loc653) | |
| %6554 = mhlo.constant dense<29> : tensor<ui32> loc(#loc652) | |
| %6555 = "mhlo.broadcast_in_dim"(%6554) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6556 = mhlo.shift_left %6552, %6555 : tensor<1xui32> loc(#loc654) | |
| %6557 = mhlo.constant dense<3> : tensor<ui32> loc(#loc652) | |
| %6558 = "mhlo.broadcast_in_dim"(%6557) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6559 = mhlo.shift_right_logical %6552, %6558 : tensor<1xui32> loc(#loc642) | |
| %6560 = mhlo.or %6556, %6559 : tensor<1xui32> loc(#loc655) | |
| %6561 = mhlo.xor %6553, %6560 : tensor<1xui32> loc(#loc651) | |
| %6562 = mhlo.add %6553, %6561 : tensor<1xui32> loc(#loc653) | |
| %6563 = mhlo.constant dense<16> : tensor<ui32> loc(#loc652) | |
| %6564 = "mhlo.broadcast_in_dim"(%6563) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6565 = mhlo.shift_left %6561, %6564 : tensor<1xui32> loc(#loc654) | |
| %6566 = mhlo.constant dense<16> : tensor<ui32> loc(#loc652) | |
| %6567 = "mhlo.broadcast_in_dim"(%6566) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6568 = mhlo.shift_right_logical %6561, %6567 : tensor<1xui32> loc(#loc642) | |
| %6569 = mhlo.or %6565, %6568 : tensor<1xui32> loc(#loc655) | |
| %6570 = mhlo.xor %6562, %6569 : tensor<1xui32> loc(#loc651) | |
| %6571 = mhlo.add %6562, %6570 : tensor<1xui32> loc(#loc653) | |
| %6572 = mhlo.constant dense<24> : tensor<ui32> loc(#loc652) | |
| %6573 = "mhlo.broadcast_in_dim"(%6572) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6574 = mhlo.shift_left %6570, %6573 : tensor<1xui32> loc(#loc654) | |
| %6575 = mhlo.constant dense<8> : tensor<ui32> loc(#loc652) | |
| %6576 = "mhlo.broadcast_in_dim"(%6575) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6577 = mhlo.shift_right_logical %6570, %6576 : tensor<1xui32> loc(#loc642) | |
| %6578 = mhlo.or %6574, %6577 : tensor<1xui32> loc(#loc655) | |
| %6579 = mhlo.xor %6571, %6578 : tensor<1xui32> loc(#loc651) | |
| %6580 = "mhlo.broadcast_in_dim"(%6496) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6581 = mhlo.add %6571, %6580 : tensor<1xui32> loc(#loc653) | |
| %6582 = "mhlo.broadcast_in_dim"(%6489) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6583 = mhlo.add %6579, %6582 : tensor<1xui32> loc(#loc653) | |
| %6584 = mhlo.constant dense<2> : tensor<ui32> loc(#loc652) | |
| %6585 = "mhlo.broadcast_in_dim"(%6584) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6586 = mhlo.add %6583, %6585 : tensor<1xui32> loc(#loc653) | |
| %6587 = mhlo.add %6581, %6586 : tensor<1xui32> loc(#loc653) | |
| %6588 = mhlo.constant dense<13> : tensor<ui32> loc(#loc652) | |
| %6589 = "mhlo.broadcast_in_dim"(%6588) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6590 = mhlo.shift_left %6586, %6589 : tensor<1xui32> loc(#loc654) | |
| %6591 = mhlo.constant dense<19> : tensor<ui32> loc(#loc652) | |
| %6592 = "mhlo.broadcast_in_dim"(%6591) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6593 = mhlo.shift_right_logical %6586, %6592 : tensor<1xui32> loc(#loc642) | |
| %6594 = mhlo.or %6590, %6593 : tensor<1xui32> loc(#loc655) | |
| %6595 = mhlo.xor %6587, %6594 : tensor<1xui32> loc(#loc651) | |
| %6596 = mhlo.add %6587, %6595 : tensor<1xui32> loc(#loc653) | |
| %6597 = mhlo.constant dense<15> : tensor<ui32> loc(#loc652) | |
| %6598 = "mhlo.broadcast_in_dim"(%6597) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6599 = mhlo.shift_left %6595, %6598 : tensor<1xui32> loc(#loc654) | |
| %6600 = mhlo.constant dense<17> : tensor<ui32> loc(#loc652) | |
| %6601 = "mhlo.broadcast_in_dim"(%6600) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6602 = mhlo.shift_right_logical %6595, %6601 : tensor<1xui32> loc(#loc642) | |
| %6603 = mhlo.or %6599, %6602 : tensor<1xui32> loc(#loc655) | |
| %6604 = mhlo.xor %6596, %6603 : tensor<1xui32> loc(#loc651) | |
| %6605 = mhlo.add %6596, %6604 : tensor<1xui32> loc(#loc653) | |
| %6606 = mhlo.constant dense<26> : tensor<ui32> loc(#loc652) | |
| %6607 = "mhlo.broadcast_in_dim"(%6606) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6608 = mhlo.shift_left %6604, %6607 : tensor<1xui32> loc(#loc654) | |
| %6609 = mhlo.constant dense<6> : tensor<ui32> loc(#loc652) | |
| %6610 = "mhlo.broadcast_in_dim"(%6609) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6611 = mhlo.shift_right_logical %6604, %6610 : tensor<1xui32> loc(#loc642) | |
| %6612 = mhlo.or %6608, %6611 : tensor<1xui32> loc(#loc655) | |
| %6613 = mhlo.xor %6605, %6612 : tensor<1xui32> loc(#loc651) | |
| %6614 = mhlo.add %6605, %6613 : tensor<1xui32> loc(#loc653) | |
| %6615 = mhlo.constant dense<6> : tensor<ui32> loc(#loc652) | |
| %6616 = "mhlo.broadcast_in_dim"(%6615) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6617 = mhlo.shift_left %6613, %6616 : tensor<1xui32> loc(#loc654) | |
| %6618 = mhlo.constant dense<26> : tensor<ui32> loc(#loc652) | |
| %6619 = "mhlo.broadcast_in_dim"(%6618) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6620 = mhlo.shift_right_logical %6613, %6619 : tensor<1xui32> loc(#loc642) | |
| %6621 = mhlo.or %6617, %6620 : tensor<1xui32> loc(#loc655) | |
| %6622 = mhlo.xor %6614, %6621 : tensor<1xui32> loc(#loc651) | |
| %6623 = "mhlo.broadcast_in_dim"(%6489) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6624 = mhlo.add %6614, %6623 : tensor<1xui32> loc(#loc653) | |
| %6625 = "mhlo.broadcast_in_dim"(%6491) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6626 = mhlo.add %6622, %6625 : tensor<1xui32> loc(#loc653) | |
| %6627 = mhlo.constant dense<3> : tensor<ui32> loc(#loc652) | |
| %6628 = "mhlo.broadcast_in_dim"(%6627) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6629 = mhlo.add %6626, %6628 : tensor<1xui32> loc(#loc653) | |
| %6630 = mhlo.add %6624, %6629 : tensor<1xui32> loc(#loc653) | |
| %6631 = mhlo.constant dense<17> : tensor<ui32> loc(#loc652) | |
| %6632 = "mhlo.broadcast_in_dim"(%6631) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6633 = mhlo.shift_left %6629, %6632 : tensor<1xui32> loc(#loc654) | |
| %6634 = mhlo.constant dense<15> : tensor<ui32> loc(#loc652) | |
| %6635 = "mhlo.broadcast_in_dim"(%6634) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6636 = mhlo.shift_right_logical %6629, %6635 : tensor<1xui32> loc(#loc642) | |
| %6637 = mhlo.or %6633, %6636 : tensor<1xui32> loc(#loc655) | |
| %6638 = mhlo.xor %6630, %6637 : tensor<1xui32> loc(#loc651) | |
| %6639 = mhlo.add %6630, %6638 : tensor<1xui32> loc(#loc653) | |
| %6640 = mhlo.constant dense<29> : tensor<ui32> loc(#loc652) | |
| %6641 = "mhlo.broadcast_in_dim"(%6640) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6642 = mhlo.shift_left %6638, %6641 : tensor<1xui32> loc(#loc654) | |
| %6643 = mhlo.constant dense<3> : tensor<ui32> loc(#loc652) | |
| %6644 = "mhlo.broadcast_in_dim"(%6643) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6645 = mhlo.shift_right_logical %6638, %6644 : tensor<1xui32> loc(#loc642) | |
| %6646 = mhlo.or %6642, %6645 : tensor<1xui32> loc(#loc655) | |
| %6647 = mhlo.xor %6639, %6646 : tensor<1xui32> loc(#loc651) | |
| %6648 = mhlo.add %6639, %6647 : tensor<1xui32> loc(#loc653) | |
| %6649 = mhlo.constant dense<16> : tensor<ui32> loc(#loc652) | |
| %6650 = "mhlo.broadcast_in_dim"(%6649) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6651 = mhlo.shift_left %6647, %6650 : tensor<1xui32> loc(#loc654) | |
| %6652 = mhlo.constant dense<16> : tensor<ui32> loc(#loc652) | |
| %6653 = "mhlo.broadcast_in_dim"(%6652) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6654 = mhlo.shift_right_logical %6647, %6653 : tensor<1xui32> loc(#loc642) | |
| %6655 = mhlo.or %6651, %6654 : tensor<1xui32> loc(#loc655) | |
| %6656 = mhlo.xor %6648, %6655 : tensor<1xui32> loc(#loc651) | |
| %6657 = mhlo.add %6648, %6656 : tensor<1xui32> loc(#loc653) | |
| %6658 = mhlo.constant dense<24> : tensor<ui32> loc(#loc652) | |
| %6659 = "mhlo.broadcast_in_dim"(%6658) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6660 = mhlo.shift_left %6656, %6659 : tensor<1xui32> loc(#loc654) | |
| %6661 = mhlo.constant dense<8> : tensor<ui32> loc(#loc652) | |
| %6662 = "mhlo.broadcast_in_dim"(%6661) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6663 = mhlo.shift_right_logical %6656, %6662 : tensor<1xui32> loc(#loc642) | |
| %6664 = mhlo.or %6660, %6663 : tensor<1xui32> loc(#loc655) | |
| %6665 = mhlo.xor %6657, %6664 : tensor<1xui32> loc(#loc651) | |
| %6666 = "mhlo.broadcast_in_dim"(%6491) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6667 = mhlo.add %6657, %6666 : tensor<1xui32> loc(#loc653) | |
| %6668 = "mhlo.broadcast_in_dim"(%6496) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6669 = mhlo.add %6665, %6668 : tensor<1xui32> loc(#loc653) | |
| %6670 = mhlo.constant dense<4> : tensor<ui32> loc(#loc652) | |
| %6671 = "mhlo.broadcast_in_dim"(%6670) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6672 = mhlo.add %6669, %6671 : tensor<1xui32> loc(#loc653) | |
| %6673 = mhlo.add %6667, %6672 : tensor<1xui32> loc(#loc653) | |
| %6674 = mhlo.constant dense<13> : tensor<ui32> loc(#loc652) | |
| %6675 = "mhlo.broadcast_in_dim"(%6674) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6676 = mhlo.shift_left %6672, %6675 : tensor<1xui32> loc(#loc654) | |
| %6677 = mhlo.constant dense<19> : tensor<ui32> loc(#loc652) | |
| %6678 = "mhlo.broadcast_in_dim"(%6677) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6679 = mhlo.shift_right_logical %6672, %6678 : tensor<1xui32> loc(#loc642) | |
| %6680 = mhlo.or %6676, %6679 : tensor<1xui32> loc(#loc655) | |
| %6681 = mhlo.xor %6673, %6680 : tensor<1xui32> loc(#loc651) | |
| %6682 = mhlo.add %6673, %6681 : tensor<1xui32> loc(#loc653) | |
| %6683 = mhlo.constant dense<15> : tensor<ui32> loc(#loc652) | |
| %6684 = "mhlo.broadcast_in_dim"(%6683) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6685 = mhlo.shift_left %6681, %6684 : tensor<1xui32> loc(#loc654) | |
| %6686 = mhlo.constant dense<17> : tensor<ui32> loc(#loc652) | |
| %6687 = "mhlo.broadcast_in_dim"(%6686) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6688 = mhlo.shift_right_logical %6681, %6687 : tensor<1xui32> loc(#loc642) | |
| %6689 = mhlo.or %6685, %6688 : tensor<1xui32> loc(#loc655) | |
| %6690 = mhlo.xor %6682, %6689 : tensor<1xui32> loc(#loc651) | |
| %6691 = mhlo.add %6682, %6690 : tensor<1xui32> loc(#loc653) | |
| %6692 = mhlo.constant dense<26> : tensor<ui32> loc(#loc652) | |
| %6693 = "mhlo.broadcast_in_dim"(%6692) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6694 = mhlo.shift_left %6690, %6693 : tensor<1xui32> loc(#loc654) | |
| %6695 = mhlo.constant dense<6> : tensor<ui32> loc(#loc652) | |
| %6696 = "mhlo.broadcast_in_dim"(%6695) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6697 = mhlo.shift_right_logical %6690, %6696 : tensor<1xui32> loc(#loc642) | |
| %6698 = mhlo.or %6694, %6697 : tensor<1xui32> loc(#loc655) | |
| %6699 = mhlo.xor %6691, %6698 : tensor<1xui32> loc(#loc651) | |
| %6700 = mhlo.add %6691, %6699 : tensor<1xui32> loc(#loc653) | |
| %6701 = mhlo.constant dense<6> : tensor<ui32> loc(#loc652) | |
| %6702 = "mhlo.broadcast_in_dim"(%6701) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc654) | |
| %6703 = mhlo.shift_left %6699, %6702 : tensor<1xui32> loc(#loc654) | |
| %6704 = mhlo.constant dense<26> : tensor<ui32> loc(#loc652) | |
| %6705 = "mhlo.broadcast_in_dim"(%6704) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc642) | |
| %6706 = mhlo.shift_right_logical %6699, %6705 : tensor<1xui32> loc(#loc642) | |
| %6707 = mhlo.or %6703, %6706 : tensor<1xui32> loc(#loc655) | |
| %6708 = mhlo.xor %6700, %6707 : tensor<1xui32> loc(#loc651) | |
| %6709 = "mhlo.broadcast_in_dim"(%6496) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6710 = mhlo.add %6700, %6709 : tensor<1xui32> loc(#loc653) | |
| %6711 = "mhlo.broadcast_in_dim"(%6489) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6712 = mhlo.add %6708, %6711 : tensor<1xui32> loc(#loc653) | |
| %6713 = mhlo.constant dense<5> : tensor<ui32> loc(#loc652) | |
| %6714 = "mhlo.broadcast_in_dim"(%6713) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc653) | |
| %6715 = mhlo.add %6712, %6714 : tensor<1xui32> loc(#loc653) | |
| %6716 = "mhlo.concatenate"(%6710, %6715) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc645) | |
| %6717 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %6718 = "mhlo.broadcast_in_dim"(%6717) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc656) | |
| %6719 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %6720 = "mhlo.broadcast_in_dim"(%6719) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc656) | |
| %6721 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc657) | |
| %6722 = "mhlo.slice"(%6716) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc658) | |
| %6723 = "mhlo.reshape"(%6722) : (tensor<1xui32>) -> tensor<ui32> loc(#loc659) | |
| %6724 = "mhlo.slice"(%6716) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc660) | |
| %6725 = "mhlo.reshape"(%6724) : (tensor<1xui32>) -> tensor<ui32> loc(#loc659) | |
| %6726 = "mhlo.slice"(%6721) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc661) | |
| %6727 = "mhlo.slice"(%6721) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc662) | |
| %6728 = mhlo.xor %6723, %6725 : tensor<ui32> loc(#loc663) | |
| %6729 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc664) | |
| %6730 = mhlo.xor %6728, %6729 : tensor<ui32> loc(#loc663) | |
| %6731 = "mhlo.broadcast_in_dim"(%6723) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6732 = mhlo.add %6726, %6731 : tensor<2097152xui32> loc(#loc665) | |
| %6733 = "mhlo.broadcast_in_dim"(%6725) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6734 = mhlo.add %6727, %6733 : tensor<2097152xui32> loc(#loc665) | |
| %6735 = mhlo.add %6732, %6734 : tensor<2097152xui32> loc(#loc665) | |
| %6736 = mhlo.constant dense<13> : tensor<ui32> loc(#loc664) | |
| %6737 = "mhlo.broadcast_in_dim"(%6736) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6738 = mhlo.shift_left %6734, %6737 : tensor<2097152xui32> loc(#loc666) | |
| %6739 = mhlo.constant dense<19> : tensor<ui32> loc(#loc664) | |
| %6740 = "mhlo.broadcast_in_dim"(%6739) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6741 = mhlo.shift_right_logical %6734, %6740 : tensor<2097152xui32> loc(#loc667) | |
| %6742 = mhlo.or %6738, %6741 : tensor<2097152xui32> loc(#loc668) | |
| %6743 = mhlo.xor %6735, %6742 : tensor<2097152xui32> loc(#loc663) | |
| %6744 = mhlo.add %6735, %6743 : tensor<2097152xui32> loc(#loc665) | |
| %6745 = mhlo.constant dense<15> : tensor<ui32> loc(#loc664) | |
| %6746 = "mhlo.broadcast_in_dim"(%6745) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6747 = mhlo.shift_left %6743, %6746 : tensor<2097152xui32> loc(#loc666) | |
| %6748 = mhlo.constant dense<17> : tensor<ui32> loc(#loc664) | |
| %6749 = "mhlo.broadcast_in_dim"(%6748) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6750 = mhlo.shift_right_logical %6743, %6749 : tensor<2097152xui32> loc(#loc667) | |
| %6751 = mhlo.or %6747, %6750 : tensor<2097152xui32> loc(#loc668) | |
| %6752 = mhlo.xor %6744, %6751 : tensor<2097152xui32> loc(#loc663) | |
| %6753 = mhlo.add %6744, %6752 : tensor<2097152xui32> loc(#loc665) | |
| %6754 = mhlo.constant dense<26> : tensor<ui32> loc(#loc664) | |
| %6755 = "mhlo.broadcast_in_dim"(%6754) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6756 = mhlo.shift_left %6752, %6755 : tensor<2097152xui32> loc(#loc666) | |
| %6757 = mhlo.constant dense<6> : tensor<ui32> loc(#loc664) | |
| %6758 = "mhlo.broadcast_in_dim"(%6757) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6759 = mhlo.shift_right_logical %6752, %6758 : tensor<2097152xui32> loc(#loc667) | |
| %6760 = mhlo.or %6756, %6759 : tensor<2097152xui32> loc(#loc668) | |
| %6761 = mhlo.xor %6753, %6760 : tensor<2097152xui32> loc(#loc663) | |
| %6762 = mhlo.add %6753, %6761 : tensor<2097152xui32> loc(#loc665) | |
| %6763 = mhlo.constant dense<6> : tensor<ui32> loc(#loc664) | |
| %6764 = "mhlo.broadcast_in_dim"(%6763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6765 = mhlo.shift_left %6761, %6764 : tensor<2097152xui32> loc(#loc666) | |
| %6766 = mhlo.constant dense<26> : tensor<ui32> loc(#loc664) | |
| %6767 = "mhlo.broadcast_in_dim"(%6766) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6768 = mhlo.shift_right_logical %6761, %6767 : tensor<2097152xui32> loc(#loc667) | |
| %6769 = mhlo.or %6765, %6768 : tensor<2097152xui32> loc(#loc668) | |
| %6770 = mhlo.xor %6762, %6769 : tensor<2097152xui32> loc(#loc663) | |
| %6771 = "mhlo.broadcast_in_dim"(%6725) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6772 = mhlo.add %6762, %6771 : tensor<2097152xui32> loc(#loc665) | |
| %6773 = "mhlo.broadcast_in_dim"(%6730) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6774 = mhlo.add %6770, %6773 : tensor<2097152xui32> loc(#loc665) | |
| %6775 = mhlo.constant dense<1> : tensor<ui32> loc(#loc664) | |
| %6776 = "mhlo.broadcast_in_dim"(%6775) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6777 = mhlo.add %6774, %6776 : tensor<2097152xui32> loc(#loc665) | |
| %6778 = mhlo.add %6772, %6777 : tensor<2097152xui32> loc(#loc665) | |
| %6779 = mhlo.constant dense<17> : tensor<ui32> loc(#loc664) | |
| %6780 = "mhlo.broadcast_in_dim"(%6779) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6781 = mhlo.shift_left %6777, %6780 : tensor<2097152xui32> loc(#loc666) | |
| %6782 = mhlo.constant dense<15> : tensor<ui32> loc(#loc664) | |
| %6783 = "mhlo.broadcast_in_dim"(%6782) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6784 = mhlo.shift_right_logical %6777, %6783 : tensor<2097152xui32> loc(#loc667) | |
| %6785 = mhlo.or %6781, %6784 : tensor<2097152xui32> loc(#loc668) | |
| %6786 = mhlo.xor %6778, %6785 : tensor<2097152xui32> loc(#loc663) | |
| %6787 = mhlo.add %6778, %6786 : tensor<2097152xui32> loc(#loc665) | |
| %6788 = mhlo.constant dense<29> : tensor<ui32> loc(#loc664) | |
| %6789 = "mhlo.broadcast_in_dim"(%6788) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6790 = mhlo.shift_left %6786, %6789 : tensor<2097152xui32> loc(#loc666) | |
| %6791 = mhlo.constant dense<3> : tensor<ui32> loc(#loc664) | |
| %6792 = "mhlo.broadcast_in_dim"(%6791) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6793 = mhlo.shift_right_logical %6786, %6792 : tensor<2097152xui32> loc(#loc667) | |
| %6794 = mhlo.or %6790, %6793 : tensor<2097152xui32> loc(#loc668) | |
| %6795 = mhlo.xor %6787, %6794 : tensor<2097152xui32> loc(#loc663) | |
| %6796 = mhlo.add %6787, %6795 : tensor<2097152xui32> loc(#loc665) | |
| %6797 = mhlo.constant dense<16> : tensor<ui32> loc(#loc664) | |
| %6798 = "mhlo.broadcast_in_dim"(%6797) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6799 = mhlo.shift_left %6795, %6798 : tensor<2097152xui32> loc(#loc666) | |
| %6800 = mhlo.constant dense<16> : tensor<ui32> loc(#loc664) | |
| %6801 = "mhlo.broadcast_in_dim"(%6800) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6802 = mhlo.shift_right_logical %6795, %6801 : tensor<2097152xui32> loc(#loc667) | |
| %6803 = mhlo.or %6799, %6802 : tensor<2097152xui32> loc(#loc668) | |
| %6804 = mhlo.xor %6796, %6803 : tensor<2097152xui32> loc(#loc663) | |
| %6805 = mhlo.add %6796, %6804 : tensor<2097152xui32> loc(#loc665) | |
| %6806 = mhlo.constant dense<24> : tensor<ui32> loc(#loc664) | |
| %6807 = "mhlo.broadcast_in_dim"(%6806) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6808 = mhlo.shift_left %6804, %6807 : tensor<2097152xui32> loc(#loc666) | |
| %6809 = mhlo.constant dense<8> : tensor<ui32> loc(#loc664) | |
| %6810 = "mhlo.broadcast_in_dim"(%6809) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6811 = mhlo.shift_right_logical %6804, %6810 : tensor<2097152xui32> loc(#loc667) | |
| %6812 = mhlo.or %6808, %6811 : tensor<2097152xui32> loc(#loc668) | |
| %6813 = mhlo.xor %6805, %6812 : tensor<2097152xui32> loc(#loc663) | |
| %6814 = "mhlo.broadcast_in_dim"(%6730) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6815 = mhlo.add %6805, %6814 : tensor<2097152xui32> loc(#loc665) | |
| %6816 = "mhlo.broadcast_in_dim"(%6723) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6817 = mhlo.add %6813, %6816 : tensor<2097152xui32> loc(#loc665) | |
| %6818 = mhlo.constant dense<2> : tensor<ui32> loc(#loc664) | |
| %6819 = "mhlo.broadcast_in_dim"(%6818) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6820 = mhlo.add %6817, %6819 : tensor<2097152xui32> loc(#loc665) | |
| %6821 = mhlo.add %6815, %6820 : tensor<2097152xui32> loc(#loc665) | |
| %6822 = mhlo.constant dense<13> : tensor<ui32> loc(#loc664) | |
| %6823 = "mhlo.broadcast_in_dim"(%6822) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6824 = mhlo.shift_left %6820, %6823 : tensor<2097152xui32> loc(#loc666) | |
| %6825 = mhlo.constant dense<19> : tensor<ui32> loc(#loc664) | |
| %6826 = "mhlo.broadcast_in_dim"(%6825) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6827 = mhlo.shift_right_logical %6820, %6826 : tensor<2097152xui32> loc(#loc667) | |
| %6828 = mhlo.or %6824, %6827 : tensor<2097152xui32> loc(#loc668) | |
| %6829 = mhlo.xor %6821, %6828 : tensor<2097152xui32> loc(#loc663) | |
| %6830 = mhlo.add %6821, %6829 : tensor<2097152xui32> loc(#loc665) | |
| %6831 = mhlo.constant dense<15> : tensor<ui32> loc(#loc664) | |
| %6832 = "mhlo.broadcast_in_dim"(%6831) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6833 = mhlo.shift_left %6829, %6832 : tensor<2097152xui32> loc(#loc666) | |
| %6834 = mhlo.constant dense<17> : tensor<ui32> loc(#loc664) | |
| %6835 = "mhlo.broadcast_in_dim"(%6834) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6836 = mhlo.shift_right_logical %6829, %6835 : tensor<2097152xui32> loc(#loc667) | |
| %6837 = mhlo.or %6833, %6836 : tensor<2097152xui32> loc(#loc668) | |
| %6838 = mhlo.xor %6830, %6837 : tensor<2097152xui32> loc(#loc663) | |
| %6839 = mhlo.add %6830, %6838 : tensor<2097152xui32> loc(#loc665) | |
| %6840 = mhlo.constant dense<26> : tensor<ui32> loc(#loc664) | |
| %6841 = "mhlo.broadcast_in_dim"(%6840) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6842 = mhlo.shift_left %6838, %6841 : tensor<2097152xui32> loc(#loc666) | |
| %6843 = mhlo.constant dense<6> : tensor<ui32> loc(#loc664) | |
| %6844 = "mhlo.broadcast_in_dim"(%6843) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6845 = mhlo.shift_right_logical %6838, %6844 : tensor<2097152xui32> loc(#loc667) | |
| %6846 = mhlo.or %6842, %6845 : tensor<2097152xui32> loc(#loc668) | |
| %6847 = mhlo.xor %6839, %6846 : tensor<2097152xui32> loc(#loc663) | |
| %6848 = mhlo.add %6839, %6847 : tensor<2097152xui32> loc(#loc665) | |
| %6849 = mhlo.constant dense<6> : tensor<ui32> loc(#loc664) | |
| %6850 = "mhlo.broadcast_in_dim"(%6849) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6851 = mhlo.shift_left %6847, %6850 : tensor<2097152xui32> loc(#loc666) | |
| %6852 = mhlo.constant dense<26> : tensor<ui32> loc(#loc664) | |
| %6853 = "mhlo.broadcast_in_dim"(%6852) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6854 = mhlo.shift_right_logical %6847, %6853 : tensor<2097152xui32> loc(#loc667) | |
| %6855 = mhlo.or %6851, %6854 : tensor<2097152xui32> loc(#loc668) | |
| %6856 = mhlo.xor %6848, %6855 : tensor<2097152xui32> loc(#loc663) | |
| %6857 = "mhlo.broadcast_in_dim"(%6723) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6858 = mhlo.add %6848, %6857 : tensor<2097152xui32> loc(#loc665) | |
| %6859 = "mhlo.broadcast_in_dim"(%6725) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6860 = mhlo.add %6856, %6859 : tensor<2097152xui32> loc(#loc665) | |
| %6861 = mhlo.constant dense<3> : tensor<ui32> loc(#loc664) | |
| %6862 = "mhlo.broadcast_in_dim"(%6861) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6863 = mhlo.add %6860, %6862 : tensor<2097152xui32> loc(#loc665) | |
| %6864 = mhlo.add %6858, %6863 : tensor<2097152xui32> loc(#loc665) | |
| %6865 = mhlo.constant dense<17> : tensor<ui32> loc(#loc664) | |
| %6866 = "mhlo.broadcast_in_dim"(%6865) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6867 = mhlo.shift_left %6863, %6866 : tensor<2097152xui32> loc(#loc666) | |
| %6868 = mhlo.constant dense<15> : tensor<ui32> loc(#loc664) | |
| %6869 = "mhlo.broadcast_in_dim"(%6868) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6870 = mhlo.shift_right_logical %6863, %6869 : tensor<2097152xui32> loc(#loc667) | |
| %6871 = mhlo.or %6867, %6870 : tensor<2097152xui32> loc(#loc668) | |
| %6872 = mhlo.xor %6864, %6871 : tensor<2097152xui32> loc(#loc663) | |
| %6873 = mhlo.add %6864, %6872 : tensor<2097152xui32> loc(#loc665) | |
| %6874 = mhlo.constant dense<29> : tensor<ui32> loc(#loc664) | |
| %6875 = "mhlo.broadcast_in_dim"(%6874) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6876 = mhlo.shift_left %6872, %6875 : tensor<2097152xui32> loc(#loc666) | |
| %6877 = mhlo.constant dense<3> : tensor<ui32> loc(#loc664) | |
| %6878 = "mhlo.broadcast_in_dim"(%6877) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6879 = mhlo.shift_right_logical %6872, %6878 : tensor<2097152xui32> loc(#loc667) | |
| %6880 = mhlo.or %6876, %6879 : tensor<2097152xui32> loc(#loc668) | |
| %6881 = mhlo.xor %6873, %6880 : tensor<2097152xui32> loc(#loc663) | |
| %6882 = mhlo.add %6873, %6881 : tensor<2097152xui32> loc(#loc665) | |
| %6883 = mhlo.constant dense<16> : tensor<ui32> loc(#loc664) | |
| %6884 = "mhlo.broadcast_in_dim"(%6883) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6885 = mhlo.shift_left %6881, %6884 : tensor<2097152xui32> loc(#loc666) | |
| %6886 = mhlo.constant dense<16> : tensor<ui32> loc(#loc664) | |
| %6887 = "mhlo.broadcast_in_dim"(%6886) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6888 = mhlo.shift_right_logical %6881, %6887 : tensor<2097152xui32> loc(#loc667) | |
| %6889 = mhlo.or %6885, %6888 : tensor<2097152xui32> loc(#loc668) | |
| %6890 = mhlo.xor %6882, %6889 : tensor<2097152xui32> loc(#loc663) | |
| %6891 = mhlo.add %6882, %6890 : tensor<2097152xui32> loc(#loc665) | |
| %6892 = mhlo.constant dense<24> : tensor<ui32> loc(#loc664) | |
| %6893 = "mhlo.broadcast_in_dim"(%6892) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6894 = mhlo.shift_left %6890, %6893 : tensor<2097152xui32> loc(#loc666) | |
| %6895 = mhlo.constant dense<8> : tensor<ui32> loc(#loc664) | |
| %6896 = "mhlo.broadcast_in_dim"(%6895) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6897 = mhlo.shift_right_logical %6890, %6896 : tensor<2097152xui32> loc(#loc667) | |
| %6898 = mhlo.or %6894, %6897 : tensor<2097152xui32> loc(#loc668) | |
| %6899 = mhlo.xor %6891, %6898 : tensor<2097152xui32> loc(#loc663) | |
| %6900 = "mhlo.broadcast_in_dim"(%6725) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6901 = mhlo.add %6891, %6900 : tensor<2097152xui32> loc(#loc665) | |
| %6902 = "mhlo.broadcast_in_dim"(%6730) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6903 = mhlo.add %6899, %6902 : tensor<2097152xui32> loc(#loc665) | |
| %6904 = mhlo.constant dense<4> : tensor<ui32> loc(#loc664) | |
| %6905 = "mhlo.broadcast_in_dim"(%6904) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6906 = mhlo.add %6903, %6905 : tensor<2097152xui32> loc(#loc665) | |
| %6907 = mhlo.add %6901, %6906 : tensor<2097152xui32> loc(#loc665) | |
| %6908 = mhlo.constant dense<13> : tensor<ui32> loc(#loc664) | |
| %6909 = "mhlo.broadcast_in_dim"(%6908) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6910 = mhlo.shift_left %6906, %6909 : tensor<2097152xui32> loc(#loc666) | |
| %6911 = mhlo.constant dense<19> : tensor<ui32> loc(#loc664) | |
| %6912 = "mhlo.broadcast_in_dim"(%6911) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6913 = mhlo.shift_right_logical %6906, %6912 : tensor<2097152xui32> loc(#loc667) | |
| %6914 = mhlo.or %6910, %6913 : tensor<2097152xui32> loc(#loc668) | |
| %6915 = mhlo.xor %6907, %6914 : tensor<2097152xui32> loc(#loc663) | |
| %6916 = mhlo.add %6907, %6915 : tensor<2097152xui32> loc(#loc665) | |
| %6917 = mhlo.constant dense<15> : tensor<ui32> loc(#loc664) | |
| %6918 = "mhlo.broadcast_in_dim"(%6917) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6919 = mhlo.shift_left %6915, %6918 : tensor<2097152xui32> loc(#loc666) | |
| %6920 = mhlo.constant dense<17> : tensor<ui32> loc(#loc664) | |
| %6921 = "mhlo.broadcast_in_dim"(%6920) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6922 = mhlo.shift_right_logical %6915, %6921 : tensor<2097152xui32> loc(#loc667) | |
| %6923 = mhlo.or %6919, %6922 : tensor<2097152xui32> loc(#loc668) | |
| %6924 = mhlo.xor %6916, %6923 : tensor<2097152xui32> loc(#loc663) | |
| %6925 = mhlo.add %6916, %6924 : tensor<2097152xui32> loc(#loc665) | |
| %6926 = mhlo.constant dense<26> : tensor<ui32> loc(#loc664) | |
| %6927 = "mhlo.broadcast_in_dim"(%6926) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6928 = mhlo.shift_left %6924, %6927 : tensor<2097152xui32> loc(#loc666) | |
| %6929 = mhlo.constant dense<6> : tensor<ui32> loc(#loc664) | |
| %6930 = "mhlo.broadcast_in_dim"(%6929) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6931 = mhlo.shift_right_logical %6924, %6930 : tensor<2097152xui32> loc(#loc667) | |
| %6932 = mhlo.or %6928, %6931 : tensor<2097152xui32> loc(#loc668) | |
| %6933 = mhlo.xor %6925, %6932 : tensor<2097152xui32> loc(#loc663) | |
| %6934 = mhlo.add %6925, %6933 : tensor<2097152xui32> loc(#loc665) | |
| %6935 = mhlo.constant dense<6> : tensor<ui32> loc(#loc664) | |
| %6936 = "mhlo.broadcast_in_dim"(%6935) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc666) | |
| %6937 = mhlo.shift_left %6933, %6936 : tensor<2097152xui32> loc(#loc666) | |
| %6938 = mhlo.constant dense<26> : tensor<ui32> loc(#loc664) | |
| %6939 = "mhlo.broadcast_in_dim"(%6938) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc667) | |
| %6940 = mhlo.shift_right_logical %6933, %6939 : tensor<2097152xui32> loc(#loc667) | |
| %6941 = mhlo.or %6937, %6940 : tensor<2097152xui32> loc(#loc668) | |
| %6942 = mhlo.xor %6934, %6941 : tensor<2097152xui32> loc(#loc663) | |
| %6943 = "mhlo.broadcast_in_dim"(%6730) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6944 = mhlo.add %6934, %6943 : tensor<2097152xui32> loc(#loc665) | |
| %6945 = "mhlo.broadcast_in_dim"(%6723) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6946 = mhlo.add %6942, %6945 : tensor<2097152xui32> loc(#loc665) | |
| %6947 = mhlo.constant dense<5> : tensor<ui32> loc(#loc664) | |
| %6948 = "mhlo.broadcast_in_dim"(%6947) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc665) | |
| %6949 = mhlo.add %6946, %6948 : tensor<2097152xui32> loc(#loc665) | |
| %6950 = "mhlo.concatenate"(%6944, %6949) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc669) | |
| %6951 = "mhlo.reshape"(%6950) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc670) | |
| %6952 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %6953 = "mhlo.broadcast_in_dim"(%6952) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc667) | |
| %6954 = mhlo.shift_right_logical %6951, %6953 : tensor<2048x2048xui32> loc(#loc667) | |
| %6955 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %6956 = "mhlo.broadcast_in_dim"(%6955) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc668) | |
| %6957 = mhlo.or %6954, %6956 : tensor<2048x2048xui32> loc(#loc668) | |
| %6958 = "mhlo.bitcast_convert"(%6957) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc671) | |
| %6959 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %6960 = "mhlo.broadcast_in_dim"(%6959) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc672) | |
| %6961 = mhlo.subtract %6958, %6960 : tensor<2048x2048xf32> loc(#loc672) | |
| %6962 = mhlo.subtract %6720, %6718 : tensor<1x1xf32> loc(#loc672) | |
| %6963 = "mhlo.broadcast_in_dim"(%6962) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc673) | |
| %6964 = mhlo.multiply %6961, %6963 : tensor<2048x2048xf32> loc(#loc673) | |
| %6965 = "mhlo.broadcast_in_dim"(%6718) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc665) | |
| %6966 = mhlo.add %6964, %6965 : tensor<2048x2048xf32> loc(#loc665) | |
| %6967 = "mhlo.broadcast_in_dim"(%6718) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc674) | |
| %6968 = mhlo.maximum %6967, %6966 : tensor<2048x2048xf32> loc(#loc674) | |
| %6969 = func.call @erf_inv_22(%6968) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc675) | |
| %6970 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %6971 = "mhlo.broadcast_in_dim"(%6970) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc673) | |
| %6972 = mhlo.multiply %6969, %6971 : tensor<2048x2048xf32> loc(#loc673) | |
| %6973 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %6974 = "mhlo.broadcast_in_dim"(%6973) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc673) | |
| %6975 = mhlo.multiply %6972, %6974 : tensor<2048x2048xf32> loc(#loc673) | |
| %6976 = mhlo.convert(%6975) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc676) | |
| %6977 = "mhlo.dot_general"(%5473, %6976) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x256x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x256x2048xf16> loc(#loc677) | |
| %6978 = "mhlo.reshape"(%5981) : (tensor<1x256x2048xf16>) -> tensor<1x256x32x64xf16> loc(#loc678) | |
| %6979 = "mhlo.reshape"(%6479) : (tensor<1x256x2048xf16>) -> tensor<1x256x32x64xf16> loc(#loc678) | |
| %6980 = "mhlo.reshape"(%6977) : (tensor<1x256x2048xf16>) -> tensor<1x256x32x64xf16> loc(#loc678) | |
| %6981 = "mhlo.broadcast_in_dim"(%iterArg_0) {broadcast_dimensions = dense<[0, 3]> : tensor<2xi64>} : (tensor<1x256xi32>) -> tensor<1x1x1x256xi32> loc(#loc679) | |
| %6982 = "mhlo.reshape"(%6981) : (tensor<1x1x1x256xi32>) -> tensor<1x1x256xi32> loc(#loc680) | |
| %6983 = "mhlo.broadcast_in_dim"(%6982) {broadcast_dimensions = dense<[0, 1, 3]> : tensor<3xi64>} : (tensor<1x1x256xi32>) -> tensor<1x1x256x256xi32> loc(#loc681) | |
| %6984 = mhlo.constant dense<0> : tensor<i32> loc(#loc531) | |
| %6985 = "mhlo.broadcast_in_dim"(%6984) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<i32>) -> tensor<1x1x256x256xi32> loc(#loc682) | |
| %6986 = "mhlo.compare"(%6983, %6985) {compare_type = #mhlo<"comparison_type SIGNED">, comparison_direction = #mhlo<"comparison_direction NE">} : (tensor<1x1x256x256xi32>, tensor<1x1x256x256xi32>) -> tensor<1x1x256x256xi1> loc(#loc682) | |
| %6987 = mhlo.and %6986, %5483 : tensor<1x1x256x256xi1> loc(#loc683) | |
| %6988 = mhlo.convert(%6987) : (tensor<1x1x256x256xi1>) -> tensor<1x1x256x256xf32> loc(#loc684) | |
| %6989 = mhlo.constant dense<0.000000e+00> : tensor<f16> loc(#loc531) | |
| %6990 = "mhlo.broadcast_in_dim"(%6989) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x32x64xf16> loc(#loc685) | |
| %6991 = mhlo.constant dense<0.000000e+00> : tensor<f16> loc(#loc531) | |
| %6992 = "mhlo.broadcast_in_dim"(%6991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x32x64xf16> loc(#loc685) | |
| %6993 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %6994 = "mhlo.broadcast_in_dim"(%6993) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x256xf32> loc(#loc686) | |
| %6995 = "mhlo.compare"(%6988, %6994) {compare_type = #mhlo<"comparison_type FLOAT">, comparison_direction = #mhlo<"comparison_direction GT">} : (tensor<1x1x256x256xf32>, tensor<1x1x256x256xf32>) -> tensor<1x1x256x256xi1> loc(#loc686) | |
| %6996 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %6997 = "mhlo.broadcast_in_dim"(%6996) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x256xf32> loc(#loc687) | |
| %6998 = mhlo.convert(%6997) : (tensor<1x1x256x256xf32>) -> tensor<1x1x256x256xf16> loc(#loc688) | |
| %6999 = mhlo.constant dense<0xFF800000> : tensor<f32> loc(#loc531) | |
| %7000 = "mhlo.broadcast_in_dim"(%6999) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x256xf32> loc(#loc689) | |
| %7001 = mhlo.convert(%7000) : (tensor<1x1x256x256xf32>) -> tensor<1x1x256x256xf16> loc(#loc690) | |
| %7002 = "mhlo.select"(%6995, %6998, %7001) : (tensor<1x1x256x256xi1>, tensor<1x1x256x256xf16>, tensor<1x1x256x256xf16>) -> tensor<1x1x256x256xf16> loc(#loc691) | |
| %7003 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc531) | |
| %7004 = mhlo.sqrt %7003 : tensor<f32> loc(#loc692) | |
| %7005 = mhlo.convert(%7004) : (tensor<f32>) -> tensor<f16> loc(#loc693) | |
| %7006 = "mhlo.broadcast_in_dim"(%7005) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x32x64xf16> loc(#loc694) | |
| %7007 = mhlo.divide %6978, %7006 : tensor<1x256x32x64xf16> loc(#loc694) | |
| %7008 = func.call @_einsum_23(%7007, %6979) : (tensor<1x256x32x64xf16>, tensor<1x256x32x64xf16>) -> tensor<1x32x256x256xf16> loc(#loc695) | |
| %7009 = "mhlo.broadcast_in_dim"(%7002) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x256x256xf16>) -> tensor<1x32x256x256xf16> loc(#loc696) | |
| %7010 = mhlo.add %7008, %7009 : tensor<1x32x256x256xf16> loc(#loc696) | |
| %7011 = mhlo.constant dense<0xFC00> : tensor<f16> loc(#loc697) | |
| %7012 = mhlo.reduce(%7010 init: %7011) across dimensions = [3] : (tensor<1x32x256x256xf16>, tensor<f16>) -> tensor<1x32x256xf16> | |
| reducer(%arg47: tensor<f16> loc(unknown), %arg48: tensor<f16> loc(unknown)) { | |
| %13358 = mhlo.maximum %arg47, %arg48 : tensor<f16> loc(#loc697) | |
| "mhlo.return"(%13358) : (tensor<f16>) -> () loc(#loc697) | |
| } loc(#loc697) | |
| %7013 = "mhlo.broadcast_in_dim"(%7012) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x256xf16>) -> tensor<1x32x256x1xf16> loc(#loc698) | |
| %7014 = "mhlo.broadcast_in_dim"(%7013) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x256x1xf16>) -> tensor<1x32x256x256xf16> loc(#loc699) | |
| %7015 = mhlo.subtract %7010, %7014 : tensor<1x32x256x256xf16> loc(#loc699) | |
| %7016 = mhlo.exponential %7015 : tensor<1x32x256x256xf16> loc(#loc700) | |
| %7017 = mhlo.convert(%7016) : (tensor<1x32x256x256xf16>) -> tensor<1x32x256x256xf32> loc(#loc701) | |
| %7018 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc702) | |
| %7019 = mhlo.reduce(%7017 init: %7018) across dimensions = [3] : (tensor<1x32x256x256xf32>, tensor<f32>) -> tensor<1x32x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc702) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc702) | |
| } loc(#loc702) | |
| %7020 = "mhlo.broadcast_in_dim"(%7019) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x256xf32>) -> tensor<1x32x256x1xf32> loc(#loc698) | |
| %7021 = mhlo.convert(%7020) : (tensor<1x32x256x1xf32>) -> tensor<1x32x256x1xf16> loc(#loc703) | |
| %7022 = "mhlo.broadcast_in_dim"(%7021) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x256x1xf16>) -> tensor<1x32x256x256xf16> loc(#loc704) | |
| %7023 = mhlo.divide %7016, %7022 : tensor<1x32x256x256xf16> loc(#loc704) | |
| %7024 = func.call @_einsum_24(%7023, %6980) : (tensor<1x32x256x256xf16>, tensor<1x256x32x64xf16>) -> tensor<1x256x32x64xf16> loc(#loc705) | |
| %7025 = "mhlo.reshape"(%7024) : (tensor<1x256x32x64xf16>) -> tensor<1x256x2048xf16> loc(#loc706) | |
| %7026 = mhlo.constant dense<1156125830> : tensor<ui32> loc(#loc531) | |
| %7027 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %7028 = mhlo.shift_right_logical %7026, %7027 : tensor<ui32> loc(#loc707) | |
| %7029 = "mhlo.reshape"(%7028) : (tensor<ui32>) -> tensor<1xui32> loc(#loc708) | |
| %7030 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %7031 = mhlo.and %7026, %7030 : tensor<ui32> loc(#loc709) | |
| %7032 = "mhlo.reshape"(%7031) : (tensor<ui32>) -> tensor<1xui32> loc(#loc708) | |
| %7033 = "mhlo.concatenate"(%7029, %7032) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc710) | |
| %7034 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc711) | |
| %7035 = "mhlo.reshape"(%7034) : (tensor<1xui32>) -> tensor<ui32> loc(#loc712) | |
| %7036 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc713) | |
| %7037 = "mhlo.reshape"(%7036) : (tensor<1xui32>) -> tensor<ui32> loc(#loc712) | |
| %7038 = "mhlo.slice"(%7033) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc714) | |
| %7039 = "mhlo.slice"(%7033) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc715) | |
| %7040 = mhlo.xor %7035, %7037 : tensor<ui32> loc(#loc716) | |
| %7041 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc717) | |
| %7042 = mhlo.xor %7040, %7041 : tensor<ui32> loc(#loc716) | |
| %7043 = "mhlo.broadcast_in_dim"(%7035) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7044 = mhlo.add %7038, %7043 : tensor<1xui32> loc(#loc718) | |
| %7045 = "mhlo.broadcast_in_dim"(%7037) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7046 = mhlo.add %7039, %7045 : tensor<1xui32> loc(#loc718) | |
| %7047 = mhlo.add %7044, %7046 : tensor<1xui32> loc(#loc718) | |
| %7048 = mhlo.constant dense<13> : tensor<ui32> loc(#loc717) | |
| %7049 = "mhlo.broadcast_in_dim"(%7048) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7050 = mhlo.shift_left %7046, %7049 : tensor<1xui32> loc(#loc719) | |
| %7051 = mhlo.constant dense<19> : tensor<ui32> loc(#loc717) | |
| %7052 = "mhlo.broadcast_in_dim"(%7051) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7053 = mhlo.shift_right_logical %7046, %7052 : tensor<1xui32> loc(#loc707) | |
| %7054 = mhlo.or %7050, %7053 : tensor<1xui32> loc(#loc720) | |
| %7055 = mhlo.xor %7047, %7054 : tensor<1xui32> loc(#loc716) | |
| %7056 = mhlo.add %7047, %7055 : tensor<1xui32> loc(#loc718) | |
| %7057 = mhlo.constant dense<15> : tensor<ui32> loc(#loc717) | |
| %7058 = "mhlo.broadcast_in_dim"(%7057) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7059 = mhlo.shift_left %7055, %7058 : tensor<1xui32> loc(#loc719) | |
| %7060 = mhlo.constant dense<17> : tensor<ui32> loc(#loc717) | |
| %7061 = "mhlo.broadcast_in_dim"(%7060) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7062 = mhlo.shift_right_logical %7055, %7061 : tensor<1xui32> loc(#loc707) | |
| %7063 = mhlo.or %7059, %7062 : tensor<1xui32> loc(#loc720) | |
| %7064 = mhlo.xor %7056, %7063 : tensor<1xui32> loc(#loc716) | |
| %7065 = mhlo.add %7056, %7064 : tensor<1xui32> loc(#loc718) | |
| %7066 = mhlo.constant dense<26> : tensor<ui32> loc(#loc717) | |
| %7067 = "mhlo.broadcast_in_dim"(%7066) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7068 = mhlo.shift_left %7064, %7067 : tensor<1xui32> loc(#loc719) | |
| %7069 = mhlo.constant dense<6> : tensor<ui32> loc(#loc717) | |
| %7070 = "mhlo.broadcast_in_dim"(%7069) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7071 = mhlo.shift_right_logical %7064, %7070 : tensor<1xui32> loc(#loc707) | |
| %7072 = mhlo.or %7068, %7071 : tensor<1xui32> loc(#loc720) | |
| %7073 = mhlo.xor %7065, %7072 : tensor<1xui32> loc(#loc716) | |
| %7074 = mhlo.add %7065, %7073 : tensor<1xui32> loc(#loc718) | |
| %7075 = mhlo.constant dense<6> : tensor<ui32> loc(#loc717) | |
| %7076 = "mhlo.broadcast_in_dim"(%7075) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7077 = mhlo.shift_left %7073, %7076 : tensor<1xui32> loc(#loc719) | |
| %7078 = mhlo.constant dense<26> : tensor<ui32> loc(#loc717) | |
| %7079 = "mhlo.broadcast_in_dim"(%7078) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7080 = mhlo.shift_right_logical %7073, %7079 : tensor<1xui32> loc(#loc707) | |
| %7081 = mhlo.or %7077, %7080 : tensor<1xui32> loc(#loc720) | |
| %7082 = mhlo.xor %7074, %7081 : tensor<1xui32> loc(#loc716) | |
| %7083 = "mhlo.broadcast_in_dim"(%7037) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7084 = mhlo.add %7074, %7083 : tensor<1xui32> loc(#loc718) | |
| %7085 = "mhlo.broadcast_in_dim"(%7042) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7086 = mhlo.add %7082, %7085 : tensor<1xui32> loc(#loc718) | |
| %7087 = mhlo.constant dense<1> : tensor<ui32> loc(#loc717) | |
| %7088 = "mhlo.broadcast_in_dim"(%7087) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7089 = mhlo.add %7086, %7088 : tensor<1xui32> loc(#loc718) | |
| %7090 = mhlo.add %7084, %7089 : tensor<1xui32> loc(#loc718) | |
| %7091 = mhlo.constant dense<17> : tensor<ui32> loc(#loc717) | |
| %7092 = "mhlo.broadcast_in_dim"(%7091) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7093 = mhlo.shift_left %7089, %7092 : tensor<1xui32> loc(#loc719) | |
| %7094 = mhlo.constant dense<15> : tensor<ui32> loc(#loc717) | |
| %7095 = "mhlo.broadcast_in_dim"(%7094) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7096 = mhlo.shift_right_logical %7089, %7095 : tensor<1xui32> loc(#loc707) | |
| %7097 = mhlo.or %7093, %7096 : tensor<1xui32> loc(#loc720) | |
| %7098 = mhlo.xor %7090, %7097 : tensor<1xui32> loc(#loc716) | |
| %7099 = mhlo.add %7090, %7098 : tensor<1xui32> loc(#loc718) | |
| %7100 = mhlo.constant dense<29> : tensor<ui32> loc(#loc717) | |
| %7101 = "mhlo.broadcast_in_dim"(%7100) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7102 = mhlo.shift_left %7098, %7101 : tensor<1xui32> loc(#loc719) | |
| %7103 = mhlo.constant dense<3> : tensor<ui32> loc(#loc717) | |
| %7104 = "mhlo.broadcast_in_dim"(%7103) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7105 = mhlo.shift_right_logical %7098, %7104 : tensor<1xui32> loc(#loc707) | |
| %7106 = mhlo.or %7102, %7105 : tensor<1xui32> loc(#loc720) | |
| %7107 = mhlo.xor %7099, %7106 : tensor<1xui32> loc(#loc716) | |
| %7108 = mhlo.add %7099, %7107 : tensor<1xui32> loc(#loc718) | |
| %7109 = mhlo.constant dense<16> : tensor<ui32> loc(#loc717) | |
| %7110 = "mhlo.broadcast_in_dim"(%7109) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7111 = mhlo.shift_left %7107, %7110 : tensor<1xui32> loc(#loc719) | |
| %7112 = mhlo.constant dense<16> : tensor<ui32> loc(#loc717) | |
| %7113 = "mhlo.broadcast_in_dim"(%7112) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7114 = mhlo.shift_right_logical %7107, %7113 : tensor<1xui32> loc(#loc707) | |
| %7115 = mhlo.or %7111, %7114 : tensor<1xui32> loc(#loc720) | |
| %7116 = mhlo.xor %7108, %7115 : tensor<1xui32> loc(#loc716) | |
| %7117 = mhlo.add %7108, %7116 : tensor<1xui32> loc(#loc718) | |
| %7118 = mhlo.constant dense<24> : tensor<ui32> loc(#loc717) | |
| %7119 = "mhlo.broadcast_in_dim"(%7118) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7120 = mhlo.shift_left %7116, %7119 : tensor<1xui32> loc(#loc719) | |
| %7121 = mhlo.constant dense<8> : tensor<ui32> loc(#loc717) | |
| %7122 = "mhlo.broadcast_in_dim"(%7121) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7123 = mhlo.shift_right_logical %7116, %7122 : tensor<1xui32> loc(#loc707) | |
| %7124 = mhlo.or %7120, %7123 : tensor<1xui32> loc(#loc720) | |
| %7125 = mhlo.xor %7117, %7124 : tensor<1xui32> loc(#loc716) | |
| %7126 = "mhlo.broadcast_in_dim"(%7042) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7127 = mhlo.add %7117, %7126 : tensor<1xui32> loc(#loc718) | |
| %7128 = "mhlo.broadcast_in_dim"(%7035) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7129 = mhlo.add %7125, %7128 : tensor<1xui32> loc(#loc718) | |
| %7130 = mhlo.constant dense<2> : tensor<ui32> loc(#loc717) | |
| %7131 = "mhlo.broadcast_in_dim"(%7130) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7132 = mhlo.add %7129, %7131 : tensor<1xui32> loc(#loc718) | |
| %7133 = mhlo.add %7127, %7132 : tensor<1xui32> loc(#loc718) | |
| %7134 = mhlo.constant dense<13> : tensor<ui32> loc(#loc717) | |
| %7135 = "mhlo.broadcast_in_dim"(%7134) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7136 = mhlo.shift_left %7132, %7135 : tensor<1xui32> loc(#loc719) | |
| %7137 = mhlo.constant dense<19> : tensor<ui32> loc(#loc717) | |
| %7138 = "mhlo.broadcast_in_dim"(%7137) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7139 = mhlo.shift_right_logical %7132, %7138 : tensor<1xui32> loc(#loc707) | |
| %7140 = mhlo.or %7136, %7139 : tensor<1xui32> loc(#loc720) | |
| %7141 = mhlo.xor %7133, %7140 : tensor<1xui32> loc(#loc716) | |
| %7142 = mhlo.add %7133, %7141 : tensor<1xui32> loc(#loc718) | |
| %7143 = mhlo.constant dense<15> : tensor<ui32> loc(#loc717) | |
| %7144 = "mhlo.broadcast_in_dim"(%7143) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7145 = mhlo.shift_left %7141, %7144 : tensor<1xui32> loc(#loc719) | |
| %7146 = mhlo.constant dense<17> : tensor<ui32> loc(#loc717) | |
| %7147 = "mhlo.broadcast_in_dim"(%7146) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7148 = mhlo.shift_right_logical %7141, %7147 : tensor<1xui32> loc(#loc707) | |
| %7149 = mhlo.or %7145, %7148 : tensor<1xui32> loc(#loc720) | |
| %7150 = mhlo.xor %7142, %7149 : tensor<1xui32> loc(#loc716) | |
| %7151 = mhlo.add %7142, %7150 : tensor<1xui32> loc(#loc718) | |
| %7152 = mhlo.constant dense<26> : tensor<ui32> loc(#loc717) | |
| %7153 = "mhlo.broadcast_in_dim"(%7152) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7154 = mhlo.shift_left %7150, %7153 : tensor<1xui32> loc(#loc719) | |
| %7155 = mhlo.constant dense<6> : tensor<ui32> loc(#loc717) | |
| %7156 = "mhlo.broadcast_in_dim"(%7155) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7157 = mhlo.shift_right_logical %7150, %7156 : tensor<1xui32> loc(#loc707) | |
| %7158 = mhlo.or %7154, %7157 : tensor<1xui32> loc(#loc720) | |
| %7159 = mhlo.xor %7151, %7158 : tensor<1xui32> loc(#loc716) | |
| %7160 = mhlo.add %7151, %7159 : tensor<1xui32> loc(#loc718) | |
| %7161 = mhlo.constant dense<6> : tensor<ui32> loc(#loc717) | |
| %7162 = "mhlo.broadcast_in_dim"(%7161) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7163 = mhlo.shift_left %7159, %7162 : tensor<1xui32> loc(#loc719) | |
| %7164 = mhlo.constant dense<26> : tensor<ui32> loc(#loc717) | |
| %7165 = "mhlo.broadcast_in_dim"(%7164) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7166 = mhlo.shift_right_logical %7159, %7165 : tensor<1xui32> loc(#loc707) | |
| %7167 = mhlo.or %7163, %7166 : tensor<1xui32> loc(#loc720) | |
| %7168 = mhlo.xor %7160, %7167 : tensor<1xui32> loc(#loc716) | |
| %7169 = "mhlo.broadcast_in_dim"(%7035) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7170 = mhlo.add %7160, %7169 : tensor<1xui32> loc(#loc718) | |
| %7171 = "mhlo.broadcast_in_dim"(%7037) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7172 = mhlo.add %7168, %7171 : tensor<1xui32> loc(#loc718) | |
| %7173 = mhlo.constant dense<3> : tensor<ui32> loc(#loc717) | |
| %7174 = "mhlo.broadcast_in_dim"(%7173) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7175 = mhlo.add %7172, %7174 : tensor<1xui32> loc(#loc718) | |
| %7176 = mhlo.add %7170, %7175 : tensor<1xui32> loc(#loc718) | |
| %7177 = mhlo.constant dense<17> : tensor<ui32> loc(#loc717) | |
| %7178 = "mhlo.broadcast_in_dim"(%7177) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7179 = mhlo.shift_left %7175, %7178 : tensor<1xui32> loc(#loc719) | |
| %7180 = mhlo.constant dense<15> : tensor<ui32> loc(#loc717) | |
| %7181 = "mhlo.broadcast_in_dim"(%7180) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7182 = mhlo.shift_right_logical %7175, %7181 : tensor<1xui32> loc(#loc707) | |
| %7183 = mhlo.or %7179, %7182 : tensor<1xui32> loc(#loc720) | |
| %7184 = mhlo.xor %7176, %7183 : tensor<1xui32> loc(#loc716) | |
| %7185 = mhlo.add %7176, %7184 : tensor<1xui32> loc(#loc718) | |
| %7186 = mhlo.constant dense<29> : tensor<ui32> loc(#loc717) | |
| %7187 = "mhlo.broadcast_in_dim"(%7186) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7188 = mhlo.shift_left %7184, %7187 : tensor<1xui32> loc(#loc719) | |
| %7189 = mhlo.constant dense<3> : tensor<ui32> loc(#loc717) | |
| %7190 = "mhlo.broadcast_in_dim"(%7189) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7191 = mhlo.shift_right_logical %7184, %7190 : tensor<1xui32> loc(#loc707) | |
| %7192 = mhlo.or %7188, %7191 : tensor<1xui32> loc(#loc720) | |
| %7193 = mhlo.xor %7185, %7192 : tensor<1xui32> loc(#loc716) | |
| %7194 = mhlo.add %7185, %7193 : tensor<1xui32> loc(#loc718) | |
| %7195 = mhlo.constant dense<16> : tensor<ui32> loc(#loc717) | |
| %7196 = "mhlo.broadcast_in_dim"(%7195) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7197 = mhlo.shift_left %7193, %7196 : tensor<1xui32> loc(#loc719) | |
| %7198 = mhlo.constant dense<16> : tensor<ui32> loc(#loc717) | |
| %7199 = "mhlo.broadcast_in_dim"(%7198) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7200 = mhlo.shift_right_logical %7193, %7199 : tensor<1xui32> loc(#loc707) | |
| %7201 = mhlo.or %7197, %7200 : tensor<1xui32> loc(#loc720) | |
| %7202 = mhlo.xor %7194, %7201 : tensor<1xui32> loc(#loc716) | |
| %7203 = mhlo.add %7194, %7202 : tensor<1xui32> loc(#loc718) | |
| %7204 = mhlo.constant dense<24> : tensor<ui32> loc(#loc717) | |
| %7205 = "mhlo.broadcast_in_dim"(%7204) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7206 = mhlo.shift_left %7202, %7205 : tensor<1xui32> loc(#loc719) | |
| %7207 = mhlo.constant dense<8> : tensor<ui32> loc(#loc717) | |
| %7208 = "mhlo.broadcast_in_dim"(%7207) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7209 = mhlo.shift_right_logical %7202, %7208 : tensor<1xui32> loc(#loc707) | |
| %7210 = mhlo.or %7206, %7209 : tensor<1xui32> loc(#loc720) | |
| %7211 = mhlo.xor %7203, %7210 : tensor<1xui32> loc(#loc716) | |
| %7212 = "mhlo.broadcast_in_dim"(%7037) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7213 = mhlo.add %7203, %7212 : tensor<1xui32> loc(#loc718) | |
| %7214 = "mhlo.broadcast_in_dim"(%7042) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7215 = mhlo.add %7211, %7214 : tensor<1xui32> loc(#loc718) | |
| %7216 = mhlo.constant dense<4> : tensor<ui32> loc(#loc717) | |
| %7217 = "mhlo.broadcast_in_dim"(%7216) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7218 = mhlo.add %7215, %7217 : tensor<1xui32> loc(#loc718) | |
| %7219 = mhlo.add %7213, %7218 : tensor<1xui32> loc(#loc718) | |
| %7220 = mhlo.constant dense<13> : tensor<ui32> loc(#loc717) | |
| %7221 = "mhlo.broadcast_in_dim"(%7220) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7222 = mhlo.shift_left %7218, %7221 : tensor<1xui32> loc(#loc719) | |
| %7223 = mhlo.constant dense<19> : tensor<ui32> loc(#loc717) | |
| %7224 = "mhlo.broadcast_in_dim"(%7223) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7225 = mhlo.shift_right_logical %7218, %7224 : tensor<1xui32> loc(#loc707) | |
| %7226 = mhlo.or %7222, %7225 : tensor<1xui32> loc(#loc720) | |
| %7227 = mhlo.xor %7219, %7226 : tensor<1xui32> loc(#loc716) | |
| %7228 = mhlo.add %7219, %7227 : tensor<1xui32> loc(#loc718) | |
| %7229 = mhlo.constant dense<15> : tensor<ui32> loc(#loc717) | |
| %7230 = "mhlo.broadcast_in_dim"(%7229) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7231 = mhlo.shift_left %7227, %7230 : tensor<1xui32> loc(#loc719) | |
| %7232 = mhlo.constant dense<17> : tensor<ui32> loc(#loc717) | |
| %7233 = "mhlo.broadcast_in_dim"(%7232) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7234 = mhlo.shift_right_logical %7227, %7233 : tensor<1xui32> loc(#loc707) | |
| %7235 = mhlo.or %7231, %7234 : tensor<1xui32> loc(#loc720) | |
| %7236 = mhlo.xor %7228, %7235 : tensor<1xui32> loc(#loc716) | |
| %7237 = mhlo.add %7228, %7236 : tensor<1xui32> loc(#loc718) | |
| %7238 = mhlo.constant dense<26> : tensor<ui32> loc(#loc717) | |
| %7239 = "mhlo.broadcast_in_dim"(%7238) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7240 = mhlo.shift_left %7236, %7239 : tensor<1xui32> loc(#loc719) | |
| %7241 = mhlo.constant dense<6> : tensor<ui32> loc(#loc717) | |
| %7242 = "mhlo.broadcast_in_dim"(%7241) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7243 = mhlo.shift_right_logical %7236, %7242 : tensor<1xui32> loc(#loc707) | |
| %7244 = mhlo.or %7240, %7243 : tensor<1xui32> loc(#loc720) | |
| %7245 = mhlo.xor %7237, %7244 : tensor<1xui32> loc(#loc716) | |
| %7246 = mhlo.add %7237, %7245 : tensor<1xui32> loc(#loc718) | |
| %7247 = mhlo.constant dense<6> : tensor<ui32> loc(#loc717) | |
| %7248 = "mhlo.broadcast_in_dim"(%7247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc719) | |
| %7249 = mhlo.shift_left %7245, %7248 : tensor<1xui32> loc(#loc719) | |
| %7250 = mhlo.constant dense<26> : tensor<ui32> loc(#loc717) | |
| %7251 = "mhlo.broadcast_in_dim"(%7250) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc707) | |
| %7252 = mhlo.shift_right_logical %7245, %7251 : tensor<1xui32> loc(#loc707) | |
| %7253 = mhlo.or %7249, %7252 : tensor<1xui32> loc(#loc720) | |
| %7254 = mhlo.xor %7246, %7253 : tensor<1xui32> loc(#loc716) | |
| %7255 = "mhlo.broadcast_in_dim"(%7042) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7256 = mhlo.add %7246, %7255 : tensor<1xui32> loc(#loc718) | |
| %7257 = "mhlo.broadcast_in_dim"(%7035) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7258 = mhlo.add %7254, %7257 : tensor<1xui32> loc(#loc718) | |
| %7259 = mhlo.constant dense<5> : tensor<ui32> loc(#loc717) | |
| %7260 = "mhlo.broadcast_in_dim"(%7259) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc718) | |
| %7261 = mhlo.add %7258, %7260 : tensor<1xui32> loc(#loc718) | |
| %7262 = "mhlo.concatenate"(%7256, %7261) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc710) | |
| %7263 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %7264 = "mhlo.broadcast_in_dim"(%7263) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc721) | |
| %7265 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %7266 = "mhlo.broadcast_in_dim"(%7265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc721) | |
| %7267 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc722) | |
| %7268 = "mhlo.slice"(%7262) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc723) | |
| %7269 = "mhlo.reshape"(%7268) : (tensor<1xui32>) -> tensor<ui32> loc(#loc724) | |
| %7270 = "mhlo.slice"(%7262) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc725) | |
| %7271 = "mhlo.reshape"(%7270) : (tensor<1xui32>) -> tensor<ui32> loc(#loc724) | |
| %7272 = "mhlo.slice"(%7267) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc726) | |
| %7273 = "mhlo.slice"(%7267) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc727) | |
| %7274 = mhlo.xor %7269, %7271 : tensor<ui32> loc(#loc728) | |
| %7275 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc729) | |
| %7276 = mhlo.xor %7274, %7275 : tensor<ui32> loc(#loc728) | |
| %7277 = "mhlo.broadcast_in_dim"(%7269) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7278 = mhlo.add %7272, %7277 : tensor<2097152xui32> loc(#loc730) | |
| %7279 = "mhlo.broadcast_in_dim"(%7271) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7280 = mhlo.add %7273, %7279 : tensor<2097152xui32> loc(#loc730) | |
| %7281 = mhlo.add %7278, %7280 : tensor<2097152xui32> loc(#loc730) | |
| %7282 = mhlo.constant dense<13> : tensor<ui32> loc(#loc729) | |
| %7283 = "mhlo.broadcast_in_dim"(%7282) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7284 = mhlo.shift_left %7280, %7283 : tensor<2097152xui32> loc(#loc731) | |
| %7285 = mhlo.constant dense<19> : tensor<ui32> loc(#loc729) | |
| %7286 = "mhlo.broadcast_in_dim"(%7285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7287 = mhlo.shift_right_logical %7280, %7286 : tensor<2097152xui32> loc(#loc732) | |
| %7288 = mhlo.or %7284, %7287 : tensor<2097152xui32> loc(#loc733) | |
| %7289 = mhlo.xor %7281, %7288 : tensor<2097152xui32> loc(#loc728) | |
| %7290 = mhlo.add %7281, %7289 : tensor<2097152xui32> loc(#loc730) | |
| %7291 = mhlo.constant dense<15> : tensor<ui32> loc(#loc729) | |
| %7292 = "mhlo.broadcast_in_dim"(%7291) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7293 = mhlo.shift_left %7289, %7292 : tensor<2097152xui32> loc(#loc731) | |
| %7294 = mhlo.constant dense<17> : tensor<ui32> loc(#loc729) | |
| %7295 = "mhlo.broadcast_in_dim"(%7294) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7296 = mhlo.shift_right_logical %7289, %7295 : tensor<2097152xui32> loc(#loc732) | |
| %7297 = mhlo.or %7293, %7296 : tensor<2097152xui32> loc(#loc733) | |
| %7298 = mhlo.xor %7290, %7297 : tensor<2097152xui32> loc(#loc728) | |
| %7299 = mhlo.add %7290, %7298 : tensor<2097152xui32> loc(#loc730) | |
| %7300 = mhlo.constant dense<26> : tensor<ui32> loc(#loc729) | |
| %7301 = "mhlo.broadcast_in_dim"(%7300) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7302 = mhlo.shift_left %7298, %7301 : tensor<2097152xui32> loc(#loc731) | |
| %7303 = mhlo.constant dense<6> : tensor<ui32> loc(#loc729) | |
| %7304 = "mhlo.broadcast_in_dim"(%7303) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7305 = mhlo.shift_right_logical %7298, %7304 : tensor<2097152xui32> loc(#loc732) | |
| %7306 = mhlo.or %7302, %7305 : tensor<2097152xui32> loc(#loc733) | |
| %7307 = mhlo.xor %7299, %7306 : tensor<2097152xui32> loc(#loc728) | |
| %7308 = mhlo.add %7299, %7307 : tensor<2097152xui32> loc(#loc730) | |
| %7309 = mhlo.constant dense<6> : tensor<ui32> loc(#loc729) | |
| %7310 = "mhlo.broadcast_in_dim"(%7309) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7311 = mhlo.shift_left %7307, %7310 : tensor<2097152xui32> loc(#loc731) | |
| %7312 = mhlo.constant dense<26> : tensor<ui32> loc(#loc729) | |
| %7313 = "mhlo.broadcast_in_dim"(%7312) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7314 = mhlo.shift_right_logical %7307, %7313 : tensor<2097152xui32> loc(#loc732) | |
| %7315 = mhlo.or %7311, %7314 : tensor<2097152xui32> loc(#loc733) | |
| %7316 = mhlo.xor %7308, %7315 : tensor<2097152xui32> loc(#loc728) | |
| %7317 = "mhlo.broadcast_in_dim"(%7271) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7318 = mhlo.add %7308, %7317 : tensor<2097152xui32> loc(#loc730) | |
| %7319 = "mhlo.broadcast_in_dim"(%7276) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7320 = mhlo.add %7316, %7319 : tensor<2097152xui32> loc(#loc730) | |
| %7321 = mhlo.constant dense<1> : tensor<ui32> loc(#loc729) | |
| %7322 = "mhlo.broadcast_in_dim"(%7321) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7323 = mhlo.add %7320, %7322 : tensor<2097152xui32> loc(#loc730) | |
| %7324 = mhlo.add %7318, %7323 : tensor<2097152xui32> loc(#loc730) | |
| %7325 = mhlo.constant dense<17> : tensor<ui32> loc(#loc729) | |
| %7326 = "mhlo.broadcast_in_dim"(%7325) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7327 = mhlo.shift_left %7323, %7326 : tensor<2097152xui32> loc(#loc731) | |
| %7328 = mhlo.constant dense<15> : tensor<ui32> loc(#loc729) | |
| %7329 = "mhlo.broadcast_in_dim"(%7328) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7330 = mhlo.shift_right_logical %7323, %7329 : tensor<2097152xui32> loc(#loc732) | |
| %7331 = mhlo.or %7327, %7330 : tensor<2097152xui32> loc(#loc733) | |
| %7332 = mhlo.xor %7324, %7331 : tensor<2097152xui32> loc(#loc728) | |
| %7333 = mhlo.add %7324, %7332 : tensor<2097152xui32> loc(#loc730) | |
| %7334 = mhlo.constant dense<29> : tensor<ui32> loc(#loc729) | |
| %7335 = "mhlo.broadcast_in_dim"(%7334) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7336 = mhlo.shift_left %7332, %7335 : tensor<2097152xui32> loc(#loc731) | |
| %7337 = mhlo.constant dense<3> : tensor<ui32> loc(#loc729) | |
| %7338 = "mhlo.broadcast_in_dim"(%7337) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7339 = mhlo.shift_right_logical %7332, %7338 : tensor<2097152xui32> loc(#loc732) | |
| %7340 = mhlo.or %7336, %7339 : tensor<2097152xui32> loc(#loc733) | |
| %7341 = mhlo.xor %7333, %7340 : tensor<2097152xui32> loc(#loc728) | |
| %7342 = mhlo.add %7333, %7341 : tensor<2097152xui32> loc(#loc730) | |
| %7343 = mhlo.constant dense<16> : tensor<ui32> loc(#loc729) | |
| %7344 = "mhlo.broadcast_in_dim"(%7343) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7345 = mhlo.shift_left %7341, %7344 : tensor<2097152xui32> loc(#loc731) | |
| %7346 = mhlo.constant dense<16> : tensor<ui32> loc(#loc729) | |
| %7347 = "mhlo.broadcast_in_dim"(%7346) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7348 = mhlo.shift_right_logical %7341, %7347 : tensor<2097152xui32> loc(#loc732) | |
| %7349 = mhlo.or %7345, %7348 : tensor<2097152xui32> loc(#loc733) | |
| %7350 = mhlo.xor %7342, %7349 : tensor<2097152xui32> loc(#loc728) | |
| %7351 = mhlo.add %7342, %7350 : tensor<2097152xui32> loc(#loc730) | |
| %7352 = mhlo.constant dense<24> : tensor<ui32> loc(#loc729) | |
| %7353 = "mhlo.broadcast_in_dim"(%7352) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7354 = mhlo.shift_left %7350, %7353 : tensor<2097152xui32> loc(#loc731) | |
| %7355 = mhlo.constant dense<8> : tensor<ui32> loc(#loc729) | |
| %7356 = "mhlo.broadcast_in_dim"(%7355) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7357 = mhlo.shift_right_logical %7350, %7356 : tensor<2097152xui32> loc(#loc732) | |
| %7358 = mhlo.or %7354, %7357 : tensor<2097152xui32> loc(#loc733) | |
| %7359 = mhlo.xor %7351, %7358 : tensor<2097152xui32> loc(#loc728) | |
| %7360 = "mhlo.broadcast_in_dim"(%7276) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7361 = mhlo.add %7351, %7360 : tensor<2097152xui32> loc(#loc730) | |
| %7362 = "mhlo.broadcast_in_dim"(%7269) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7363 = mhlo.add %7359, %7362 : tensor<2097152xui32> loc(#loc730) | |
| %7364 = mhlo.constant dense<2> : tensor<ui32> loc(#loc729) | |
| %7365 = "mhlo.broadcast_in_dim"(%7364) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7366 = mhlo.add %7363, %7365 : tensor<2097152xui32> loc(#loc730) | |
| %7367 = mhlo.add %7361, %7366 : tensor<2097152xui32> loc(#loc730) | |
| %7368 = mhlo.constant dense<13> : tensor<ui32> loc(#loc729) | |
| %7369 = "mhlo.broadcast_in_dim"(%7368) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7370 = mhlo.shift_left %7366, %7369 : tensor<2097152xui32> loc(#loc731) | |
| %7371 = mhlo.constant dense<19> : tensor<ui32> loc(#loc729) | |
| %7372 = "mhlo.broadcast_in_dim"(%7371) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7373 = mhlo.shift_right_logical %7366, %7372 : tensor<2097152xui32> loc(#loc732) | |
| %7374 = mhlo.or %7370, %7373 : tensor<2097152xui32> loc(#loc733) | |
| %7375 = mhlo.xor %7367, %7374 : tensor<2097152xui32> loc(#loc728) | |
| %7376 = mhlo.add %7367, %7375 : tensor<2097152xui32> loc(#loc730) | |
| %7377 = mhlo.constant dense<15> : tensor<ui32> loc(#loc729) | |
| %7378 = "mhlo.broadcast_in_dim"(%7377) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7379 = mhlo.shift_left %7375, %7378 : tensor<2097152xui32> loc(#loc731) | |
| %7380 = mhlo.constant dense<17> : tensor<ui32> loc(#loc729) | |
| %7381 = "mhlo.broadcast_in_dim"(%7380) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7382 = mhlo.shift_right_logical %7375, %7381 : tensor<2097152xui32> loc(#loc732) | |
| %7383 = mhlo.or %7379, %7382 : tensor<2097152xui32> loc(#loc733) | |
| %7384 = mhlo.xor %7376, %7383 : tensor<2097152xui32> loc(#loc728) | |
| %7385 = mhlo.add %7376, %7384 : tensor<2097152xui32> loc(#loc730) | |
| %7386 = mhlo.constant dense<26> : tensor<ui32> loc(#loc729) | |
| %7387 = "mhlo.broadcast_in_dim"(%7386) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7388 = mhlo.shift_left %7384, %7387 : tensor<2097152xui32> loc(#loc731) | |
| %7389 = mhlo.constant dense<6> : tensor<ui32> loc(#loc729) | |
| %7390 = "mhlo.broadcast_in_dim"(%7389) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7391 = mhlo.shift_right_logical %7384, %7390 : tensor<2097152xui32> loc(#loc732) | |
| %7392 = mhlo.or %7388, %7391 : tensor<2097152xui32> loc(#loc733) | |
| %7393 = mhlo.xor %7385, %7392 : tensor<2097152xui32> loc(#loc728) | |
| %7394 = mhlo.add %7385, %7393 : tensor<2097152xui32> loc(#loc730) | |
| %7395 = mhlo.constant dense<6> : tensor<ui32> loc(#loc729) | |
| %7396 = "mhlo.broadcast_in_dim"(%7395) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7397 = mhlo.shift_left %7393, %7396 : tensor<2097152xui32> loc(#loc731) | |
| %7398 = mhlo.constant dense<26> : tensor<ui32> loc(#loc729) | |
| %7399 = "mhlo.broadcast_in_dim"(%7398) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7400 = mhlo.shift_right_logical %7393, %7399 : tensor<2097152xui32> loc(#loc732) | |
| %7401 = mhlo.or %7397, %7400 : tensor<2097152xui32> loc(#loc733) | |
| %7402 = mhlo.xor %7394, %7401 : tensor<2097152xui32> loc(#loc728) | |
| %7403 = "mhlo.broadcast_in_dim"(%7269) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7404 = mhlo.add %7394, %7403 : tensor<2097152xui32> loc(#loc730) | |
| %7405 = "mhlo.broadcast_in_dim"(%7271) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7406 = mhlo.add %7402, %7405 : tensor<2097152xui32> loc(#loc730) | |
| %7407 = mhlo.constant dense<3> : tensor<ui32> loc(#loc729) | |
| %7408 = "mhlo.broadcast_in_dim"(%7407) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7409 = mhlo.add %7406, %7408 : tensor<2097152xui32> loc(#loc730) | |
| %7410 = mhlo.add %7404, %7409 : tensor<2097152xui32> loc(#loc730) | |
| %7411 = mhlo.constant dense<17> : tensor<ui32> loc(#loc729) | |
| %7412 = "mhlo.broadcast_in_dim"(%7411) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7413 = mhlo.shift_left %7409, %7412 : tensor<2097152xui32> loc(#loc731) | |
| %7414 = mhlo.constant dense<15> : tensor<ui32> loc(#loc729) | |
| %7415 = "mhlo.broadcast_in_dim"(%7414) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7416 = mhlo.shift_right_logical %7409, %7415 : tensor<2097152xui32> loc(#loc732) | |
| %7417 = mhlo.or %7413, %7416 : tensor<2097152xui32> loc(#loc733) | |
| %7418 = mhlo.xor %7410, %7417 : tensor<2097152xui32> loc(#loc728) | |
| %7419 = mhlo.add %7410, %7418 : tensor<2097152xui32> loc(#loc730) | |
| %7420 = mhlo.constant dense<29> : tensor<ui32> loc(#loc729) | |
| %7421 = "mhlo.broadcast_in_dim"(%7420) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7422 = mhlo.shift_left %7418, %7421 : tensor<2097152xui32> loc(#loc731) | |
| %7423 = mhlo.constant dense<3> : tensor<ui32> loc(#loc729) | |
| %7424 = "mhlo.broadcast_in_dim"(%7423) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7425 = mhlo.shift_right_logical %7418, %7424 : tensor<2097152xui32> loc(#loc732) | |
| %7426 = mhlo.or %7422, %7425 : tensor<2097152xui32> loc(#loc733) | |
| %7427 = mhlo.xor %7419, %7426 : tensor<2097152xui32> loc(#loc728) | |
| %7428 = mhlo.add %7419, %7427 : tensor<2097152xui32> loc(#loc730) | |
| %7429 = mhlo.constant dense<16> : tensor<ui32> loc(#loc729) | |
| %7430 = "mhlo.broadcast_in_dim"(%7429) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7431 = mhlo.shift_left %7427, %7430 : tensor<2097152xui32> loc(#loc731) | |
| %7432 = mhlo.constant dense<16> : tensor<ui32> loc(#loc729) | |
| %7433 = "mhlo.broadcast_in_dim"(%7432) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7434 = mhlo.shift_right_logical %7427, %7433 : tensor<2097152xui32> loc(#loc732) | |
| %7435 = mhlo.or %7431, %7434 : tensor<2097152xui32> loc(#loc733) | |
| %7436 = mhlo.xor %7428, %7435 : tensor<2097152xui32> loc(#loc728) | |
| %7437 = mhlo.add %7428, %7436 : tensor<2097152xui32> loc(#loc730) | |
| %7438 = mhlo.constant dense<24> : tensor<ui32> loc(#loc729) | |
| %7439 = "mhlo.broadcast_in_dim"(%7438) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7440 = mhlo.shift_left %7436, %7439 : tensor<2097152xui32> loc(#loc731) | |
| %7441 = mhlo.constant dense<8> : tensor<ui32> loc(#loc729) | |
| %7442 = "mhlo.broadcast_in_dim"(%7441) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7443 = mhlo.shift_right_logical %7436, %7442 : tensor<2097152xui32> loc(#loc732) | |
| %7444 = mhlo.or %7440, %7443 : tensor<2097152xui32> loc(#loc733) | |
| %7445 = mhlo.xor %7437, %7444 : tensor<2097152xui32> loc(#loc728) | |
| %7446 = "mhlo.broadcast_in_dim"(%7271) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7447 = mhlo.add %7437, %7446 : tensor<2097152xui32> loc(#loc730) | |
| %7448 = "mhlo.broadcast_in_dim"(%7276) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7449 = mhlo.add %7445, %7448 : tensor<2097152xui32> loc(#loc730) | |
| %7450 = mhlo.constant dense<4> : tensor<ui32> loc(#loc729) | |
| %7451 = "mhlo.broadcast_in_dim"(%7450) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7452 = mhlo.add %7449, %7451 : tensor<2097152xui32> loc(#loc730) | |
| %7453 = mhlo.add %7447, %7452 : tensor<2097152xui32> loc(#loc730) | |
| %7454 = mhlo.constant dense<13> : tensor<ui32> loc(#loc729) | |
| %7455 = "mhlo.broadcast_in_dim"(%7454) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7456 = mhlo.shift_left %7452, %7455 : tensor<2097152xui32> loc(#loc731) | |
| %7457 = mhlo.constant dense<19> : tensor<ui32> loc(#loc729) | |
| %7458 = "mhlo.broadcast_in_dim"(%7457) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7459 = mhlo.shift_right_logical %7452, %7458 : tensor<2097152xui32> loc(#loc732) | |
| %7460 = mhlo.or %7456, %7459 : tensor<2097152xui32> loc(#loc733) | |
| %7461 = mhlo.xor %7453, %7460 : tensor<2097152xui32> loc(#loc728) | |
| %7462 = mhlo.add %7453, %7461 : tensor<2097152xui32> loc(#loc730) | |
| %7463 = mhlo.constant dense<15> : tensor<ui32> loc(#loc729) | |
| %7464 = "mhlo.broadcast_in_dim"(%7463) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7465 = mhlo.shift_left %7461, %7464 : tensor<2097152xui32> loc(#loc731) | |
| %7466 = mhlo.constant dense<17> : tensor<ui32> loc(#loc729) | |
| %7467 = "mhlo.broadcast_in_dim"(%7466) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7468 = mhlo.shift_right_logical %7461, %7467 : tensor<2097152xui32> loc(#loc732) | |
| %7469 = mhlo.or %7465, %7468 : tensor<2097152xui32> loc(#loc733) | |
| %7470 = mhlo.xor %7462, %7469 : tensor<2097152xui32> loc(#loc728) | |
| %7471 = mhlo.add %7462, %7470 : tensor<2097152xui32> loc(#loc730) | |
| %7472 = mhlo.constant dense<26> : tensor<ui32> loc(#loc729) | |
| %7473 = "mhlo.broadcast_in_dim"(%7472) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7474 = mhlo.shift_left %7470, %7473 : tensor<2097152xui32> loc(#loc731) | |
| %7475 = mhlo.constant dense<6> : tensor<ui32> loc(#loc729) | |
| %7476 = "mhlo.broadcast_in_dim"(%7475) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7477 = mhlo.shift_right_logical %7470, %7476 : tensor<2097152xui32> loc(#loc732) | |
| %7478 = mhlo.or %7474, %7477 : tensor<2097152xui32> loc(#loc733) | |
| %7479 = mhlo.xor %7471, %7478 : tensor<2097152xui32> loc(#loc728) | |
| %7480 = mhlo.add %7471, %7479 : tensor<2097152xui32> loc(#loc730) | |
| %7481 = mhlo.constant dense<6> : tensor<ui32> loc(#loc729) | |
| %7482 = "mhlo.broadcast_in_dim"(%7481) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc731) | |
| %7483 = mhlo.shift_left %7479, %7482 : tensor<2097152xui32> loc(#loc731) | |
| %7484 = mhlo.constant dense<26> : tensor<ui32> loc(#loc729) | |
| %7485 = "mhlo.broadcast_in_dim"(%7484) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc732) | |
| %7486 = mhlo.shift_right_logical %7479, %7485 : tensor<2097152xui32> loc(#loc732) | |
| %7487 = mhlo.or %7483, %7486 : tensor<2097152xui32> loc(#loc733) | |
| %7488 = mhlo.xor %7480, %7487 : tensor<2097152xui32> loc(#loc728) | |
| %7489 = "mhlo.broadcast_in_dim"(%7276) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7490 = mhlo.add %7480, %7489 : tensor<2097152xui32> loc(#loc730) | |
| %7491 = "mhlo.broadcast_in_dim"(%7269) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7492 = mhlo.add %7488, %7491 : tensor<2097152xui32> loc(#loc730) | |
| %7493 = mhlo.constant dense<5> : tensor<ui32> loc(#loc729) | |
| %7494 = "mhlo.broadcast_in_dim"(%7493) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc730) | |
| %7495 = mhlo.add %7492, %7494 : tensor<2097152xui32> loc(#loc730) | |
| %7496 = "mhlo.concatenate"(%7490, %7495) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc734) | |
| %7497 = "mhlo.reshape"(%7496) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc735) | |
| %7498 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %7499 = "mhlo.broadcast_in_dim"(%7498) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc732) | |
| %7500 = mhlo.shift_right_logical %7497, %7499 : tensor<2048x2048xui32> loc(#loc732) | |
| %7501 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %7502 = "mhlo.broadcast_in_dim"(%7501) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc733) | |
| %7503 = mhlo.or %7500, %7502 : tensor<2048x2048xui32> loc(#loc733) | |
| %7504 = "mhlo.bitcast_convert"(%7503) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc736) | |
| %7505 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %7506 = "mhlo.broadcast_in_dim"(%7505) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc737) | |
| %7507 = mhlo.subtract %7504, %7506 : tensor<2048x2048xf32> loc(#loc737) | |
| %7508 = mhlo.subtract %7266, %7264 : tensor<1x1xf32> loc(#loc737) | |
| %7509 = "mhlo.broadcast_in_dim"(%7508) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc738) | |
| %7510 = mhlo.multiply %7507, %7509 : tensor<2048x2048xf32> loc(#loc738) | |
| %7511 = "mhlo.broadcast_in_dim"(%7264) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc730) | |
| %7512 = mhlo.add %7510, %7511 : tensor<2048x2048xf32> loc(#loc730) | |
| %7513 = "mhlo.broadcast_in_dim"(%7264) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc739) | |
| %7514 = mhlo.maximum %7513, %7512 : tensor<2048x2048xf32> loc(#loc739) | |
| %7515 = func.call @erf_inv_22(%7514) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc740) | |
| %7516 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %7517 = "mhlo.broadcast_in_dim"(%7516) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc738) | |
| %7518 = mhlo.multiply %7515, %7517 : tensor<2048x2048xf32> loc(#loc738) | |
| %7519 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %7520 = "mhlo.broadcast_in_dim"(%7519) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc738) | |
| %7521 = mhlo.multiply %7518, %7520 : tensor<2048x2048xf32> loc(#loc738) | |
| %7522 = mhlo.convert(%7521) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc741) | |
| %7523 = "mhlo.dot_general"(%7025, %7522) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x256x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x256x2048xf16> loc(#loc742) | |
| %7524 = mhlo.convert(%7523) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc743) | |
| %7525 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc744) | |
| %7526 = mhlo.reduce(%7524 init: %7525) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc744) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc744) | |
| } loc(#loc744) | |
| %7527 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %7528 = "mhlo.broadcast_in_dim"(%7527) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc745) | |
| %7529 = mhlo.divide %7526, %7528 : tensor<1x256xf32> loc(#loc745) | |
| %7530 = mhlo.multiply %7524, %7524 : tensor<1x256x2048xf32> loc(#loc746) | |
| %7531 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc747) | |
| %7532 = mhlo.reduce(%7530 init: %7531) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc747) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc747) | |
| } loc(#loc747) | |
| %7533 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %7534 = "mhlo.broadcast_in_dim"(%7533) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc748) | |
| %7535 = mhlo.divide %7532, %7534 : tensor<1x256xf32> loc(#loc748) | |
| %7536 = mhlo.multiply %7529, %7529 : tensor<1x256xf32> loc(#loc746) | |
| %7537 = mhlo.subtract %7535, %7536 : tensor<1x256xf32> loc(#loc749) | |
| %7538 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %7539 = "mhlo.broadcast_in_dim"(%7538) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc750) | |
| %7540 = mhlo.maximum %7539, %7537 : tensor<1x256xf32> loc(#loc750) | |
| %7541 = "mhlo.reshape"(%7529) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc751) | |
| %7542 = "mhlo.reshape"(%7540) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc752) | |
| %7543 = mhlo.convert(%7523) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc753) | |
| %7544 = "mhlo.broadcast_in_dim"(%7541) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc754) | |
| %7545 = mhlo.subtract %7543, %7544 : tensor<1x256x2048xf32> loc(#loc754) | |
| %7546 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc531) | |
| %7547 = "mhlo.broadcast_in_dim"(%7546) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256x1xf32> loc(#loc755) | |
| %7548 = mhlo.add %7542, %7547 : tensor<1x256x1xf32> loc(#loc755) | |
| %7549 = mhlo.rsqrt %7548 : tensor<1x256x1xf32> loc(#loc756) | |
| %7550 = mhlo.constant dense<3816890253> : tensor<ui32> loc(#loc531) | |
| %7551 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %7552 = mhlo.shift_right_logical %7550, %7551 : tensor<ui32> loc(#loc757) | |
| %7553 = "mhlo.reshape"(%7552) : (tensor<ui32>) -> tensor<1xui32> loc(#loc758) | |
| %7554 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %7555 = mhlo.and %7550, %7554 : tensor<ui32> loc(#loc759) | |
| %7556 = "mhlo.reshape"(%7555) : (tensor<ui32>) -> tensor<1xui32> loc(#loc758) | |
| %7557 = "mhlo.concatenate"(%7553, %7556) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc760) | |
| %7558 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc761) | |
| %7559 = "mhlo.reshape"(%7558) : (tensor<1xui32>) -> tensor<ui32> loc(#loc762) | |
| %7560 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc763) | |
| %7561 = "mhlo.reshape"(%7560) : (tensor<1xui32>) -> tensor<ui32> loc(#loc762) | |
| %7562 = "mhlo.slice"(%7557) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc764) | |
| %7563 = "mhlo.slice"(%7557) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc765) | |
| %7564 = mhlo.xor %7559, %7561 : tensor<ui32> loc(#loc766) | |
| %7565 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc767) | |
| %7566 = mhlo.xor %7564, %7565 : tensor<ui32> loc(#loc766) | |
| %7567 = "mhlo.broadcast_in_dim"(%7559) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7568 = mhlo.add %7562, %7567 : tensor<1xui32> loc(#loc768) | |
| %7569 = "mhlo.broadcast_in_dim"(%7561) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7570 = mhlo.add %7563, %7569 : tensor<1xui32> loc(#loc768) | |
| %7571 = mhlo.add %7568, %7570 : tensor<1xui32> loc(#loc768) | |
| %7572 = mhlo.constant dense<13> : tensor<ui32> loc(#loc767) | |
| %7573 = "mhlo.broadcast_in_dim"(%7572) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7574 = mhlo.shift_left %7570, %7573 : tensor<1xui32> loc(#loc769) | |
| %7575 = mhlo.constant dense<19> : tensor<ui32> loc(#loc767) | |
| %7576 = "mhlo.broadcast_in_dim"(%7575) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7577 = mhlo.shift_right_logical %7570, %7576 : tensor<1xui32> loc(#loc757) | |
| %7578 = mhlo.or %7574, %7577 : tensor<1xui32> loc(#loc770) | |
| %7579 = mhlo.xor %7571, %7578 : tensor<1xui32> loc(#loc766) | |
| %7580 = mhlo.add %7571, %7579 : tensor<1xui32> loc(#loc768) | |
| %7581 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7582 = "mhlo.broadcast_in_dim"(%7581) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7583 = mhlo.shift_left %7579, %7582 : tensor<1xui32> loc(#loc769) | |
| %7584 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7585 = "mhlo.broadcast_in_dim"(%7584) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7586 = mhlo.shift_right_logical %7579, %7585 : tensor<1xui32> loc(#loc757) | |
| %7587 = mhlo.or %7583, %7586 : tensor<1xui32> loc(#loc770) | |
| %7588 = mhlo.xor %7580, %7587 : tensor<1xui32> loc(#loc766) | |
| %7589 = mhlo.add %7580, %7588 : tensor<1xui32> loc(#loc768) | |
| %7590 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7591 = "mhlo.broadcast_in_dim"(%7590) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7592 = mhlo.shift_left %7588, %7591 : tensor<1xui32> loc(#loc769) | |
| %7593 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7594 = "mhlo.broadcast_in_dim"(%7593) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7595 = mhlo.shift_right_logical %7588, %7594 : tensor<1xui32> loc(#loc757) | |
| %7596 = mhlo.or %7592, %7595 : tensor<1xui32> loc(#loc770) | |
| %7597 = mhlo.xor %7589, %7596 : tensor<1xui32> loc(#loc766) | |
| %7598 = mhlo.add %7589, %7597 : tensor<1xui32> loc(#loc768) | |
| %7599 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7600 = "mhlo.broadcast_in_dim"(%7599) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7601 = mhlo.shift_left %7597, %7600 : tensor<1xui32> loc(#loc769) | |
| %7602 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7603 = "mhlo.broadcast_in_dim"(%7602) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7604 = mhlo.shift_right_logical %7597, %7603 : tensor<1xui32> loc(#loc757) | |
| %7605 = mhlo.or %7601, %7604 : tensor<1xui32> loc(#loc770) | |
| %7606 = mhlo.xor %7598, %7605 : tensor<1xui32> loc(#loc766) | |
| %7607 = "mhlo.broadcast_in_dim"(%7561) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7608 = mhlo.add %7598, %7607 : tensor<1xui32> loc(#loc768) | |
| %7609 = "mhlo.broadcast_in_dim"(%7566) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7610 = mhlo.add %7606, %7609 : tensor<1xui32> loc(#loc768) | |
| %7611 = mhlo.constant dense<1> : tensor<ui32> loc(#loc767) | |
| %7612 = "mhlo.broadcast_in_dim"(%7611) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7613 = mhlo.add %7610, %7612 : tensor<1xui32> loc(#loc768) | |
| %7614 = mhlo.add %7608, %7613 : tensor<1xui32> loc(#loc768) | |
| %7615 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7616 = "mhlo.broadcast_in_dim"(%7615) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7617 = mhlo.shift_left %7613, %7616 : tensor<1xui32> loc(#loc769) | |
| %7618 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7619 = "mhlo.broadcast_in_dim"(%7618) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7620 = mhlo.shift_right_logical %7613, %7619 : tensor<1xui32> loc(#loc757) | |
| %7621 = mhlo.or %7617, %7620 : tensor<1xui32> loc(#loc770) | |
| %7622 = mhlo.xor %7614, %7621 : tensor<1xui32> loc(#loc766) | |
| %7623 = mhlo.add %7614, %7622 : tensor<1xui32> loc(#loc768) | |
| %7624 = mhlo.constant dense<29> : tensor<ui32> loc(#loc767) | |
| %7625 = "mhlo.broadcast_in_dim"(%7624) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7626 = mhlo.shift_left %7622, %7625 : tensor<1xui32> loc(#loc769) | |
| %7627 = mhlo.constant dense<3> : tensor<ui32> loc(#loc767) | |
| %7628 = "mhlo.broadcast_in_dim"(%7627) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7629 = mhlo.shift_right_logical %7622, %7628 : tensor<1xui32> loc(#loc757) | |
| %7630 = mhlo.or %7626, %7629 : tensor<1xui32> loc(#loc770) | |
| %7631 = mhlo.xor %7623, %7630 : tensor<1xui32> loc(#loc766) | |
| %7632 = mhlo.add %7623, %7631 : tensor<1xui32> loc(#loc768) | |
| %7633 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7634 = "mhlo.broadcast_in_dim"(%7633) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7635 = mhlo.shift_left %7631, %7634 : tensor<1xui32> loc(#loc769) | |
| %7636 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7637 = "mhlo.broadcast_in_dim"(%7636) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7638 = mhlo.shift_right_logical %7631, %7637 : tensor<1xui32> loc(#loc757) | |
| %7639 = mhlo.or %7635, %7638 : tensor<1xui32> loc(#loc770) | |
| %7640 = mhlo.xor %7632, %7639 : tensor<1xui32> loc(#loc766) | |
| %7641 = mhlo.add %7632, %7640 : tensor<1xui32> loc(#loc768) | |
| %7642 = mhlo.constant dense<24> : tensor<ui32> loc(#loc767) | |
| %7643 = "mhlo.broadcast_in_dim"(%7642) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7644 = mhlo.shift_left %7640, %7643 : tensor<1xui32> loc(#loc769) | |
| %7645 = mhlo.constant dense<8> : tensor<ui32> loc(#loc767) | |
| %7646 = "mhlo.broadcast_in_dim"(%7645) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7647 = mhlo.shift_right_logical %7640, %7646 : tensor<1xui32> loc(#loc757) | |
| %7648 = mhlo.or %7644, %7647 : tensor<1xui32> loc(#loc770) | |
| %7649 = mhlo.xor %7641, %7648 : tensor<1xui32> loc(#loc766) | |
| %7650 = "mhlo.broadcast_in_dim"(%7566) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7651 = mhlo.add %7641, %7650 : tensor<1xui32> loc(#loc768) | |
| %7652 = "mhlo.broadcast_in_dim"(%7559) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7653 = mhlo.add %7649, %7652 : tensor<1xui32> loc(#loc768) | |
| %7654 = mhlo.constant dense<2> : tensor<ui32> loc(#loc767) | |
| %7655 = "mhlo.broadcast_in_dim"(%7654) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7656 = mhlo.add %7653, %7655 : tensor<1xui32> loc(#loc768) | |
| %7657 = mhlo.add %7651, %7656 : tensor<1xui32> loc(#loc768) | |
| %7658 = mhlo.constant dense<13> : tensor<ui32> loc(#loc767) | |
| %7659 = "mhlo.broadcast_in_dim"(%7658) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7660 = mhlo.shift_left %7656, %7659 : tensor<1xui32> loc(#loc769) | |
| %7661 = mhlo.constant dense<19> : tensor<ui32> loc(#loc767) | |
| %7662 = "mhlo.broadcast_in_dim"(%7661) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7663 = mhlo.shift_right_logical %7656, %7662 : tensor<1xui32> loc(#loc757) | |
| %7664 = mhlo.or %7660, %7663 : tensor<1xui32> loc(#loc770) | |
| %7665 = mhlo.xor %7657, %7664 : tensor<1xui32> loc(#loc766) | |
| %7666 = mhlo.add %7657, %7665 : tensor<1xui32> loc(#loc768) | |
| %7667 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7668 = "mhlo.broadcast_in_dim"(%7667) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7669 = mhlo.shift_left %7665, %7668 : tensor<1xui32> loc(#loc769) | |
| %7670 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7671 = "mhlo.broadcast_in_dim"(%7670) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7672 = mhlo.shift_right_logical %7665, %7671 : tensor<1xui32> loc(#loc757) | |
| %7673 = mhlo.or %7669, %7672 : tensor<1xui32> loc(#loc770) | |
| %7674 = mhlo.xor %7666, %7673 : tensor<1xui32> loc(#loc766) | |
| %7675 = mhlo.add %7666, %7674 : tensor<1xui32> loc(#loc768) | |
| %7676 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7677 = "mhlo.broadcast_in_dim"(%7676) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7678 = mhlo.shift_left %7674, %7677 : tensor<1xui32> loc(#loc769) | |
| %7679 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7680 = "mhlo.broadcast_in_dim"(%7679) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7681 = mhlo.shift_right_logical %7674, %7680 : tensor<1xui32> loc(#loc757) | |
| %7682 = mhlo.or %7678, %7681 : tensor<1xui32> loc(#loc770) | |
| %7683 = mhlo.xor %7675, %7682 : tensor<1xui32> loc(#loc766) | |
| %7684 = mhlo.add %7675, %7683 : tensor<1xui32> loc(#loc768) | |
| %7685 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7686 = "mhlo.broadcast_in_dim"(%7685) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7687 = mhlo.shift_left %7683, %7686 : tensor<1xui32> loc(#loc769) | |
| %7688 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7689 = "mhlo.broadcast_in_dim"(%7688) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7690 = mhlo.shift_right_logical %7683, %7689 : tensor<1xui32> loc(#loc757) | |
| %7691 = mhlo.or %7687, %7690 : tensor<1xui32> loc(#loc770) | |
| %7692 = mhlo.xor %7684, %7691 : tensor<1xui32> loc(#loc766) | |
| %7693 = "mhlo.broadcast_in_dim"(%7559) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7694 = mhlo.add %7684, %7693 : tensor<1xui32> loc(#loc768) | |
| %7695 = "mhlo.broadcast_in_dim"(%7561) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7696 = mhlo.add %7692, %7695 : tensor<1xui32> loc(#loc768) | |
| %7697 = mhlo.constant dense<3> : tensor<ui32> loc(#loc767) | |
| %7698 = "mhlo.broadcast_in_dim"(%7697) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7699 = mhlo.add %7696, %7698 : tensor<1xui32> loc(#loc768) | |
| %7700 = mhlo.add %7694, %7699 : tensor<1xui32> loc(#loc768) | |
| %7701 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7702 = "mhlo.broadcast_in_dim"(%7701) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7703 = mhlo.shift_left %7699, %7702 : tensor<1xui32> loc(#loc769) | |
| %7704 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7705 = "mhlo.broadcast_in_dim"(%7704) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7706 = mhlo.shift_right_logical %7699, %7705 : tensor<1xui32> loc(#loc757) | |
| %7707 = mhlo.or %7703, %7706 : tensor<1xui32> loc(#loc770) | |
| %7708 = mhlo.xor %7700, %7707 : tensor<1xui32> loc(#loc766) | |
| %7709 = mhlo.add %7700, %7708 : tensor<1xui32> loc(#loc768) | |
| %7710 = mhlo.constant dense<29> : tensor<ui32> loc(#loc767) | |
| %7711 = "mhlo.broadcast_in_dim"(%7710) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7712 = mhlo.shift_left %7708, %7711 : tensor<1xui32> loc(#loc769) | |
| %7713 = mhlo.constant dense<3> : tensor<ui32> loc(#loc767) | |
| %7714 = "mhlo.broadcast_in_dim"(%7713) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7715 = mhlo.shift_right_logical %7708, %7714 : tensor<1xui32> loc(#loc757) | |
| %7716 = mhlo.or %7712, %7715 : tensor<1xui32> loc(#loc770) | |
| %7717 = mhlo.xor %7709, %7716 : tensor<1xui32> loc(#loc766) | |
| %7718 = mhlo.add %7709, %7717 : tensor<1xui32> loc(#loc768) | |
| %7719 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7720 = "mhlo.broadcast_in_dim"(%7719) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7721 = mhlo.shift_left %7717, %7720 : tensor<1xui32> loc(#loc769) | |
| %7722 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7723 = "mhlo.broadcast_in_dim"(%7722) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7724 = mhlo.shift_right_logical %7717, %7723 : tensor<1xui32> loc(#loc757) | |
| %7725 = mhlo.or %7721, %7724 : tensor<1xui32> loc(#loc770) | |
| %7726 = mhlo.xor %7718, %7725 : tensor<1xui32> loc(#loc766) | |
| %7727 = mhlo.add %7718, %7726 : tensor<1xui32> loc(#loc768) | |
| %7728 = mhlo.constant dense<24> : tensor<ui32> loc(#loc767) | |
| %7729 = "mhlo.broadcast_in_dim"(%7728) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7730 = mhlo.shift_left %7726, %7729 : tensor<1xui32> loc(#loc769) | |
| %7731 = mhlo.constant dense<8> : tensor<ui32> loc(#loc767) | |
| %7732 = "mhlo.broadcast_in_dim"(%7731) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7733 = mhlo.shift_right_logical %7726, %7732 : tensor<1xui32> loc(#loc757) | |
| %7734 = mhlo.or %7730, %7733 : tensor<1xui32> loc(#loc770) | |
| %7735 = mhlo.xor %7727, %7734 : tensor<1xui32> loc(#loc766) | |
| %7736 = "mhlo.broadcast_in_dim"(%7561) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7737 = mhlo.add %7727, %7736 : tensor<1xui32> loc(#loc768) | |
| %7738 = "mhlo.broadcast_in_dim"(%7566) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7739 = mhlo.add %7735, %7738 : tensor<1xui32> loc(#loc768) | |
| %7740 = mhlo.constant dense<4> : tensor<ui32> loc(#loc767) | |
| %7741 = "mhlo.broadcast_in_dim"(%7740) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7742 = mhlo.add %7739, %7741 : tensor<1xui32> loc(#loc768) | |
| %7743 = mhlo.add %7737, %7742 : tensor<1xui32> loc(#loc768) | |
| %7744 = mhlo.constant dense<13> : tensor<ui32> loc(#loc767) | |
| %7745 = "mhlo.broadcast_in_dim"(%7744) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7746 = mhlo.shift_left %7742, %7745 : tensor<1xui32> loc(#loc769) | |
| %7747 = mhlo.constant dense<19> : tensor<ui32> loc(#loc767) | |
| %7748 = "mhlo.broadcast_in_dim"(%7747) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7749 = mhlo.shift_right_logical %7742, %7748 : tensor<1xui32> loc(#loc757) | |
| %7750 = mhlo.or %7746, %7749 : tensor<1xui32> loc(#loc770) | |
| %7751 = mhlo.xor %7743, %7750 : tensor<1xui32> loc(#loc766) | |
| %7752 = mhlo.add %7743, %7751 : tensor<1xui32> loc(#loc768) | |
| %7753 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7754 = "mhlo.broadcast_in_dim"(%7753) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7755 = mhlo.shift_left %7751, %7754 : tensor<1xui32> loc(#loc769) | |
| %7756 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7757 = "mhlo.broadcast_in_dim"(%7756) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7758 = mhlo.shift_right_logical %7751, %7757 : tensor<1xui32> loc(#loc757) | |
| %7759 = mhlo.or %7755, %7758 : tensor<1xui32> loc(#loc770) | |
| %7760 = mhlo.xor %7752, %7759 : tensor<1xui32> loc(#loc766) | |
| %7761 = mhlo.add %7752, %7760 : tensor<1xui32> loc(#loc768) | |
| %7762 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7763 = "mhlo.broadcast_in_dim"(%7762) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7764 = mhlo.shift_left %7760, %7763 : tensor<1xui32> loc(#loc769) | |
| %7765 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7766 = "mhlo.broadcast_in_dim"(%7765) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7767 = mhlo.shift_right_logical %7760, %7766 : tensor<1xui32> loc(#loc757) | |
| %7768 = mhlo.or %7764, %7767 : tensor<1xui32> loc(#loc770) | |
| %7769 = mhlo.xor %7761, %7768 : tensor<1xui32> loc(#loc766) | |
| %7770 = mhlo.add %7761, %7769 : tensor<1xui32> loc(#loc768) | |
| %7771 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7772 = "mhlo.broadcast_in_dim"(%7771) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7773 = mhlo.shift_left %7769, %7772 : tensor<1xui32> loc(#loc769) | |
| %7774 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7775 = "mhlo.broadcast_in_dim"(%7774) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7776 = mhlo.shift_right_logical %7769, %7775 : tensor<1xui32> loc(#loc757) | |
| %7777 = mhlo.or %7773, %7776 : tensor<1xui32> loc(#loc770) | |
| %7778 = mhlo.xor %7770, %7777 : tensor<1xui32> loc(#loc766) | |
| %7779 = "mhlo.broadcast_in_dim"(%7566) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7780 = mhlo.add %7770, %7779 : tensor<1xui32> loc(#loc768) | |
| %7781 = "mhlo.broadcast_in_dim"(%7559) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7782 = mhlo.add %7778, %7781 : tensor<1xui32> loc(#loc768) | |
| %7783 = mhlo.constant dense<5> : tensor<ui32> loc(#loc767) | |
| %7784 = "mhlo.broadcast_in_dim"(%7783) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7785 = mhlo.add %7782, %7784 : tensor<1xui32> loc(#loc768) | |
| %7786 = "mhlo.concatenate"(%7780, %7785) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc760) | |
| %7787 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %7788 = "mhlo.broadcast_in_dim"(%7787) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc771) | |
| %7789 = "mhlo.reshape"(%7788) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc772) | |
| %7790 = "mhlo.broadcast_in_dim"(%7549) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc773) | |
| %7791 = "mhlo.broadcast_in_dim"(%7789) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc773) | |
| %7792 = mhlo.multiply %7790, %7791 : tensor<1x256x2048xf32> loc(#loc773) | |
| %7793 = mhlo.multiply %7545, %7792 : tensor<1x256x2048xf32> loc(#loc774) | |
| %7794 = mhlo.constant dense<278488581> : tensor<ui32> loc(#loc531) | |
| %7795 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %7796 = mhlo.shift_right_logical %7794, %7795 : tensor<ui32> loc(#loc757) | |
| %7797 = "mhlo.reshape"(%7796) : (tensor<ui32>) -> tensor<1xui32> loc(#loc758) | |
| %7798 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %7799 = mhlo.and %7794, %7798 : tensor<ui32> loc(#loc759) | |
| %7800 = "mhlo.reshape"(%7799) : (tensor<ui32>) -> tensor<1xui32> loc(#loc758) | |
| %7801 = "mhlo.concatenate"(%7797, %7800) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc760) | |
| %7802 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc761) | |
| %7803 = "mhlo.reshape"(%7802) : (tensor<1xui32>) -> tensor<ui32> loc(#loc762) | |
| %7804 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc763) | |
| %7805 = "mhlo.reshape"(%7804) : (tensor<1xui32>) -> tensor<ui32> loc(#loc762) | |
| %7806 = "mhlo.slice"(%7801) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc764) | |
| %7807 = "mhlo.slice"(%7801) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc765) | |
| %7808 = mhlo.xor %7803, %7805 : tensor<ui32> loc(#loc766) | |
| %7809 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc767) | |
| %7810 = mhlo.xor %7808, %7809 : tensor<ui32> loc(#loc766) | |
| %7811 = "mhlo.broadcast_in_dim"(%7803) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7812 = mhlo.add %7806, %7811 : tensor<1xui32> loc(#loc768) | |
| %7813 = "mhlo.broadcast_in_dim"(%7805) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7814 = mhlo.add %7807, %7813 : tensor<1xui32> loc(#loc768) | |
| %7815 = mhlo.add %7812, %7814 : tensor<1xui32> loc(#loc768) | |
| %7816 = mhlo.constant dense<13> : tensor<ui32> loc(#loc767) | |
| %7817 = "mhlo.broadcast_in_dim"(%7816) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7818 = mhlo.shift_left %7814, %7817 : tensor<1xui32> loc(#loc769) | |
| %7819 = mhlo.constant dense<19> : tensor<ui32> loc(#loc767) | |
| %7820 = "mhlo.broadcast_in_dim"(%7819) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7821 = mhlo.shift_right_logical %7814, %7820 : tensor<1xui32> loc(#loc757) | |
| %7822 = mhlo.or %7818, %7821 : tensor<1xui32> loc(#loc770) | |
| %7823 = mhlo.xor %7815, %7822 : tensor<1xui32> loc(#loc766) | |
| %7824 = mhlo.add %7815, %7823 : tensor<1xui32> loc(#loc768) | |
| %7825 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7826 = "mhlo.broadcast_in_dim"(%7825) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7827 = mhlo.shift_left %7823, %7826 : tensor<1xui32> loc(#loc769) | |
| %7828 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7829 = "mhlo.broadcast_in_dim"(%7828) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7830 = mhlo.shift_right_logical %7823, %7829 : tensor<1xui32> loc(#loc757) | |
| %7831 = mhlo.or %7827, %7830 : tensor<1xui32> loc(#loc770) | |
| %7832 = mhlo.xor %7824, %7831 : tensor<1xui32> loc(#loc766) | |
| %7833 = mhlo.add %7824, %7832 : tensor<1xui32> loc(#loc768) | |
| %7834 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7835 = "mhlo.broadcast_in_dim"(%7834) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7836 = mhlo.shift_left %7832, %7835 : tensor<1xui32> loc(#loc769) | |
| %7837 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7838 = "mhlo.broadcast_in_dim"(%7837) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7839 = mhlo.shift_right_logical %7832, %7838 : tensor<1xui32> loc(#loc757) | |
| %7840 = mhlo.or %7836, %7839 : tensor<1xui32> loc(#loc770) | |
| %7841 = mhlo.xor %7833, %7840 : tensor<1xui32> loc(#loc766) | |
| %7842 = mhlo.add %7833, %7841 : tensor<1xui32> loc(#loc768) | |
| %7843 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7844 = "mhlo.broadcast_in_dim"(%7843) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7845 = mhlo.shift_left %7841, %7844 : tensor<1xui32> loc(#loc769) | |
| %7846 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7847 = "mhlo.broadcast_in_dim"(%7846) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7848 = mhlo.shift_right_logical %7841, %7847 : tensor<1xui32> loc(#loc757) | |
| %7849 = mhlo.or %7845, %7848 : tensor<1xui32> loc(#loc770) | |
| %7850 = mhlo.xor %7842, %7849 : tensor<1xui32> loc(#loc766) | |
| %7851 = "mhlo.broadcast_in_dim"(%7805) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7852 = mhlo.add %7842, %7851 : tensor<1xui32> loc(#loc768) | |
| %7853 = "mhlo.broadcast_in_dim"(%7810) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7854 = mhlo.add %7850, %7853 : tensor<1xui32> loc(#loc768) | |
| %7855 = mhlo.constant dense<1> : tensor<ui32> loc(#loc767) | |
| %7856 = "mhlo.broadcast_in_dim"(%7855) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7857 = mhlo.add %7854, %7856 : tensor<1xui32> loc(#loc768) | |
| %7858 = mhlo.add %7852, %7857 : tensor<1xui32> loc(#loc768) | |
| %7859 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7860 = "mhlo.broadcast_in_dim"(%7859) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7861 = mhlo.shift_left %7857, %7860 : tensor<1xui32> loc(#loc769) | |
| %7862 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7863 = "mhlo.broadcast_in_dim"(%7862) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7864 = mhlo.shift_right_logical %7857, %7863 : tensor<1xui32> loc(#loc757) | |
| %7865 = mhlo.or %7861, %7864 : tensor<1xui32> loc(#loc770) | |
| %7866 = mhlo.xor %7858, %7865 : tensor<1xui32> loc(#loc766) | |
| %7867 = mhlo.add %7858, %7866 : tensor<1xui32> loc(#loc768) | |
| %7868 = mhlo.constant dense<29> : tensor<ui32> loc(#loc767) | |
| %7869 = "mhlo.broadcast_in_dim"(%7868) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7870 = mhlo.shift_left %7866, %7869 : tensor<1xui32> loc(#loc769) | |
| %7871 = mhlo.constant dense<3> : tensor<ui32> loc(#loc767) | |
| %7872 = "mhlo.broadcast_in_dim"(%7871) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7873 = mhlo.shift_right_logical %7866, %7872 : tensor<1xui32> loc(#loc757) | |
| %7874 = mhlo.or %7870, %7873 : tensor<1xui32> loc(#loc770) | |
| %7875 = mhlo.xor %7867, %7874 : tensor<1xui32> loc(#loc766) | |
| %7876 = mhlo.add %7867, %7875 : tensor<1xui32> loc(#loc768) | |
| %7877 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7878 = "mhlo.broadcast_in_dim"(%7877) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7879 = mhlo.shift_left %7875, %7878 : tensor<1xui32> loc(#loc769) | |
| %7880 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7881 = "mhlo.broadcast_in_dim"(%7880) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7882 = mhlo.shift_right_logical %7875, %7881 : tensor<1xui32> loc(#loc757) | |
| %7883 = mhlo.or %7879, %7882 : tensor<1xui32> loc(#loc770) | |
| %7884 = mhlo.xor %7876, %7883 : tensor<1xui32> loc(#loc766) | |
| %7885 = mhlo.add %7876, %7884 : tensor<1xui32> loc(#loc768) | |
| %7886 = mhlo.constant dense<24> : tensor<ui32> loc(#loc767) | |
| %7887 = "mhlo.broadcast_in_dim"(%7886) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7888 = mhlo.shift_left %7884, %7887 : tensor<1xui32> loc(#loc769) | |
| %7889 = mhlo.constant dense<8> : tensor<ui32> loc(#loc767) | |
| %7890 = "mhlo.broadcast_in_dim"(%7889) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7891 = mhlo.shift_right_logical %7884, %7890 : tensor<1xui32> loc(#loc757) | |
| %7892 = mhlo.or %7888, %7891 : tensor<1xui32> loc(#loc770) | |
| %7893 = mhlo.xor %7885, %7892 : tensor<1xui32> loc(#loc766) | |
| %7894 = "mhlo.broadcast_in_dim"(%7810) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7895 = mhlo.add %7885, %7894 : tensor<1xui32> loc(#loc768) | |
| %7896 = "mhlo.broadcast_in_dim"(%7803) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7897 = mhlo.add %7893, %7896 : tensor<1xui32> loc(#loc768) | |
| %7898 = mhlo.constant dense<2> : tensor<ui32> loc(#loc767) | |
| %7899 = "mhlo.broadcast_in_dim"(%7898) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7900 = mhlo.add %7897, %7899 : tensor<1xui32> loc(#loc768) | |
| %7901 = mhlo.add %7895, %7900 : tensor<1xui32> loc(#loc768) | |
| %7902 = mhlo.constant dense<13> : tensor<ui32> loc(#loc767) | |
| %7903 = "mhlo.broadcast_in_dim"(%7902) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7904 = mhlo.shift_left %7900, %7903 : tensor<1xui32> loc(#loc769) | |
| %7905 = mhlo.constant dense<19> : tensor<ui32> loc(#loc767) | |
| %7906 = "mhlo.broadcast_in_dim"(%7905) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7907 = mhlo.shift_right_logical %7900, %7906 : tensor<1xui32> loc(#loc757) | |
| %7908 = mhlo.or %7904, %7907 : tensor<1xui32> loc(#loc770) | |
| %7909 = mhlo.xor %7901, %7908 : tensor<1xui32> loc(#loc766) | |
| %7910 = mhlo.add %7901, %7909 : tensor<1xui32> loc(#loc768) | |
| %7911 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7912 = "mhlo.broadcast_in_dim"(%7911) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7913 = mhlo.shift_left %7909, %7912 : tensor<1xui32> loc(#loc769) | |
| %7914 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7915 = "mhlo.broadcast_in_dim"(%7914) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7916 = mhlo.shift_right_logical %7909, %7915 : tensor<1xui32> loc(#loc757) | |
| %7917 = mhlo.or %7913, %7916 : tensor<1xui32> loc(#loc770) | |
| %7918 = mhlo.xor %7910, %7917 : tensor<1xui32> loc(#loc766) | |
| %7919 = mhlo.add %7910, %7918 : tensor<1xui32> loc(#loc768) | |
| %7920 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7921 = "mhlo.broadcast_in_dim"(%7920) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7922 = mhlo.shift_left %7918, %7921 : tensor<1xui32> loc(#loc769) | |
| %7923 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7924 = "mhlo.broadcast_in_dim"(%7923) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7925 = mhlo.shift_right_logical %7918, %7924 : tensor<1xui32> loc(#loc757) | |
| %7926 = mhlo.or %7922, %7925 : tensor<1xui32> loc(#loc770) | |
| %7927 = mhlo.xor %7919, %7926 : tensor<1xui32> loc(#loc766) | |
| %7928 = mhlo.add %7919, %7927 : tensor<1xui32> loc(#loc768) | |
| %7929 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %7930 = "mhlo.broadcast_in_dim"(%7929) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7931 = mhlo.shift_left %7927, %7930 : tensor<1xui32> loc(#loc769) | |
| %7932 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %7933 = "mhlo.broadcast_in_dim"(%7932) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7934 = mhlo.shift_right_logical %7927, %7933 : tensor<1xui32> loc(#loc757) | |
| %7935 = mhlo.or %7931, %7934 : tensor<1xui32> loc(#loc770) | |
| %7936 = mhlo.xor %7928, %7935 : tensor<1xui32> loc(#loc766) | |
| %7937 = "mhlo.broadcast_in_dim"(%7803) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7938 = mhlo.add %7928, %7937 : tensor<1xui32> loc(#loc768) | |
| %7939 = "mhlo.broadcast_in_dim"(%7805) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7940 = mhlo.add %7936, %7939 : tensor<1xui32> loc(#loc768) | |
| %7941 = mhlo.constant dense<3> : tensor<ui32> loc(#loc767) | |
| %7942 = "mhlo.broadcast_in_dim"(%7941) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7943 = mhlo.add %7940, %7942 : tensor<1xui32> loc(#loc768) | |
| %7944 = mhlo.add %7938, %7943 : tensor<1xui32> loc(#loc768) | |
| %7945 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %7946 = "mhlo.broadcast_in_dim"(%7945) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7947 = mhlo.shift_left %7943, %7946 : tensor<1xui32> loc(#loc769) | |
| %7948 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7949 = "mhlo.broadcast_in_dim"(%7948) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7950 = mhlo.shift_right_logical %7943, %7949 : tensor<1xui32> loc(#loc757) | |
| %7951 = mhlo.or %7947, %7950 : tensor<1xui32> loc(#loc770) | |
| %7952 = mhlo.xor %7944, %7951 : tensor<1xui32> loc(#loc766) | |
| %7953 = mhlo.add %7944, %7952 : tensor<1xui32> loc(#loc768) | |
| %7954 = mhlo.constant dense<29> : tensor<ui32> loc(#loc767) | |
| %7955 = "mhlo.broadcast_in_dim"(%7954) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7956 = mhlo.shift_left %7952, %7955 : tensor<1xui32> loc(#loc769) | |
| %7957 = mhlo.constant dense<3> : tensor<ui32> loc(#loc767) | |
| %7958 = "mhlo.broadcast_in_dim"(%7957) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7959 = mhlo.shift_right_logical %7952, %7958 : tensor<1xui32> loc(#loc757) | |
| %7960 = mhlo.or %7956, %7959 : tensor<1xui32> loc(#loc770) | |
| %7961 = mhlo.xor %7953, %7960 : tensor<1xui32> loc(#loc766) | |
| %7962 = mhlo.add %7953, %7961 : tensor<1xui32> loc(#loc768) | |
| %7963 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7964 = "mhlo.broadcast_in_dim"(%7963) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7965 = mhlo.shift_left %7961, %7964 : tensor<1xui32> loc(#loc769) | |
| %7966 = mhlo.constant dense<16> : tensor<ui32> loc(#loc767) | |
| %7967 = "mhlo.broadcast_in_dim"(%7966) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7968 = mhlo.shift_right_logical %7961, %7967 : tensor<1xui32> loc(#loc757) | |
| %7969 = mhlo.or %7965, %7968 : tensor<1xui32> loc(#loc770) | |
| %7970 = mhlo.xor %7962, %7969 : tensor<1xui32> loc(#loc766) | |
| %7971 = mhlo.add %7962, %7970 : tensor<1xui32> loc(#loc768) | |
| %7972 = mhlo.constant dense<24> : tensor<ui32> loc(#loc767) | |
| %7973 = "mhlo.broadcast_in_dim"(%7972) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7974 = mhlo.shift_left %7970, %7973 : tensor<1xui32> loc(#loc769) | |
| %7975 = mhlo.constant dense<8> : tensor<ui32> loc(#loc767) | |
| %7976 = "mhlo.broadcast_in_dim"(%7975) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7977 = mhlo.shift_right_logical %7970, %7976 : tensor<1xui32> loc(#loc757) | |
| %7978 = mhlo.or %7974, %7977 : tensor<1xui32> loc(#loc770) | |
| %7979 = mhlo.xor %7971, %7978 : tensor<1xui32> loc(#loc766) | |
| %7980 = "mhlo.broadcast_in_dim"(%7805) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7981 = mhlo.add %7971, %7980 : tensor<1xui32> loc(#loc768) | |
| %7982 = "mhlo.broadcast_in_dim"(%7810) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7983 = mhlo.add %7979, %7982 : tensor<1xui32> loc(#loc768) | |
| %7984 = mhlo.constant dense<4> : tensor<ui32> loc(#loc767) | |
| %7985 = "mhlo.broadcast_in_dim"(%7984) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %7986 = mhlo.add %7983, %7985 : tensor<1xui32> loc(#loc768) | |
| %7987 = mhlo.add %7981, %7986 : tensor<1xui32> loc(#loc768) | |
| %7988 = mhlo.constant dense<13> : tensor<ui32> loc(#loc767) | |
| %7989 = "mhlo.broadcast_in_dim"(%7988) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7990 = mhlo.shift_left %7986, %7989 : tensor<1xui32> loc(#loc769) | |
| %7991 = mhlo.constant dense<19> : tensor<ui32> loc(#loc767) | |
| %7992 = "mhlo.broadcast_in_dim"(%7991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %7993 = mhlo.shift_right_logical %7986, %7992 : tensor<1xui32> loc(#loc757) | |
| %7994 = mhlo.or %7990, %7993 : tensor<1xui32> loc(#loc770) | |
| %7995 = mhlo.xor %7987, %7994 : tensor<1xui32> loc(#loc766) | |
| %7996 = mhlo.add %7987, %7995 : tensor<1xui32> loc(#loc768) | |
| %7997 = mhlo.constant dense<15> : tensor<ui32> loc(#loc767) | |
| %7998 = "mhlo.broadcast_in_dim"(%7997) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %7999 = mhlo.shift_left %7995, %7998 : tensor<1xui32> loc(#loc769) | |
| %8000 = mhlo.constant dense<17> : tensor<ui32> loc(#loc767) | |
| %8001 = "mhlo.broadcast_in_dim"(%8000) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %8002 = mhlo.shift_right_logical %7995, %8001 : tensor<1xui32> loc(#loc757) | |
| %8003 = mhlo.or %7999, %8002 : tensor<1xui32> loc(#loc770) | |
| %8004 = mhlo.xor %7996, %8003 : tensor<1xui32> loc(#loc766) | |
| %8005 = mhlo.add %7996, %8004 : tensor<1xui32> loc(#loc768) | |
| %8006 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %8007 = "mhlo.broadcast_in_dim"(%8006) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %8008 = mhlo.shift_left %8004, %8007 : tensor<1xui32> loc(#loc769) | |
| %8009 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %8010 = "mhlo.broadcast_in_dim"(%8009) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %8011 = mhlo.shift_right_logical %8004, %8010 : tensor<1xui32> loc(#loc757) | |
| %8012 = mhlo.or %8008, %8011 : tensor<1xui32> loc(#loc770) | |
| %8013 = mhlo.xor %8005, %8012 : tensor<1xui32> loc(#loc766) | |
| %8014 = mhlo.add %8005, %8013 : tensor<1xui32> loc(#loc768) | |
| %8015 = mhlo.constant dense<6> : tensor<ui32> loc(#loc767) | |
| %8016 = "mhlo.broadcast_in_dim"(%8015) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc769) | |
| %8017 = mhlo.shift_left %8013, %8016 : tensor<1xui32> loc(#loc769) | |
| %8018 = mhlo.constant dense<26> : tensor<ui32> loc(#loc767) | |
| %8019 = "mhlo.broadcast_in_dim"(%8018) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc757) | |
| %8020 = mhlo.shift_right_logical %8013, %8019 : tensor<1xui32> loc(#loc757) | |
| %8021 = mhlo.or %8017, %8020 : tensor<1xui32> loc(#loc770) | |
| %8022 = mhlo.xor %8014, %8021 : tensor<1xui32> loc(#loc766) | |
| %8023 = "mhlo.broadcast_in_dim"(%7810) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %8024 = mhlo.add %8014, %8023 : tensor<1xui32> loc(#loc768) | |
| %8025 = "mhlo.broadcast_in_dim"(%7803) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %8026 = mhlo.add %8022, %8025 : tensor<1xui32> loc(#loc768) | |
| %8027 = mhlo.constant dense<5> : tensor<ui32> loc(#loc767) | |
| %8028 = "mhlo.broadcast_in_dim"(%8027) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc768) | |
| %8029 = mhlo.add %8026, %8028 : tensor<1xui32> loc(#loc768) | |
| %8030 = "mhlo.concatenate"(%8024, %8029) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc760) | |
| %8031 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %8032 = "mhlo.broadcast_in_dim"(%8031) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc771) | |
| %8033 = "mhlo.reshape"(%8032) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc775) | |
| %8034 = "mhlo.broadcast_in_dim"(%8033) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc776) | |
| %8035 = mhlo.add %7793, %8034 : tensor<1x256x2048xf32> loc(#loc776) | |
| %8036 = mhlo.convert(%8035) : (tensor<1x256x2048xf32>) -> tensor<1x256x2048xf16> loc(#loc777) | |
| %8037 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc531) | |
| %8038 = "mhlo.broadcast_in_dim"(%8037) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x2048xf16> loc(#loc778) | |
| %8039 = mhlo.multiply %iterArg_3, %8038 : tensor<1x256x2048xf16> loc(#loc778) | |
| %8040 = mhlo.add %8039, %8036 : tensor<1x256x2048xf16> loc(#loc779) | |
| %8041 = mhlo.convert(%8040) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc780) | |
| %8042 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc781) | |
| %8043 = mhlo.reduce(%8041 init: %8042) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc781) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc781) | |
| } loc(#loc781) | |
| %8044 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %8045 = "mhlo.broadcast_in_dim"(%8044) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc782) | |
| %8046 = mhlo.divide %8043, %8045 : tensor<1x256xf32> loc(#loc782) | |
| %8047 = mhlo.multiply %8041, %8041 : tensor<1x256x2048xf32> loc(#loc783) | |
| %8048 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc784) | |
| %8049 = mhlo.reduce(%8047 init: %8048) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc784) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc784) | |
| } loc(#loc784) | |
| %8050 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %8051 = "mhlo.broadcast_in_dim"(%8050) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc785) | |
| %8052 = mhlo.divide %8049, %8051 : tensor<1x256xf32> loc(#loc785) | |
| %8053 = mhlo.multiply %8046, %8046 : tensor<1x256xf32> loc(#loc783) | |
| %8054 = mhlo.subtract %8052, %8053 : tensor<1x256xf32> loc(#loc786) | |
| %8055 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %8056 = "mhlo.broadcast_in_dim"(%8055) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc787) | |
| %8057 = mhlo.maximum %8056, %8054 : tensor<1x256xf32> loc(#loc787) | |
| %8058 = "mhlo.reshape"(%8046) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc788) | |
| %8059 = "mhlo.reshape"(%8057) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc789) | |
| %8060 = mhlo.convert(%8040) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc790) | |
| %8061 = "mhlo.broadcast_in_dim"(%8058) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc791) | |
| %8062 = mhlo.subtract %8060, %8061 : tensor<1x256x2048xf32> loc(#loc791) | |
| %8063 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc531) | |
| %8064 = "mhlo.broadcast_in_dim"(%8063) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256x1xf32> loc(#loc792) | |
| %8065 = mhlo.add %8059, %8064 : tensor<1x256x1xf32> loc(#loc792) | |
| %8066 = mhlo.rsqrt %8065 : tensor<1x256x1xf32> loc(#loc793) | |
| %8067 = "mhlo.broadcast_in_dim"(%8066) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc794) | |
| %8068 = mhlo.multiply %8062, %8067 : tensor<1x256x2048xf32> loc(#loc794) | |
| %8069 = mhlo.constant dense<4268539516> : tensor<ui32> loc(#loc531) | |
| %8070 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %8071 = mhlo.shift_right_logical %8069, %8070 : tensor<ui32> loc(#loc795) | |
| %8072 = "mhlo.reshape"(%8071) : (tensor<ui32>) -> tensor<1xui32> loc(#loc796) | |
| %8073 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %8074 = mhlo.and %8069, %8073 : tensor<ui32> loc(#loc797) | |
| %8075 = "mhlo.reshape"(%8074) : (tensor<ui32>) -> tensor<1xui32> loc(#loc796) | |
| %8076 = "mhlo.concatenate"(%8072, %8075) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc798) | |
| %8077 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc799) | |
| %8078 = "mhlo.reshape"(%8077) : (tensor<1xui32>) -> tensor<ui32> loc(#loc800) | |
| %8079 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc801) | |
| %8080 = "mhlo.reshape"(%8079) : (tensor<1xui32>) -> tensor<ui32> loc(#loc800) | |
| %8081 = "mhlo.slice"(%8076) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc802) | |
| %8082 = "mhlo.slice"(%8076) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc803) | |
| %8083 = mhlo.xor %8078, %8080 : tensor<ui32> loc(#loc804) | |
| %8084 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc805) | |
| %8085 = mhlo.xor %8083, %8084 : tensor<ui32> loc(#loc804) | |
| %8086 = "mhlo.broadcast_in_dim"(%8078) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8087 = mhlo.add %8081, %8086 : tensor<1xui32> loc(#loc806) | |
| %8088 = "mhlo.broadcast_in_dim"(%8080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8089 = mhlo.add %8082, %8088 : tensor<1xui32> loc(#loc806) | |
| %8090 = mhlo.add %8087, %8089 : tensor<1xui32> loc(#loc806) | |
| %8091 = mhlo.constant dense<13> : tensor<ui32> loc(#loc805) | |
| %8092 = "mhlo.broadcast_in_dim"(%8091) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8093 = mhlo.shift_left %8089, %8092 : tensor<1xui32> loc(#loc807) | |
| %8094 = mhlo.constant dense<19> : tensor<ui32> loc(#loc805) | |
| %8095 = "mhlo.broadcast_in_dim"(%8094) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8096 = mhlo.shift_right_logical %8089, %8095 : tensor<1xui32> loc(#loc795) | |
| %8097 = mhlo.or %8093, %8096 : tensor<1xui32> loc(#loc808) | |
| %8098 = mhlo.xor %8090, %8097 : tensor<1xui32> loc(#loc804) | |
| %8099 = mhlo.add %8090, %8098 : tensor<1xui32> loc(#loc806) | |
| %8100 = mhlo.constant dense<15> : tensor<ui32> loc(#loc805) | |
| %8101 = "mhlo.broadcast_in_dim"(%8100) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8102 = mhlo.shift_left %8098, %8101 : tensor<1xui32> loc(#loc807) | |
| %8103 = mhlo.constant dense<17> : tensor<ui32> loc(#loc805) | |
| %8104 = "mhlo.broadcast_in_dim"(%8103) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8105 = mhlo.shift_right_logical %8098, %8104 : tensor<1xui32> loc(#loc795) | |
| %8106 = mhlo.or %8102, %8105 : tensor<1xui32> loc(#loc808) | |
| %8107 = mhlo.xor %8099, %8106 : tensor<1xui32> loc(#loc804) | |
| %8108 = mhlo.add %8099, %8107 : tensor<1xui32> loc(#loc806) | |
| %8109 = mhlo.constant dense<26> : tensor<ui32> loc(#loc805) | |
| %8110 = "mhlo.broadcast_in_dim"(%8109) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8111 = mhlo.shift_left %8107, %8110 : tensor<1xui32> loc(#loc807) | |
| %8112 = mhlo.constant dense<6> : tensor<ui32> loc(#loc805) | |
| %8113 = "mhlo.broadcast_in_dim"(%8112) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8114 = mhlo.shift_right_logical %8107, %8113 : tensor<1xui32> loc(#loc795) | |
| %8115 = mhlo.or %8111, %8114 : tensor<1xui32> loc(#loc808) | |
| %8116 = mhlo.xor %8108, %8115 : tensor<1xui32> loc(#loc804) | |
| %8117 = mhlo.add %8108, %8116 : tensor<1xui32> loc(#loc806) | |
| %8118 = mhlo.constant dense<6> : tensor<ui32> loc(#loc805) | |
| %8119 = "mhlo.broadcast_in_dim"(%8118) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8120 = mhlo.shift_left %8116, %8119 : tensor<1xui32> loc(#loc807) | |
| %8121 = mhlo.constant dense<26> : tensor<ui32> loc(#loc805) | |
| %8122 = "mhlo.broadcast_in_dim"(%8121) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8123 = mhlo.shift_right_logical %8116, %8122 : tensor<1xui32> loc(#loc795) | |
| %8124 = mhlo.or %8120, %8123 : tensor<1xui32> loc(#loc808) | |
| %8125 = mhlo.xor %8117, %8124 : tensor<1xui32> loc(#loc804) | |
| %8126 = "mhlo.broadcast_in_dim"(%8080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8127 = mhlo.add %8117, %8126 : tensor<1xui32> loc(#loc806) | |
| %8128 = "mhlo.broadcast_in_dim"(%8085) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8129 = mhlo.add %8125, %8128 : tensor<1xui32> loc(#loc806) | |
| %8130 = mhlo.constant dense<1> : tensor<ui32> loc(#loc805) | |
| %8131 = "mhlo.broadcast_in_dim"(%8130) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8132 = mhlo.add %8129, %8131 : tensor<1xui32> loc(#loc806) | |
| %8133 = mhlo.add %8127, %8132 : tensor<1xui32> loc(#loc806) | |
| %8134 = mhlo.constant dense<17> : tensor<ui32> loc(#loc805) | |
| %8135 = "mhlo.broadcast_in_dim"(%8134) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8136 = mhlo.shift_left %8132, %8135 : tensor<1xui32> loc(#loc807) | |
| %8137 = mhlo.constant dense<15> : tensor<ui32> loc(#loc805) | |
| %8138 = "mhlo.broadcast_in_dim"(%8137) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8139 = mhlo.shift_right_logical %8132, %8138 : tensor<1xui32> loc(#loc795) | |
| %8140 = mhlo.or %8136, %8139 : tensor<1xui32> loc(#loc808) | |
| %8141 = mhlo.xor %8133, %8140 : tensor<1xui32> loc(#loc804) | |
| %8142 = mhlo.add %8133, %8141 : tensor<1xui32> loc(#loc806) | |
| %8143 = mhlo.constant dense<29> : tensor<ui32> loc(#loc805) | |
| %8144 = "mhlo.broadcast_in_dim"(%8143) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8145 = mhlo.shift_left %8141, %8144 : tensor<1xui32> loc(#loc807) | |
| %8146 = mhlo.constant dense<3> : tensor<ui32> loc(#loc805) | |
| %8147 = "mhlo.broadcast_in_dim"(%8146) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8148 = mhlo.shift_right_logical %8141, %8147 : tensor<1xui32> loc(#loc795) | |
| %8149 = mhlo.or %8145, %8148 : tensor<1xui32> loc(#loc808) | |
| %8150 = mhlo.xor %8142, %8149 : tensor<1xui32> loc(#loc804) | |
| %8151 = mhlo.add %8142, %8150 : tensor<1xui32> loc(#loc806) | |
| %8152 = mhlo.constant dense<16> : tensor<ui32> loc(#loc805) | |
| %8153 = "mhlo.broadcast_in_dim"(%8152) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8154 = mhlo.shift_left %8150, %8153 : tensor<1xui32> loc(#loc807) | |
| %8155 = mhlo.constant dense<16> : tensor<ui32> loc(#loc805) | |
| %8156 = "mhlo.broadcast_in_dim"(%8155) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8157 = mhlo.shift_right_logical %8150, %8156 : tensor<1xui32> loc(#loc795) | |
| %8158 = mhlo.or %8154, %8157 : tensor<1xui32> loc(#loc808) | |
| %8159 = mhlo.xor %8151, %8158 : tensor<1xui32> loc(#loc804) | |
| %8160 = mhlo.add %8151, %8159 : tensor<1xui32> loc(#loc806) | |
| %8161 = mhlo.constant dense<24> : tensor<ui32> loc(#loc805) | |
| %8162 = "mhlo.broadcast_in_dim"(%8161) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8163 = mhlo.shift_left %8159, %8162 : tensor<1xui32> loc(#loc807) | |
| %8164 = mhlo.constant dense<8> : tensor<ui32> loc(#loc805) | |
| %8165 = "mhlo.broadcast_in_dim"(%8164) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8166 = mhlo.shift_right_logical %8159, %8165 : tensor<1xui32> loc(#loc795) | |
| %8167 = mhlo.or %8163, %8166 : tensor<1xui32> loc(#loc808) | |
| %8168 = mhlo.xor %8160, %8167 : tensor<1xui32> loc(#loc804) | |
| %8169 = "mhlo.broadcast_in_dim"(%8085) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8170 = mhlo.add %8160, %8169 : tensor<1xui32> loc(#loc806) | |
| %8171 = "mhlo.broadcast_in_dim"(%8078) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8172 = mhlo.add %8168, %8171 : tensor<1xui32> loc(#loc806) | |
| %8173 = mhlo.constant dense<2> : tensor<ui32> loc(#loc805) | |
| %8174 = "mhlo.broadcast_in_dim"(%8173) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8175 = mhlo.add %8172, %8174 : tensor<1xui32> loc(#loc806) | |
| %8176 = mhlo.add %8170, %8175 : tensor<1xui32> loc(#loc806) | |
| %8177 = mhlo.constant dense<13> : tensor<ui32> loc(#loc805) | |
| %8178 = "mhlo.broadcast_in_dim"(%8177) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8179 = mhlo.shift_left %8175, %8178 : tensor<1xui32> loc(#loc807) | |
| %8180 = mhlo.constant dense<19> : tensor<ui32> loc(#loc805) | |
| %8181 = "mhlo.broadcast_in_dim"(%8180) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8182 = mhlo.shift_right_logical %8175, %8181 : tensor<1xui32> loc(#loc795) | |
| %8183 = mhlo.or %8179, %8182 : tensor<1xui32> loc(#loc808) | |
| %8184 = mhlo.xor %8176, %8183 : tensor<1xui32> loc(#loc804) | |
| %8185 = mhlo.add %8176, %8184 : tensor<1xui32> loc(#loc806) | |
| %8186 = mhlo.constant dense<15> : tensor<ui32> loc(#loc805) | |
| %8187 = "mhlo.broadcast_in_dim"(%8186) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8188 = mhlo.shift_left %8184, %8187 : tensor<1xui32> loc(#loc807) | |
| %8189 = mhlo.constant dense<17> : tensor<ui32> loc(#loc805) | |
| %8190 = "mhlo.broadcast_in_dim"(%8189) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8191 = mhlo.shift_right_logical %8184, %8190 : tensor<1xui32> loc(#loc795) | |
| %8192 = mhlo.or %8188, %8191 : tensor<1xui32> loc(#loc808) | |
| %8193 = mhlo.xor %8185, %8192 : tensor<1xui32> loc(#loc804) | |
| %8194 = mhlo.add %8185, %8193 : tensor<1xui32> loc(#loc806) | |
| %8195 = mhlo.constant dense<26> : tensor<ui32> loc(#loc805) | |
| %8196 = "mhlo.broadcast_in_dim"(%8195) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8197 = mhlo.shift_left %8193, %8196 : tensor<1xui32> loc(#loc807) | |
| %8198 = mhlo.constant dense<6> : tensor<ui32> loc(#loc805) | |
| %8199 = "mhlo.broadcast_in_dim"(%8198) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8200 = mhlo.shift_right_logical %8193, %8199 : tensor<1xui32> loc(#loc795) | |
| %8201 = mhlo.or %8197, %8200 : tensor<1xui32> loc(#loc808) | |
| %8202 = mhlo.xor %8194, %8201 : tensor<1xui32> loc(#loc804) | |
| %8203 = mhlo.add %8194, %8202 : tensor<1xui32> loc(#loc806) | |
| %8204 = mhlo.constant dense<6> : tensor<ui32> loc(#loc805) | |
| %8205 = "mhlo.broadcast_in_dim"(%8204) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8206 = mhlo.shift_left %8202, %8205 : tensor<1xui32> loc(#loc807) | |
| %8207 = mhlo.constant dense<26> : tensor<ui32> loc(#loc805) | |
| %8208 = "mhlo.broadcast_in_dim"(%8207) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8209 = mhlo.shift_right_logical %8202, %8208 : tensor<1xui32> loc(#loc795) | |
| %8210 = mhlo.or %8206, %8209 : tensor<1xui32> loc(#loc808) | |
| %8211 = mhlo.xor %8203, %8210 : tensor<1xui32> loc(#loc804) | |
| %8212 = "mhlo.broadcast_in_dim"(%8078) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8213 = mhlo.add %8203, %8212 : tensor<1xui32> loc(#loc806) | |
| %8214 = "mhlo.broadcast_in_dim"(%8080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8215 = mhlo.add %8211, %8214 : tensor<1xui32> loc(#loc806) | |
| %8216 = mhlo.constant dense<3> : tensor<ui32> loc(#loc805) | |
| %8217 = "mhlo.broadcast_in_dim"(%8216) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8218 = mhlo.add %8215, %8217 : tensor<1xui32> loc(#loc806) | |
| %8219 = mhlo.add %8213, %8218 : tensor<1xui32> loc(#loc806) | |
| %8220 = mhlo.constant dense<17> : tensor<ui32> loc(#loc805) | |
| %8221 = "mhlo.broadcast_in_dim"(%8220) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8222 = mhlo.shift_left %8218, %8221 : tensor<1xui32> loc(#loc807) | |
| %8223 = mhlo.constant dense<15> : tensor<ui32> loc(#loc805) | |
| %8224 = "mhlo.broadcast_in_dim"(%8223) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8225 = mhlo.shift_right_logical %8218, %8224 : tensor<1xui32> loc(#loc795) | |
| %8226 = mhlo.or %8222, %8225 : tensor<1xui32> loc(#loc808) | |
| %8227 = mhlo.xor %8219, %8226 : tensor<1xui32> loc(#loc804) | |
| %8228 = mhlo.add %8219, %8227 : tensor<1xui32> loc(#loc806) | |
| %8229 = mhlo.constant dense<29> : tensor<ui32> loc(#loc805) | |
| %8230 = "mhlo.broadcast_in_dim"(%8229) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8231 = mhlo.shift_left %8227, %8230 : tensor<1xui32> loc(#loc807) | |
| %8232 = mhlo.constant dense<3> : tensor<ui32> loc(#loc805) | |
| %8233 = "mhlo.broadcast_in_dim"(%8232) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8234 = mhlo.shift_right_logical %8227, %8233 : tensor<1xui32> loc(#loc795) | |
| %8235 = mhlo.or %8231, %8234 : tensor<1xui32> loc(#loc808) | |
| %8236 = mhlo.xor %8228, %8235 : tensor<1xui32> loc(#loc804) | |
| %8237 = mhlo.add %8228, %8236 : tensor<1xui32> loc(#loc806) | |
| %8238 = mhlo.constant dense<16> : tensor<ui32> loc(#loc805) | |
| %8239 = "mhlo.broadcast_in_dim"(%8238) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8240 = mhlo.shift_left %8236, %8239 : tensor<1xui32> loc(#loc807) | |
| %8241 = mhlo.constant dense<16> : tensor<ui32> loc(#loc805) | |
| %8242 = "mhlo.broadcast_in_dim"(%8241) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8243 = mhlo.shift_right_logical %8236, %8242 : tensor<1xui32> loc(#loc795) | |
| %8244 = mhlo.or %8240, %8243 : tensor<1xui32> loc(#loc808) | |
| %8245 = mhlo.xor %8237, %8244 : tensor<1xui32> loc(#loc804) | |
| %8246 = mhlo.add %8237, %8245 : tensor<1xui32> loc(#loc806) | |
| %8247 = mhlo.constant dense<24> : tensor<ui32> loc(#loc805) | |
| %8248 = "mhlo.broadcast_in_dim"(%8247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8249 = mhlo.shift_left %8245, %8248 : tensor<1xui32> loc(#loc807) | |
| %8250 = mhlo.constant dense<8> : tensor<ui32> loc(#loc805) | |
| %8251 = "mhlo.broadcast_in_dim"(%8250) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8252 = mhlo.shift_right_logical %8245, %8251 : tensor<1xui32> loc(#loc795) | |
| %8253 = mhlo.or %8249, %8252 : tensor<1xui32> loc(#loc808) | |
| %8254 = mhlo.xor %8246, %8253 : tensor<1xui32> loc(#loc804) | |
| %8255 = "mhlo.broadcast_in_dim"(%8080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8256 = mhlo.add %8246, %8255 : tensor<1xui32> loc(#loc806) | |
| %8257 = "mhlo.broadcast_in_dim"(%8085) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8258 = mhlo.add %8254, %8257 : tensor<1xui32> loc(#loc806) | |
| %8259 = mhlo.constant dense<4> : tensor<ui32> loc(#loc805) | |
| %8260 = "mhlo.broadcast_in_dim"(%8259) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8261 = mhlo.add %8258, %8260 : tensor<1xui32> loc(#loc806) | |
| %8262 = mhlo.add %8256, %8261 : tensor<1xui32> loc(#loc806) | |
| %8263 = mhlo.constant dense<13> : tensor<ui32> loc(#loc805) | |
| %8264 = "mhlo.broadcast_in_dim"(%8263) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8265 = mhlo.shift_left %8261, %8264 : tensor<1xui32> loc(#loc807) | |
| %8266 = mhlo.constant dense<19> : tensor<ui32> loc(#loc805) | |
| %8267 = "mhlo.broadcast_in_dim"(%8266) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8268 = mhlo.shift_right_logical %8261, %8267 : tensor<1xui32> loc(#loc795) | |
| %8269 = mhlo.or %8265, %8268 : tensor<1xui32> loc(#loc808) | |
| %8270 = mhlo.xor %8262, %8269 : tensor<1xui32> loc(#loc804) | |
| %8271 = mhlo.add %8262, %8270 : tensor<1xui32> loc(#loc806) | |
| %8272 = mhlo.constant dense<15> : tensor<ui32> loc(#loc805) | |
| %8273 = "mhlo.broadcast_in_dim"(%8272) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8274 = mhlo.shift_left %8270, %8273 : tensor<1xui32> loc(#loc807) | |
| %8275 = mhlo.constant dense<17> : tensor<ui32> loc(#loc805) | |
| %8276 = "mhlo.broadcast_in_dim"(%8275) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8277 = mhlo.shift_right_logical %8270, %8276 : tensor<1xui32> loc(#loc795) | |
| %8278 = mhlo.or %8274, %8277 : tensor<1xui32> loc(#loc808) | |
| %8279 = mhlo.xor %8271, %8278 : tensor<1xui32> loc(#loc804) | |
| %8280 = mhlo.add %8271, %8279 : tensor<1xui32> loc(#loc806) | |
| %8281 = mhlo.constant dense<26> : tensor<ui32> loc(#loc805) | |
| %8282 = "mhlo.broadcast_in_dim"(%8281) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8283 = mhlo.shift_left %8279, %8282 : tensor<1xui32> loc(#loc807) | |
| %8284 = mhlo.constant dense<6> : tensor<ui32> loc(#loc805) | |
| %8285 = "mhlo.broadcast_in_dim"(%8284) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8286 = mhlo.shift_right_logical %8279, %8285 : tensor<1xui32> loc(#loc795) | |
| %8287 = mhlo.or %8283, %8286 : tensor<1xui32> loc(#loc808) | |
| %8288 = mhlo.xor %8280, %8287 : tensor<1xui32> loc(#loc804) | |
| %8289 = mhlo.add %8280, %8288 : tensor<1xui32> loc(#loc806) | |
| %8290 = mhlo.constant dense<6> : tensor<ui32> loc(#loc805) | |
| %8291 = "mhlo.broadcast_in_dim"(%8290) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc807) | |
| %8292 = mhlo.shift_left %8288, %8291 : tensor<1xui32> loc(#loc807) | |
| %8293 = mhlo.constant dense<26> : tensor<ui32> loc(#loc805) | |
| %8294 = "mhlo.broadcast_in_dim"(%8293) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc795) | |
| %8295 = mhlo.shift_right_logical %8288, %8294 : tensor<1xui32> loc(#loc795) | |
| %8296 = mhlo.or %8292, %8295 : tensor<1xui32> loc(#loc808) | |
| %8297 = mhlo.xor %8289, %8296 : tensor<1xui32> loc(#loc804) | |
| %8298 = "mhlo.broadcast_in_dim"(%8085) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8299 = mhlo.add %8289, %8298 : tensor<1xui32> loc(#loc806) | |
| %8300 = "mhlo.broadcast_in_dim"(%8078) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8301 = mhlo.add %8297, %8300 : tensor<1xui32> loc(#loc806) | |
| %8302 = mhlo.constant dense<5> : tensor<ui32> loc(#loc805) | |
| %8303 = "mhlo.broadcast_in_dim"(%8302) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc806) | |
| %8304 = mhlo.add %8301, %8303 : tensor<1xui32> loc(#loc806) | |
| %8305 = "mhlo.concatenate"(%8299, %8304) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc798) | |
| %8306 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %8307 = "mhlo.broadcast_in_dim"(%8306) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc809) | |
| %8308 = "mhlo.reshape"(%8307) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc810) | |
| %8309 = "mhlo.broadcast_in_dim"(%8308) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc811) | |
| %8310 = mhlo.add %8068, %8309 : tensor<1x256x2048xf32> loc(#loc811) | |
| %8311 = mhlo.convert(%8310) : (tensor<1x256x2048xf32>) -> tensor<1x256x2048xf16> loc(#loc812) | |
| %8312 = mhlo.constant dense<3646408819> : tensor<ui32> loc(#loc531) | |
| %8313 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %8314 = mhlo.shift_right_logical %8312, %8313 : tensor<ui32> loc(#loc813) | |
| %8315 = "mhlo.reshape"(%8314) : (tensor<ui32>) -> tensor<1xui32> loc(#loc814) | |
| %8316 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %8317 = mhlo.and %8312, %8316 : tensor<ui32> loc(#loc815) | |
| %8318 = "mhlo.reshape"(%8317) : (tensor<ui32>) -> tensor<1xui32> loc(#loc814) | |
| %8319 = "mhlo.concatenate"(%8315, %8318) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc816) | |
| %8320 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc817) | |
| %8321 = "mhlo.reshape"(%8320) : (tensor<1xui32>) -> tensor<ui32> loc(#loc818) | |
| %8322 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc819) | |
| %8323 = "mhlo.reshape"(%8322) : (tensor<1xui32>) -> tensor<ui32> loc(#loc818) | |
| %8324 = "mhlo.slice"(%8319) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc820) | |
| %8325 = "mhlo.slice"(%8319) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc821) | |
| %8326 = mhlo.xor %8321, %8323 : tensor<ui32> loc(#loc822) | |
| %8327 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc823) | |
| %8328 = mhlo.xor %8326, %8327 : tensor<ui32> loc(#loc822) | |
| %8329 = "mhlo.broadcast_in_dim"(%8321) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8330 = mhlo.add %8324, %8329 : tensor<1xui32> loc(#loc824) | |
| %8331 = "mhlo.broadcast_in_dim"(%8323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8332 = mhlo.add %8325, %8331 : tensor<1xui32> loc(#loc824) | |
| %8333 = mhlo.add %8330, %8332 : tensor<1xui32> loc(#loc824) | |
| %8334 = mhlo.constant dense<13> : tensor<ui32> loc(#loc823) | |
| %8335 = "mhlo.broadcast_in_dim"(%8334) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8336 = mhlo.shift_left %8332, %8335 : tensor<1xui32> loc(#loc825) | |
| %8337 = mhlo.constant dense<19> : tensor<ui32> loc(#loc823) | |
| %8338 = "mhlo.broadcast_in_dim"(%8337) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8339 = mhlo.shift_right_logical %8332, %8338 : tensor<1xui32> loc(#loc813) | |
| %8340 = mhlo.or %8336, %8339 : tensor<1xui32> loc(#loc826) | |
| %8341 = mhlo.xor %8333, %8340 : tensor<1xui32> loc(#loc822) | |
| %8342 = mhlo.add %8333, %8341 : tensor<1xui32> loc(#loc824) | |
| %8343 = mhlo.constant dense<15> : tensor<ui32> loc(#loc823) | |
| %8344 = "mhlo.broadcast_in_dim"(%8343) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8345 = mhlo.shift_left %8341, %8344 : tensor<1xui32> loc(#loc825) | |
| %8346 = mhlo.constant dense<17> : tensor<ui32> loc(#loc823) | |
| %8347 = "mhlo.broadcast_in_dim"(%8346) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8348 = mhlo.shift_right_logical %8341, %8347 : tensor<1xui32> loc(#loc813) | |
| %8349 = mhlo.or %8345, %8348 : tensor<1xui32> loc(#loc826) | |
| %8350 = mhlo.xor %8342, %8349 : tensor<1xui32> loc(#loc822) | |
| %8351 = mhlo.add %8342, %8350 : tensor<1xui32> loc(#loc824) | |
| %8352 = mhlo.constant dense<26> : tensor<ui32> loc(#loc823) | |
| %8353 = "mhlo.broadcast_in_dim"(%8352) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8354 = mhlo.shift_left %8350, %8353 : tensor<1xui32> loc(#loc825) | |
| %8355 = mhlo.constant dense<6> : tensor<ui32> loc(#loc823) | |
| %8356 = "mhlo.broadcast_in_dim"(%8355) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8357 = mhlo.shift_right_logical %8350, %8356 : tensor<1xui32> loc(#loc813) | |
| %8358 = mhlo.or %8354, %8357 : tensor<1xui32> loc(#loc826) | |
| %8359 = mhlo.xor %8351, %8358 : tensor<1xui32> loc(#loc822) | |
| %8360 = mhlo.add %8351, %8359 : tensor<1xui32> loc(#loc824) | |
| %8361 = mhlo.constant dense<6> : tensor<ui32> loc(#loc823) | |
| %8362 = "mhlo.broadcast_in_dim"(%8361) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8363 = mhlo.shift_left %8359, %8362 : tensor<1xui32> loc(#loc825) | |
| %8364 = mhlo.constant dense<26> : tensor<ui32> loc(#loc823) | |
| %8365 = "mhlo.broadcast_in_dim"(%8364) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8366 = mhlo.shift_right_logical %8359, %8365 : tensor<1xui32> loc(#loc813) | |
| %8367 = mhlo.or %8363, %8366 : tensor<1xui32> loc(#loc826) | |
| %8368 = mhlo.xor %8360, %8367 : tensor<1xui32> loc(#loc822) | |
| %8369 = "mhlo.broadcast_in_dim"(%8323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8370 = mhlo.add %8360, %8369 : tensor<1xui32> loc(#loc824) | |
| %8371 = "mhlo.broadcast_in_dim"(%8328) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8372 = mhlo.add %8368, %8371 : tensor<1xui32> loc(#loc824) | |
| %8373 = mhlo.constant dense<1> : tensor<ui32> loc(#loc823) | |
| %8374 = "mhlo.broadcast_in_dim"(%8373) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8375 = mhlo.add %8372, %8374 : tensor<1xui32> loc(#loc824) | |
| %8376 = mhlo.add %8370, %8375 : tensor<1xui32> loc(#loc824) | |
| %8377 = mhlo.constant dense<17> : tensor<ui32> loc(#loc823) | |
| %8378 = "mhlo.broadcast_in_dim"(%8377) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8379 = mhlo.shift_left %8375, %8378 : tensor<1xui32> loc(#loc825) | |
| %8380 = mhlo.constant dense<15> : tensor<ui32> loc(#loc823) | |
| %8381 = "mhlo.broadcast_in_dim"(%8380) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8382 = mhlo.shift_right_logical %8375, %8381 : tensor<1xui32> loc(#loc813) | |
| %8383 = mhlo.or %8379, %8382 : tensor<1xui32> loc(#loc826) | |
| %8384 = mhlo.xor %8376, %8383 : tensor<1xui32> loc(#loc822) | |
| %8385 = mhlo.add %8376, %8384 : tensor<1xui32> loc(#loc824) | |
| %8386 = mhlo.constant dense<29> : tensor<ui32> loc(#loc823) | |
| %8387 = "mhlo.broadcast_in_dim"(%8386) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8388 = mhlo.shift_left %8384, %8387 : tensor<1xui32> loc(#loc825) | |
| %8389 = mhlo.constant dense<3> : tensor<ui32> loc(#loc823) | |
| %8390 = "mhlo.broadcast_in_dim"(%8389) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8391 = mhlo.shift_right_logical %8384, %8390 : tensor<1xui32> loc(#loc813) | |
| %8392 = mhlo.or %8388, %8391 : tensor<1xui32> loc(#loc826) | |
| %8393 = mhlo.xor %8385, %8392 : tensor<1xui32> loc(#loc822) | |
| %8394 = mhlo.add %8385, %8393 : tensor<1xui32> loc(#loc824) | |
| %8395 = mhlo.constant dense<16> : tensor<ui32> loc(#loc823) | |
| %8396 = "mhlo.broadcast_in_dim"(%8395) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8397 = mhlo.shift_left %8393, %8396 : tensor<1xui32> loc(#loc825) | |
| %8398 = mhlo.constant dense<16> : tensor<ui32> loc(#loc823) | |
| %8399 = "mhlo.broadcast_in_dim"(%8398) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8400 = mhlo.shift_right_logical %8393, %8399 : tensor<1xui32> loc(#loc813) | |
| %8401 = mhlo.or %8397, %8400 : tensor<1xui32> loc(#loc826) | |
| %8402 = mhlo.xor %8394, %8401 : tensor<1xui32> loc(#loc822) | |
| %8403 = mhlo.add %8394, %8402 : tensor<1xui32> loc(#loc824) | |
| %8404 = mhlo.constant dense<24> : tensor<ui32> loc(#loc823) | |
| %8405 = "mhlo.broadcast_in_dim"(%8404) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8406 = mhlo.shift_left %8402, %8405 : tensor<1xui32> loc(#loc825) | |
| %8407 = mhlo.constant dense<8> : tensor<ui32> loc(#loc823) | |
| %8408 = "mhlo.broadcast_in_dim"(%8407) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8409 = mhlo.shift_right_logical %8402, %8408 : tensor<1xui32> loc(#loc813) | |
| %8410 = mhlo.or %8406, %8409 : tensor<1xui32> loc(#loc826) | |
| %8411 = mhlo.xor %8403, %8410 : tensor<1xui32> loc(#loc822) | |
| %8412 = "mhlo.broadcast_in_dim"(%8328) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8413 = mhlo.add %8403, %8412 : tensor<1xui32> loc(#loc824) | |
| %8414 = "mhlo.broadcast_in_dim"(%8321) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8415 = mhlo.add %8411, %8414 : tensor<1xui32> loc(#loc824) | |
| %8416 = mhlo.constant dense<2> : tensor<ui32> loc(#loc823) | |
| %8417 = "mhlo.broadcast_in_dim"(%8416) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8418 = mhlo.add %8415, %8417 : tensor<1xui32> loc(#loc824) | |
| %8419 = mhlo.add %8413, %8418 : tensor<1xui32> loc(#loc824) | |
| %8420 = mhlo.constant dense<13> : tensor<ui32> loc(#loc823) | |
| %8421 = "mhlo.broadcast_in_dim"(%8420) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8422 = mhlo.shift_left %8418, %8421 : tensor<1xui32> loc(#loc825) | |
| %8423 = mhlo.constant dense<19> : tensor<ui32> loc(#loc823) | |
| %8424 = "mhlo.broadcast_in_dim"(%8423) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8425 = mhlo.shift_right_logical %8418, %8424 : tensor<1xui32> loc(#loc813) | |
| %8426 = mhlo.or %8422, %8425 : tensor<1xui32> loc(#loc826) | |
| %8427 = mhlo.xor %8419, %8426 : tensor<1xui32> loc(#loc822) | |
| %8428 = mhlo.add %8419, %8427 : tensor<1xui32> loc(#loc824) | |
| %8429 = mhlo.constant dense<15> : tensor<ui32> loc(#loc823) | |
| %8430 = "mhlo.broadcast_in_dim"(%8429) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8431 = mhlo.shift_left %8427, %8430 : tensor<1xui32> loc(#loc825) | |
| %8432 = mhlo.constant dense<17> : tensor<ui32> loc(#loc823) | |
| %8433 = "mhlo.broadcast_in_dim"(%8432) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8434 = mhlo.shift_right_logical %8427, %8433 : tensor<1xui32> loc(#loc813) | |
| %8435 = mhlo.or %8431, %8434 : tensor<1xui32> loc(#loc826) | |
| %8436 = mhlo.xor %8428, %8435 : tensor<1xui32> loc(#loc822) | |
| %8437 = mhlo.add %8428, %8436 : tensor<1xui32> loc(#loc824) | |
| %8438 = mhlo.constant dense<26> : tensor<ui32> loc(#loc823) | |
| %8439 = "mhlo.broadcast_in_dim"(%8438) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8440 = mhlo.shift_left %8436, %8439 : tensor<1xui32> loc(#loc825) | |
| %8441 = mhlo.constant dense<6> : tensor<ui32> loc(#loc823) | |
| %8442 = "mhlo.broadcast_in_dim"(%8441) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8443 = mhlo.shift_right_logical %8436, %8442 : tensor<1xui32> loc(#loc813) | |
| %8444 = mhlo.or %8440, %8443 : tensor<1xui32> loc(#loc826) | |
| %8445 = mhlo.xor %8437, %8444 : tensor<1xui32> loc(#loc822) | |
| %8446 = mhlo.add %8437, %8445 : tensor<1xui32> loc(#loc824) | |
| %8447 = mhlo.constant dense<6> : tensor<ui32> loc(#loc823) | |
| %8448 = "mhlo.broadcast_in_dim"(%8447) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8449 = mhlo.shift_left %8445, %8448 : tensor<1xui32> loc(#loc825) | |
| %8450 = mhlo.constant dense<26> : tensor<ui32> loc(#loc823) | |
| %8451 = "mhlo.broadcast_in_dim"(%8450) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8452 = mhlo.shift_right_logical %8445, %8451 : tensor<1xui32> loc(#loc813) | |
| %8453 = mhlo.or %8449, %8452 : tensor<1xui32> loc(#loc826) | |
| %8454 = mhlo.xor %8446, %8453 : tensor<1xui32> loc(#loc822) | |
| %8455 = "mhlo.broadcast_in_dim"(%8321) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8456 = mhlo.add %8446, %8455 : tensor<1xui32> loc(#loc824) | |
| %8457 = "mhlo.broadcast_in_dim"(%8323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8458 = mhlo.add %8454, %8457 : tensor<1xui32> loc(#loc824) | |
| %8459 = mhlo.constant dense<3> : tensor<ui32> loc(#loc823) | |
| %8460 = "mhlo.broadcast_in_dim"(%8459) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8461 = mhlo.add %8458, %8460 : tensor<1xui32> loc(#loc824) | |
| %8462 = mhlo.add %8456, %8461 : tensor<1xui32> loc(#loc824) | |
| %8463 = mhlo.constant dense<17> : tensor<ui32> loc(#loc823) | |
| %8464 = "mhlo.broadcast_in_dim"(%8463) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8465 = mhlo.shift_left %8461, %8464 : tensor<1xui32> loc(#loc825) | |
| %8466 = mhlo.constant dense<15> : tensor<ui32> loc(#loc823) | |
| %8467 = "mhlo.broadcast_in_dim"(%8466) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8468 = mhlo.shift_right_logical %8461, %8467 : tensor<1xui32> loc(#loc813) | |
| %8469 = mhlo.or %8465, %8468 : tensor<1xui32> loc(#loc826) | |
| %8470 = mhlo.xor %8462, %8469 : tensor<1xui32> loc(#loc822) | |
| %8471 = mhlo.add %8462, %8470 : tensor<1xui32> loc(#loc824) | |
| %8472 = mhlo.constant dense<29> : tensor<ui32> loc(#loc823) | |
| %8473 = "mhlo.broadcast_in_dim"(%8472) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8474 = mhlo.shift_left %8470, %8473 : tensor<1xui32> loc(#loc825) | |
| %8475 = mhlo.constant dense<3> : tensor<ui32> loc(#loc823) | |
| %8476 = "mhlo.broadcast_in_dim"(%8475) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8477 = mhlo.shift_right_logical %8470, %8476 : tensor<1xui32> loc(#loc813) | |
| %8478 = mhlo.or %8474, %8477 : tensor<1xui32> loc(#loc826) | |
| %8479 = mhlo.xor %8471, %8478 : tensor<1xui32> loc(#loc822) | |
| %8480 = mhlo.add %8471, %8479 : tensor<1xui32> loc(#loc824) | |
| %8481 = mhlo.constant dense<16> : tensor<ui32> loc(#loc823) | |
| %8482 = "mhlo.broadcast_in_dim"(%8481) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8483 = mhlo.shift_left %8479, %8482 : tensor<1xui32> loc(#loc825) | |
| %8484 = mhlo.constant dense<16> : tensor<ui32> loc(#loc823) | |
| %8485 = "mhlo.broadcast_in_dim"(%8484) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8486 = mhlo.shift_right_logical %8479, %8485 : tensor<1xui32> loc(#loc813) | |
| %8487 = mhlo.or %8483, %8486 : tensor<1xui32> loc(#loc826) | |
| %8488 = mhlo.xor %8480, %8487 : tensor<1xui32> loc(#loc822) | |
| %8489 = mhlo.add %8480, %8488 : tensor<1xui32> loc(#loc824) | |
| %8490 = mhlo.constant dense<24> : tensor<ui32> loc(#loc823) | |
| %8491 = "mhlo.broadcast_in_dim"(%8490) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8492 = mhlo.shift_left %8488, %8491 : tensor<1xui32> loc(#loc825) | |
| %8493 = mhlo.constant dense<8> : tensor<ui32> loc(#loc823) | |
| %8494 = "mhlo.broadcast_in_dim"(%8493) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8495 = mhlo.shift_right_logical %8488, %8494 : tensor<1xui32> loc(#loc813) | |
| %8496 = mhlo.or %8492, %8495 : tensor<1xui32> loc(#loc826) | |
| %8497 = mhlo.xor %8489, %8496 : tensor<1xui32> loc(#loc822) | |
| %8498 = "mhlo.broadcast_in_dim"(%8323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8499 = mhlo.add %8489, %8498 : tensor<1xui32> loc(#loc824) | |
| %8500 = "mhlo.broadcast_in_dim"(%8328) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8501 = mhlo.add %8497, %8500 : tensor<1xui32> loc(#loc824) | |
| %8502 = mhlo.constant dense<4> : tensor<ui32> loc(#loc823) | |
| %8503 = "mhlo.broadcast_in_dim"(%8502) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8504 = mhlo.add %8501, %8503 : tensor<1xui32> loc(#loc824) | |
| %8505 = mhlo.add %8499, %8504 : tensor<1xui32> loc(#loc824) | |
| %8506 = mhlo.constant dense<13> : tensor<ui32> loc(#loc823) | |
| %8507 = "mhlo.broadcast_in_dim"(%8506) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8508 = mhlo.shift_left %8504, %8507 : tensor<1xui32> loc(#loc825) | |
| %8509 = mhlo.constant dense<19> : tensor<ui32> loc(#loc823) | |
| %8510 = "mhlo.broadcast_in_dim"(%8509) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8511 = mhlo.shift_right_logical %8504, %8510 : tensor<1xui32> loc(#loc813) | |
| %8512 = mhlo.or %8508, %8511 : tensor<1xui32> loc(#loc826) | |
| %8513 = mhlo.xor %8505, %8512 : tensor<1xui32> loc(#loc822) | |
| %8514 = mhlo.add %8505, %8513 : tensor<1xui32> loc(#loc824) | |
| %8515 = mhlo.constant dense<15> : tensor<ui32> loc(#loc823) | |
| %8516 = "mhlo.broadcast_in_dim"(%8515) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8517 = mhlo.shift_left %8513, %8516 : tensor<1xui32> loc(#loc825) | |
| %8518 = mhlo.constant dense<17> : tensor<ui32> loc(#loc823) | |
| %8519 = "mhlo.broadcast_in_dim"(%8518) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8520 = mhlo.shift_right_logical %8513, %8519 : tensor<1xui32> loc(#loc813) | |
| %8521 = mhlo.or %8517, %8520 : tensor<1xui32> loc(#loc826) | |
| %8522 = mhlo.xor %8514, %8521 : tensor<1xui32> loc(#loc822) | |
| %8523 = mhlo.add %8514, %8522 : tensor<1xui32> loc(#loc824) | |
| %8524 = mhlo.constant dense<26> : tensor<ui32> loc(#loc823) | |
| %8525 = "mhlo.broadcast_in_dim"(%8524) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8526 = mhlo.shift_left %8522, %8525 : tensor<1xui32> loc(#loc825) | |
| %8527 = mhlo.constant dense<6> : tensor<ui32> loc(#loc823) | |
| %8528 = "mhlo.broadcast_in_dim"(%8527) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8529 = mhlo.shift_right_logical %8522, %8528 : tensor<1xui32> loc(#loc813) | |
| %8530 = mhlo.or %8526, %8529 : tensor<1xui32> loc(#loc826) | |
| %8531 = mhlo.xor %8523, %8530 : tensor<1xui32> loc(#loc822) | |
| %8532 = mhlo.add %8523, %8531 : tensor<1xui32> loc(#loc824) | |
| %8533 = mhlo.constant dense<6> : tensor<ui32> loc(#loc823) | |
| %8534 = "mhlo.broadcast_in_dim"(%8533) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc825) | |
| %8535 = mhlo.shift_left %8531, %8534 : tensor<1xui32> loc(#loc825) | |
| %8536 = mhlo.constant dense<26> : tensor<ui32> loc(#loc823) | |
| %8537 = "mhlo.broadcast_in_dim"(%8536) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc813) | |
| %8538 = mhlo.shift_right_logical %8531, %8537 : tensor<1xui32> loc(#loc813) | |
| %8539 = mhlo.or %8535, %8538 : tensor<1xui32> loc(#loc826) | |
| %8540 = mhlo.xor %8532, %8539 : tensor<1xui32> loc(#loc822) | |
| %8541 = "mhlo.broadcast_in_dim"(%8328) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8542 = mhlo.add %8532, %8541 : tensor<1xui32> loc(#loc824) | |
| %8543 = "mhlo.broadcast_in_dim"(%8321) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8544 = mhlo.add %8540, %8543 : tensor<1xui32> loc(#loc824) | |
| %8545 = mhlo.constant dense<5> : tensor<ui32> loc(#loc823) | |
| %8546 = "mhlo.broadcast_in_dim"(%8545) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc824) | |
| %8547 = mhlo.add %8544, %8546 : tensor<1xui32> loc(#loc824) | |
| %8548 = "mhlo.concatenate"(%8542, %8547) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc816) | |
| %8549 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %8550 = "mhlo.broadcast_in_dim"(%8549) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc827) | |
| %8551 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %8552 = "mhlo.broadcast_in_dim"(%8551) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc827) | |
| %8553 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc828) | |
| %8554 = "mhlo.slice"(%8548) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc829) | |
| %8555 = "mhlo.reshape"(%8554) : (tensor<1xui32>) -> tensor<ui32> loc(#loc830) | |
| %8556 = "mhlo.slice"(%8548) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc831) | |
| %8557 = "mhlo.reshape"(%8556) : (tensor<1xui32>) -> tensor<ui32> loc(#loc830) | |
| %8558 = "mhlo.slice"(%8553) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc832) | |
| %8559 = "mhlo.slice"(%8553) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc833) | |
| %8560 = mhlo.xor %8555, %8557 : tensor<ui32> loc(#loc834) | |
| %8561 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc835) | |
| %8562 = mhlo.xor %8560, %8561 : tensor<ui32> loc(#loc834) | |
| %8563 = "mhlo.broadcast_in_dim"(%8555) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8564 = mhlo.add %8558, %8563 : tensor<2097152xui32> loc(#loc836) | |
| %8565 = "mhlo.broadcast_in_dim"(%8557) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8566 = mhlo.add %8559, %8565 : tensor<2097152xui32> loc(#loc836) | |
| %8567 = mhlo.add %8564, %8566 : tensor<2097152xui32> loc(#loc836) | |
| %8568 = mhlo.constant dense<13> : tensor<ui32> loc(#loc835) | |
| %8569 = "mhlo.broadcast_in_dim"(%8568) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8570 = mhlo.shift_left %8566, %8569 : tensor<2097152xui32> loc(#loc837) | |
| %8571 = mhlo.constant dense<19> : tensor<ui32> loc(#loc835) | |
| %8572 = "mhlo.broadcast_in_dim"(%8571) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8573 = mhlo.shift_right_logical %8566, %8572 : tensor<2097152xui32> loc(#loc838) | |
| %8574 = mhlo.or %8570, %8573 : tensor<2097152xui32> loc(#loc839) | |
| %8575 = mhlo.xor %8567, %8574 : tensor<2097152xui32> loc(#loc834) | |
| %8576 = mhlo.add %8567, %8575 : tensor<2097152xui32> loc(#loc836) | |
| %8577 = mhlo.constant dense<15> : tensor<ui32> loc(#loc835) | |
| %8578 = "mhlo.broadcast_in_dim"(%8577) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8579 = mhlo.shift_left %8575, %8578 : tensor<2097152xui32> loc(#loc837) | |
| %8580 = mhlo.constant dense<17> : tensor<ui32> loc(#loc835) | |
| %8581 = "mhlo.broadcast_in_dim"(%8580) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8582 = mhlo.shift_right_logical %8575, %8581 : tensor<2097152xui32> loc(#loc838) | |
| %8583 = mhlo.or %8579, %8582 : tensor<2097152xui32> loc(#loc839) | |
| %8584 = mhlo.xor %8576, %8583 : tensor<2097152xui32> loc(#loc834) | |
| %8585 = mhlo.add %8576, %8584 : tensor<2097152xui32> loc(#loc836) | |
| %8586 = mhlo.constant dense<26> : tensor<ui32> loc(#loc835) | |
| %8587 = "mhlo.broadcast_in_dim"(%8586) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8588 = mhlo.shift_left %8584, %8587 : tensor<2097152xui32> loc(#loc837) | |
| %8589 = mhlo.constant dense<6> : tensor<ui32> loc(#loc835) | |
| %8590 = "mhlo.broadcast_in_dim"(%8589) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8591 = mhlo.shift_right_logical %8584, %8590 : tensor<2097152xui32> loc(#loc838) | |
| %8592 = mhlo.or %8588, %8591 : tensor<2097152xui32> loc(#loc839) | |
| %8593 = mhlo.xor %8585, %8592 : tensor<2097152xui32> loc(#loc834) | |
| %8594 = mhlo.add %8585, %8593 : tensor<2097152xui32> loc(#loc836) | |
| %8595 = mhlo.constant dense<6> : tensor<ui32> loc(#loc835) | |
| %8596 = "mhlo.broadcast_in_dim"(%8595) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8597 = mhlo.shift_left %8593, %8596 : tensor<2097152xui32> loc(#loc837) | |
| %8598 = mhlo.constant dense<26> : tensor<ui32> loc(#loc835) | |
| %8599 = "mhlo.broadcast_in_dim"(%8598) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8600 = mhlo.shift_right_logical %8593, %8599 : tensor<2097152xui32> loc(#loc838) | |
| %8601 = mhlo.or %8597, %8600 : tensor<2097152xui32> loc(#loc839) | |
| %8602 = mhlo.xor %8594, %8601 : tensor<2097152xui32> loc(#loc834) | |
| %8603 = "mhlo.broadcast_in_dim"(%8557) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8604 = mhlo.add %8594, %8603 : tensor<2097152xui32> loc(#loc836) | |
| %8605 = "mhlo.broadcast_in_dim"(%8562) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8606 = mhlo.add %8602, %8605 : tensor<2097152xui32> loc(#loc836) | |
| %8607 = mhlo.constant dense<1> : tensor<ui32> loc(#loc835) | |
| %8608 = "mhlo.broadcast_in_dim"(%8607) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8609 = mhlo.add %8606, %8608 : tensor<2097152xui32> loc(#loc836) | |
| %8610 = mhlo.add %8604, %8609 : tensor<2097152xui32> loc(#loc836) | |
| %8611 = mhlo.constant dense<17> : tensor<ui32> loc(#loc835) | |
| %8612 = "mhlo.broadcast_in_dim"(%8611) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8613 = mhlo.shift_left %8609, %8612 : tensor<2097152xui32> loc(#loc837) | |
| %8614 = mhlo.constant dense<15> : tensor<ui32> loc(#loc835) | |
| %8615 = "mhlo.broadcast_in_dim"(%8614) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8616 = mhlo.shift_right_logical %8609, %8615 : tensor<2097152xui32> loc(#loc838) | |
| %8617 = mhlo.or %8613, %8616 : tensor<2097152xui32> loc(#loc839) | |
| %8618 = mhlo.xor %8610, %8617 : tensor<2097152xui32> loc(#loc834) | |
| %8619 = mhlo.add %8610, %8618 : tensor<2097152xui32> loc(#loc836) | |
| %8620 = mhlo.constant dense<29> : tensor<ui32> loc(#loc835) | |
| %8621 = "mhlo.broadcast_in_dim"(%8620) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8622 = mhlo.shift_left %8618, %8621 : tensor<2097152xui32> loc(#loc837) | |
| %8623 = mhlo.constant dense<3> : tensor<ui32> loc(#loc835) | |
| %8624 = "mhlo.broadcast_in_dim"(%8623) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8625 = mhlo.shift_right_logical %8618, %8624 : tensor<2097152xui32> loc(#loc838) | |
| %8626 = mhlo.or %8622, %8625 : tensor<2097152xui32> loc(#loc839) | |
| %8627 = mhlo.xor %8619, %8626 : tensor<2097152xui32> loc(#loc834) | |
| %8628 = mhlo.add %8619, %8627 : tensor<2097152xui32> loc(#loc836) | |
| %8629 = mhlo.constant dense<16> : tensor<ui32> loc(#loc835) | |
| %8630 = "mhlo.broadcast_in_dim"(%8629) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8631 = mhlo.shift_left %8627, %8630 : tensor<2097152xui32> loc(#loc837) | |
| %8632 = mhlo.constant dense<16> : tensor<ui32> loc(#loc835) | |
| %8633 = "mhlo.broadcast_in_dim"(%8632) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8634 = mhlo.shift_right_logical %8627, %8633 : tensor<2097152xui32> loc(#loc838) | |
| %8635 = mhlo.or %8631, %8634 : tensor<2097152xui32> loc(#loc839) | |
| %8636 = mhlo.xor %8628, %8635 : tensor<2097152xui32> loc(#loc834) | |
| %8637 = mhlo.add %8628, %8636 : tensor<2097152xui32> loc(#loc836) | |
| %8638 = mhlo.constant dense<24> : tensor<ui32> loc(#loc835) | |
| %8639 = "mhlo.broadcast_in_dim"(%8638) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8640 = mhlo.shift_left %8636, %8639 : tensor<2097152xui32> loc(#loc837) | |
| %8641 = mhlo.constant dense<8> : tensor<ui32> loc(#loc835) | |
| %8642 = "mhlo.broadcast_in_dim"(%8641) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8643 = mhlo.shift_right_logical %8636, %8642 : tensor<2097152xui32> loc(#loc838) | |
| %8644 = mhlo.or %8640, %8643 : tensor<2097152xui32> loc(#loc839) | |
| %8645 = mhlo.xor %8637, %8644 : tensor<2097152xui32> loc(#loc834) | |
| %8646 = "mhlo.broadcast_in_dim"(%8562) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8647 = mhlo.add %8637, %8646 : tensor<2097152xui32> loc(#loc836) | |
| %8648 = "mhlo.broadcast_in_dim"(%8555) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8649 = mhlo.add %8645, %8648 : tensor<2097152xui32> loc(#loc836) | |
| %8650 = mhlo.constant dense<2> : tensor<ui32> loc(#loc835) | |
| %8651 = "mhlo.broadcast_in_dim"(%8650) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8652 = mhlo.add %8649, %8651 : tensor<2097152xui32> loc(#loc836) | |
| %8653 = mhlo.add %8647, %8652 : tensor<2097152xui32> loc(#loc836) | |
| %8654 = mhlo.constant dense<13> : tensor<ui32> loc(#loc835) | |
| %8655 = "mhlo.broadcast_in_dim"(%8654) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8656 = mhlo.shift_left %8652, %8655 : tensor<2097152xui32> loc(#loc837) | |
| %8657 = mhlo.constant dense<19> : tensor<ui32> loc(#loc835) | |
| %8658 = "mhlo.broadcast_in_dim"(%8657) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8659 = mhlo.shift_right_logical %8652, %8658 : tensor<2097152xui32> loc(#loc838) | |
| %8660 = mhlo.or %8656, %8659 : tensor<2097152xui32> loc(#loc839) | |
| %8661 = mhlo.xor %8653, %8660 : tensor<2097152xui32> loc(#loc834) | |
| %8662 = mhlo.add %8653, %8661 : tensor<2097152xui32> loc(#loc836) | |
| %8663 = mhlo.constant dense<15> : tensor<ui32> loc(#loc835) | |
| %8664 = "mhlo.broadcast_in_dim"(%8663) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8665 = mhlo.shift_left %8661, %8664 : tensor<2097152xui32> loc(#loc837) | |
| %8666 = mhlo.constant dense<17> : tensor<ui32> loc(#loc835) | |
| %8667 = "mhlo.broadcast_in_dim"(%8666) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8668 = mhlo.shift_right_logical %8661, %8667 : tensor<2097152xui32> loc(#loc838) | |
| %8669 = mhlo.or %8665, %8668 : tensor<2097152xui32> loc(#loc839) | |
| %8670 = mhlo.xor %8662, %8669 : tensor<2097152xui32> loc(#loc834) | |
| %8671 = mhlo.add %8662, %8670 : tensor<2097152xui32> loc(#loc836) | |
| %8672 = mhlo.constant dense<26> : tensor<ui32> loc(#loc835) | |
| %8673 = "mhlo.broadcast_in_dim"(%8672) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8674 = mhlo.shift_left %8670, %8673 : tensor<2097152xui32> loc(#loc837) | |
| %8675 = mhlo.constant dense<6> : tensor<ui32> loc(#loc835) | |
| %8676 = "mhlo.broadcast_in_dim"(%8675) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8677 = mhlo.shift_right_logical %8670, %8676 : tensor<2097152xui32> loc(#loc838) | |
| %8678 = mhlo.or %8674, %8677 : tensor<2097152xui32> loc(#loc839) | |
| %8679 = mhlo.xor %8671, %8678 : tensor<2097152xui32> loc(#loc834) | |
| %8680 = mhlo.add %8671, %8679 : tensor<2097152xui32> loc(#loc836) | |
| %8681 = mhlo.constant dense<6> : tensor<ui32> loc(#loc835) | |
| %8682 = "mhlo.broadcast_in_dim"(%8681) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8683 = mhlo.shift_left %8679, %8682 : tensor<2097152xui32> loc(#loc837) | |
| %8684 = mhlo.constant dense<26> : tensor<ui32> loc(#loc835) | |
| %8685 = "mhlo.broadcast_in_dim"(%8684) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8686 = mhlo.shift_right_logical %8679, %8685 : tensor<2097152xui32> loc(#loc838) | |
| %8687 = mhlo.or %8683, %8686 : tensor<2097152xui32> loc(#loc839) | |
| %8688 = mhlo.xor %8680, %8687 : tensor<2097152xui32> loc(#loc834) | |
| %8689 = "mhlo.broadcast_in_dim"(%8555) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8690 = mhlo.add %8680, %8689 : tensor<2097152xui32> loc(#loc836) | |
| %8691 = "mhlo.broadcast_in_dim"(%8557) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8692 = mhlo.add %8688, %8691 : tensor<2097152xui32> loc(#loc836) | |
| %8693 = mhlo.constant dense<3> : tensor<ui32> loc(#loc835) | |
| %8694 = "mhlo.broadcast_in_dim"(%8693) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8695 = mhlo.add %8692, %8694 : tensor<2097152xui32> loc(#loc836) | |
| %8696 = mhlo.add %8690, %8695 : tensor<2097152xui32> loc(#loc836) | |
| %8697 = mhlo.constant dense<17> : tensor<ui32> loc(#loc835) | |
| %8698 = "mhlo.broadcast_in_dim"(%8697) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8699 = mhlo.shift_left %8695, %8698 : tensor<2097152xui32> loc(#loc837) | |
| %8700 = mhlo.constant dense<15> : tensor<ui32> loc(#loc835) | |
| %8701 = "mhlo.broadcast_in_dim"(%8700) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8702 = mhlo.shift_right_logical %8695, %8701 : tensor<2097152xui32> loc(#loc838) | |
| %8703 = mhlo.or %8699, %8702 : tensor<2097152xui32> loc(#loc839) | |
| %8704 = mhlo.xor %8696, %8703 : tensor<2097152xui32> loc(#loc834) | |
| %8705 = mhlo.add %8696, %8704 : tensor<2097152xui32> loc(#loc836) | |
| %8706 = mhlo.constant dense<29> : tensor<ui32> loc(#loc835) | |
| %8707 = "mhlo.broadcast_in_dim"(%8706) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8708 = mhlo.shift_left %8704, %8707 : tensor<2097152xui32> loc(#loc837) | |
| %8709 = mhlo.constant dense<3> : tensor<ui32> loc(#loc835) | |
| %8710 = "mhlo.broadcast_in_dim"(%8709) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8711 = mhlo.shift_right_logical %8704, %8710 : tensor<2097152xui32> loc(#loc838) | |
| %8712 = mhlo.or %8708, %8711 : tensor<2097152xui32> loc(#loc839) | |
| %8713 = mhlo.xor %8705, %8712 : tensor<2097152xui32> loc(#loc834) | |
| %8714 = mhlo.add %8705, %8713 : tensor<2097152xui32> loc(#loc836) | |
| %8715 = mhlo.constant dense<16> : tensor<ui32> loc(#loc835) | |
| %8716 = "mhlo.broadcast_in_dim"(%8715) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8717 = mhlo.shift_left %8713, %8716 : tensor<2097152xui32> loc(#loc837) | |
| %8718 = mhlo.constant dense<16> : tensor<ui32> loc(#loc835) | |
| %8719 = "mhlo.broadcast_in_dim"(%8718) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8720 = mhlo.shift_right_logical %8713, %8719 : tensor<2097152xui32> loc(#loc838) | |
| %8721 = mhlo.or %8717, %8720 : tensor<2097152xui32> loc(#loc839) | |
| %8722 = mhlo.xor %8714, %8721 : tensor<2097152xui32> loc(#loc834) | |
| %8723 = mhlo.add %8714, %8722 : tensor<2097152xui32> loc(#loc836) | |
| %8724 = mhlo.constant dense<24> : tensor<ui32> loc(#loc835) | |
| %8725 = "mhlo.broadcast_in_dim"(%8724) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8726 = mhlo.shift_left %8722, %8725 : tensor<2097152xui32> loc(#loc837) | |
| %8727 = mhlo.constant dense<8> : tensor<ui32> loc(#loc835) | |
| %8728 = "mhlo.broadcast_in_dim"(%8727) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8729 = mhlo.shift_right_logical %8722, %8728 : tensor<2097152xui32> loc(#loc838) | |
| %8730 = mhlo.or %8726, %8729 : tensor<2097152xui32> loc(#loc839) | |
| %8731 = mhlo.xor %8723, %8730 : tensor<2097152xui32> loc(#loc834) | |
| %8732 = "mhlo.broadcast_in_dim"(%8557) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8733 = mhlo.add %8723, %8732 : tensor<2097152xui32> loc(#loc836) | |
| %8734 = "mhlo.broadcast_in_dim"(%8562) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8735 = mhlo.add %8731, %8734 : tensor<2097152xui32> loc(#loc836) | |
| %8736 = mhlo.constant dense<4> : tensor<ui32> loc(#loc835) | |
| %8737 = "mhlo.broadcast_in_dim"(%8736) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8738 = mhlo.add %8735, %8737 : tensor<2097152xui32> loc(#loc836) | |
| %8739 = mhlo.add %8733, %8738 : tensor<2097152xui32> loc(#loc836) | |
| %8740 = mhlo.constant dense<13> : tensor<ui32> loc(#loc835) | |
| %8741 = "mhlo.broadcast_in_dim"(%8740) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8742 = mhlo.shift_left %8738, %8741 : tensor<2097152xui32> loc(#loc837) | |
| %8743 = mhlo.constant dense<19> : tensor<ui32> loc(#loc835) | |
| %8744 = "mhlo.broadcast_in_dim"(%8743) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8745 = mhlo.shift_right_logical %8738, %8744 : tensor<2097152xui32> loc(#loc838) | |
| %8746 = mhlo.or %8742, %8745 : tensor<2097152xui32> loc(#loc839) | |
| %8747 = mhlo.xor %8739, %8746 : tensor<2097152xui32> loc(#loc834) | |
| %8748 = mhlo.add %8739, %8747 : tensor<2097152xui32> loc(#loc836) | |
| %8749 = mhlo.constant dense<15> : tensor<ui32> loc(#loc835) | |
| %8750 = "mhlo.broadcast_in_dim"(%8749) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8751 = mhlo.shift_left %8747, %8750 : tensor<2097152xui32> loc(#loc837) | |
| %8752 = mhlo.constant dense<17> : tensor<ui32> loc(#loc835) | |
| %8753 = "mhlo.broadcast_in_dim"(%8752) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8754 = mhlo.shift_right_logical %8747, %8753 : tensor<2097152xui32> loc(#loc838) | |
| %8755 = mhlo.or %8751, %8754 : tensor<2097152xui32> loc(#loc839) | |
| %8756 = mhlo.xor %8748, %8755 : tensor<2097152xui32> loc(#loc834) | |
| %8757 = mhlo.add %8748, %8756 : tensor<2097152xui32> loc(#loc836) | |
| %8758 = mhlo.constant dense<26> : tensor<ui32> loc(#loc835) | |
| %8759 = "mhlo.broadcast_in_dim"(%8758) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8760 = mhlo.shift_left %8756, %8759 : tensor<2097152xui32> loc(#loc837) | |
| %8761 = mhlo.constant dense<6> : tensor<ui32> loc(#loc835) | |
| %8762 = "mhlo.broadcast_in_dim"(%8761) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8763 = mhlo.shift_right_logical %8756, %8762 : tensor<2097152xui32> loc(#loc838) | |
| %8764 = mhlo.or %8760, %8763 : tensor<2097152xui32> loc(#loc839) | |
| %8765 = mhlo.xor %8757, %8764 : tensor<2097152xui32> loc(#loc834) | |
| %8766 = mhlo.add %8757, %8765 : tensor<2097152xui32> loc(#loc836) | |
| %8767 = mhlo.constant dense<6> : tensor<ui32> loc(#loc835) | |
| %8768 = "mhlo.broadcast_in_dim"(%8767) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc837) | |
| %8769 = mhlo.shift_left %8765, %8768 : tensor<2097152xui32> loc(#loc837) | |
| %8770 = mhlo.constant dense<26> : tensor<ui32> loc(#loc835) | |
| %8771 = "mhlo.broadcast_in_dim"(%8770) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc838) | |
| %8772 = mhlo.shift_right_logical %8765, %8771 : tensor<2097152xui32> loc(#loc838) | |
| %8773 = mhlo.or %8769, %8772 : tensor<2097152xui32> loc(#loc839) | |
| %8774 = mhlo.xor %8766, %8773 : tensor<2097152xui32> loc(#loc834) | |
| %8775 = "mhlo.broadcast_in_dim"(%8562) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8776 = mhlo.add %8766, %8775 : tensor<2097152xui32> loc(#loc836) | |
| %8777 = "mhlo.broadcast_in_dim"(%8555) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8778 = mhlo.add %8774, %8777 : tensor<2097152xui32> loc(#loc836) | |
| %8779 = mhlo.constant dense<5> : tensor<ui32> loc(#loc835) | |
| %8780 = "mhlo.broadcast_in_dim"(%8779) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc836) | |
| %8781 = mhlo.add %8778, %8780 : tensor<2097152xui32> loc(#loc836) | |
| %8782 = "mhlo.concatenate"(%8776, %8781) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc840) | |
| %8783 = "mhlo.reshape"(%8782) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc841) | |
| %8784 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %8785 = "mhlo.broadcast_in_dim"(%8784) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc838) | |
| %8786 = mhlo.shift_right_logical %8783, %8785 : tensor<2048x2048xui32> loc(#loc838) | |
| %8787 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %8788 = "mhlo.broadcast_in_dim"(%8787) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc839) | |
| %8789 = mhlo.or %8786, %8788 : tensor<2048x2048xui32> loc(#loc839) | |
| %8790 = "mhlo.bitcast_convert"(%8789) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc842) | |
| %8791 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %8792 = "mhlo.broadcast_in_dim"(%8791) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc843) | |
| %8793 = mhlo.subtract %8790, %8792 : tensor<2048x2048xf32> loc(#loc843) | |
| %8794 = mhlo.subtract %8552, %8550 : tensor<1x1xf32> loc(#loc843) | |
| %8795 = "mhlo.broadcast_in_dim"(%8794) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc844) | |
| %8796 = mhlo.multiply %8793, %8795 : tensor<2048x2048xf32> loc(#loc844) | |
| %8797 = "mhlo.broadcast_in_dim"(%8550) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc836) | |
| %8798 = mhlo.add %8796, %8797 : tensor<2048x2048xf32> loc(#loc836) | |
| %8799 = "mhlo.broadcast_in_dim"(%8550) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc845) | |
| %8800 = mhlo.maximum %8799, %8798 : tensor<2048x2048xf32> loc(#loc845) | |
| %8801 = func.call @erf_inv_22(%8800) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc846) | |
| %8802 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %8803 = "mhlo.broadcast_in_dim"(%8802) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc844) | |
| %8804 = mhlo.multiply %8801, %8803 : tensor<2048x2048xf32> loc(#loc844) | |
| %8805 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %8806 = "mhlo.broadcast_in_dim"(%8805) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc844) | |
| %8807 = mhlo.multiply %8804, %8806 : tensor<2048x2048xf32> loc(#loc844) | |
| %8808 = mhlo.convert(%8807) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc847) | |
| %8809 = "mhlo.dot_general"(%8311, %8808) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x256x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x256x2048xf16> loc(#loc848) | |
| %8810 = mhlo.constant dense<299804320> : tensor<ui32> loc(#loc531) | |
| %8811 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %8812 = mhlo.shift_right_logical %8810, %8811 : tensor<ui32> loc(#loc849) | |
| %8813 = "mhlo.reshape"(%8812) : (tensor<ui32>) -> tensor<1xui32> loc(#loc850) | |
| %8814 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %8815 = mhlo.and %8810, %8814 : tensor<ui32> loc(#loc851) | |
| %8816 = "mhlo.reshape"(%8815) : (tensor<ui32>) -> tensor<1xui32> loc(#loc850) | |
| %8817 = "mhlo.concatenate"(%8813, %8816) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc852) | |
| %8818 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc853) | |
| %8819 = "mhlo.reshape"(%8818) : (tensor<1xui32>) -> tensor<ui32> loc(#loc854) | |
| %8820 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc855) | |
| %8821 = "mhlo.reshape"(%8820) : (tensor<1xui32>) -> tensor<ui32> loc(#loc854) | |
| %8822 = "mhlo.slice"(%8817) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc856) | |
| %8823 = "mhlo.slice"(%8817) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc857) | |
| %8824 = mhlo.xor %8819, %8821 : tensor<ui32> loc(#loc858) | |
| %8825 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc859) | |
| %8826 = mhlo.xor %8824, %8825 : tensor<ui32> loc(#loc858) | |
| %8827 = "mhlo.broadcast_in_dim"(%8819) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8828 = mhlo.add %8822, %8827 : tensor<1xui32> loc(#loc860) | |
| %8829 = "mhlo.broadcast_in_dim"(%8821) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8830 = mhlo.add %8823, %8829 : tensor<1xui32> loc(#loc860) | |
| %8831 = mhlo.add %8828, %8830 : tensor<1xui32> loc(#loc860) | |
| %8832 = mhlo.constant dense<13> : tensor<ui32> loc(#loc859) | |
| %8833 = "mhlo.broadcast_in_dim"(%8832) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8834 = mhlo.shift_left %8830, %8833 : tensor<1xui32> loc(#loc861) | |
| %8835 = mhlo.constant dense<19> : tensor<ui32> loc(#loc859) | |
| %8836 = "mhlo.broadcast_in_dim"(%8835) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8837 = mhlo.shift_right_logical %8830, %8836 : tensor<1xui32> loc(#loc849) | |
| %8838 = mhlo.or %8834, %8837 : tensor<1xui32> loc(#loc862) | |
| %8839 = mhlo.xor %8831, %8838 : tensor<1xui32> loc(#loc858) | |
| %8840 = mhlo.add %8831, %8839 : tensor<1xui32> loc(#loc860) | |
| %8841 = mhlo.constant dense<15> : tensor<ui32> loc(#loc859) | |
| %8842 = "mhlo.broadcast_in_dim"(%8841) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8843 = mhlo.shift_left %8839, %8842 : tensor<1xui32> loc(#loc861) | |
| %8844 = mhlo.constant dense<17> : tensor<ui32> loc(#loc859) | |
| %8845 = "mhlo.broadcast_in_dim"(%8844) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8846 = mhlo.shift_right_logical %8839, %8845 : tensor<1xui32> loc(#loc849) | |
| %8847 = mhlo.or %8843, %8846 : tensor<1xui32> loc(#loc862) | |
| %8848 = mhlo.xor %8840, %8847 : tensor<1xui32> loc(#loc858) | |
| %8849 = mhlo.add %8840, %8848 : tensor<1xui32> loc(#loc860) | |
| %8850 = mhlo.constant dense<26> : tensor<ui32> loc(#loc859) | |
| %8851 = "mhlo.broadcast_in_dim"(%8850) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8852 = mhlo.shift_left %8848, %8851 : tensor<1xui32> loc(#loc861) | |
| %8853 = mhlo.constant dense<6> : tensor<ui32> loc(#loc859) | |
| %8854 = "mhlo.broadcast_in_dim"(%8853) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8855 = mhlo.shift_right_logical %8848, %8854 : tensor<1xui32> loc(#loc849) | |
| %8856 = mhlo.or %8852, %8855 : tensor<1xui32> loc(#loc862) | |
| %8857 = mhlo.xor %8849, %8856 : tensor<1xui32> loc(#loc858) | |
| %8858 = mhlo.add %8849, %8857 : tensor<1xui32> loc(#loc860) | |
| %8859 = mhlo.constant dense<6> : tensor<ui32> loc(#loc859) | |
| %8860 = "mhlo.broadcast_in_dim"(%8859) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8861 = mhlo.shift_left %8857, %8860 : tensor<1xui32> loc(#loc861) | |
| %8862 = mhlo.constant dense<26> : tensor<ui32> loc(#loc859) | |
| %8863 = "mhlo.broadcast_in_dim"(%8862) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8864 = mhlo.shift_right_logical %8857, %8863 : tensor<1xui32> loc(#loc849) | |
| %8865 = mhlo.or %8861, %8864 : tensor<1xui32> loc(#loc862) | |
| %8866 = mhlo.xor %8858, %8865 : tensor<1xui32> loc(#loc858) | |
| %8867 = "mhlo.broadcast_in_dim"(%8821) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8868 = mhlo.add %8858, %8867 : tensor<1xui32> loc(#loc860) | |
| %8869 = "mhlo.broadcast_in_dim"(%8826) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8870 = mhlo.add %8866, %8869 : tensor<1xui32> loc(#loc860) | |
| %8871 = mhlo.constant dense<1> : tensor<ui32> loc(#loc859) | |
| %8872 = "mhlo.broadcast_in_dim"(%8871) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8873 = mhlo.add %8870, %8872 : tensor<1xui32> loc(#loc860) | |
| %8874 = mhlo.add %8868, %8873 : tensor<1xui32> loc(#loc860) | |
| %8875 = mhlo.constant dense<17> : tensor<ui32> loc(#loc859) | |
| %8876 = "mhlo.broadcast_in_dim"(%8875) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8877 = mhlo.shift_left %8873, %8876 : tensor<1xui32> loc(#loc861) | |
| %8878 = mhlo.constant dense<15> : tensor<ui32> loc(#loc859) | |
| %8879 = "mhlo.broadcast_in_dim"(%8878) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8880 = mhlo.shift_right_logical %8873, %8879 : tensor<1xui32> loc(#loc849) | |
| %8881 = mhlo.or %8877, %8880 : tensor<1xui32> loc(#loc862) | |
| %8882 = mhlo.xor %8874, %8881 : tensor<1xui32> loc(#loc858) | |
| %8883 = mhlo.add %8874, %8882 : tensor<1xui32> loc(#loc860) | |
| %8884 = mhlo.constant dense<29> : tensor<ui32> loc(#loc859) | |
| %8885 = "mhlo.broadcast_in_dim"(%8884) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8886 = mhlo.shift_left %8882, %8885 : tensor<1xui32> loc(#loc861) | |
| %8887 = mhlo.constant dense<3> : tensor<ui32> loc(#loc859) | |
| %8888 = "mhlo.broadcast_in_dim"(%8887) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8889 = mhlo.shift_right_logical %8882, %8888 : tensor<1xui32> loc(#loc849) | |
| %8890 = mhlo.or %8886, %8889 : tensor<1xui32> loc(#loc862) | |
| %8891 = mhlo.xor %8883, %8890 : tensor<1xui32> loc(#loc858) | |
| %8892 = mhlo.add %8883, %8891 : tensor<1xui32> loc(#loc860) | |
| %8893 = mhlo.constant dense<16> : tensor<ui32> loc(#loc859) | |
| %8894 = "mhlo.broadcast_in_dim"(%8893) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8895 = mhlo.shift_left %8891, %8894 : tensor<1xui32> loc(#loc861) | |
| %8896 = mhlo.constant dense<16> : tensor<ui32> loc(#loc859) | |
| %8897 = "mhlo.broadcast_in_dim"(%8896) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8898 = mhlo.shift_right_logical %8891, %8897 : tensor<1xui32> loc(#loc849) | |
| %8899 = mhlo.or %8895, %8898 : tensor<1xui32> loc(#loc862) | |
| %8900 = mhlo.xor %8892, %8899 : tensor<1xui32> loc(#loc858) | |
| %8901 = mhlo.add %8892, %8900 : tensor<1xui32> loc(#loc860) | |
| %8902 = mhlo.constant dense<24> : tensor<ui32> loc(#loc859) | |
| %8903 = "mhlo.broadcast_in_dim"(%8902) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8904 = mhlo.shift_left %8900, %8903 : tensor<1xui32> loc(#loc861) | |
| %8905 = mhlo.constant dense<8> : tensor<ui32> loc(#loc859) | |
| %8906 = "mhlo.broadcast_in_dim"(%8905) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8907 = mhlo.shift_right_logical %8900, %8906 : tensor<1xui32> loc(#loc849) | |
| %8908 = mhlo.or %8904, %8907 : tensor<1xui32> loc(#loc862) | |
| %8909 = mhlo.xor %8901, %8908 : tensor<1xui32> loc(#loc858) | |
| %8910 = "mhlo.broadcast_in_dim"(%8826) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8911 = mhlo.add %8901, %8910 : tensor<1xui32> loc(#loc860) | |
| %8912 = "mhlo.broadcast_in_dim"(%8819) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8913 = mhlo.add %8909, %8912 : tensor<1xui32> loc(#loc860) | |
| %8914 = mhlo.constant dense<2> : tensor<ui32> loc(#loc859) | |
| %8915 = "mhlo.broadcast_in_dim"(%8914) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8916 = mhlo.add %8913, %8915 : tensor<1xui32> loc(#loc860) | |
| %8917 = mhlo.add %8911, %8916 : tensor<1xui32> loc(#loc860) | |
| %8918 = mhlo.constant dense<13> : tensor<ui32> loc(#loc859) | |
| %8919 = "mhlo.broadcast_in_dim"(%8918) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8920 = mhlo.shift_left %8916, %8919 : tensor<1xui32> loc(#loc861) | |
| %8921 = mhlo.constant dense<19> : tensor<ui32> loc(#loc859) | |
| %8922 = "mhlo.broadcast_in_dim"(%8921) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8923 = mhlo.shift_right_logical %8916, %8922 : tensor<1xui32> loc(#loc849) | |
| %8924 = mhlo.or %8920, %8923 : tensor<1xui32> loc(#loc862) | |
| %8925 = mhlo.xor %8917, %8924 : tensor<1xui32> loc(#loc858) | |
| %8926 = mhlo.add %8917, %8925 : tensor<1xui32> loc(#loc860) | |
| %8927 = mhlo.constant dense<15> : tensor<ui32> loc(#loc859) | |
| %8928 = "mhlo.broadcast_in_dim"(%8927) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8929 = mhlo.shift_left %8925, %8928 : tensor<1xui32> loc(#loc861) | |
| %8930 = mhlo.constant dense<17> : tensor<ui32> loc(#loc859) | |
| %8931 = "mhlo.broadcast_in_dim"(%8930) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8932 = mhlo.shift_right_logical %8925, %8931 : tensor<1xui32> loc(#loc849) | |
| %8933 = mhlo.or %8929, %8932 : tensor<1xui32> loc(#loc862) | |
| %8934 = mhlo.xor %8926, %8933 : tensor<1xui32> loc(#loc858) | |
| %8935 = mhlo.add %8926, %8934 : tensor<1xui32> loc(#loc860) | |
| %8936 = mhlo.constant dense<26> : tensor<ui32> loc(#loc859) | |
| %8937 = "mhlo.broadcast_in_dim"(%8936) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8938 = mhlo.shift_left %8934, %8937 : tensor<1xui32> loc(#loc861) | |
| %8939 = mhlo.constant dense<6> : tensor<ui32> loc(#loc859) | |
| %8940 = "mhlo.broadcast_in_dim"(%8939) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8941 = mhlo.shift_right_logical %8934, %8940 : tensor<1xui32> loc(#loc849) | |
| %8942 = mhlo.or %8938, %8941 : tensor<1xui32> loc(#loc862) | |
| %8943 = mhlo.xor %8935, %8942 : tensor<1xui32> loc(#loc858) | |
| %8944 = mhlo.add %8935, %8943 : tensor<1xui32> loc(#loc860) | |
| %8945 = mhlo.constant dense<6> : tensor<ui32> loc(#loc859) | |
| %8946 = "mhlo.broadcast_in_dim"(%8945) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8947 = mhlo.shift_left %8943, %8946 : tensor<1xui32> loc(#loc861) | |
| %8948 = mhlo.constant dense<26> : tensor<ui32> loc(#loc859) | |
| %8949 = "mhlo.broadcast_in_dim"(%8948) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8950 = mhlo.shift_right_logical %8943, %8949 : tensor<1xui32> loc(#loc849) | |
| %8951 = mhlo.or %8947, %8950 : tensor<1xui32> loc(#loc862) | |
| %8952 = mhlo.xor %8944, %8951 : tensor<1xui32> loc(#loc858) | |
| %8953 = "mhlo.broadcast_in_dim"(%8819) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8954 = mhlo.add %8944, %8953 : tensor<1xui32> loc(#loc860) | |
| %8955 = "mhlo.broadcast_in_dim"(%8821) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8956 = mhlo.add %8952, %8955 : tensor<1xui32> loc(#loc860) | |
| %8957 = mhlo.constant dense<3> : tensor<ui32> loc(#loc859) | |
| %8958 = "mhlo.broadcast_in_dim"(%8957) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8959 = mhlo.add %8956, %8958 : tensor<1xui32> loc(#loc860) | |
| %8960 = mhlo.add %8954, %8959 : tensor<1xui32> loc(#loc860) | |
| %8961 = mhlo.constant dense<17> : tensor<ui32> loc(#loc859) | |
| %8962 = "mhlo.broadcast_in_dim"(%8961) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8963 = mhlo.shift_left %8959, %8962 : tensor<1xui32> loc(#loc861) | |
| %8964 = mhlo.constant dense<15> : tensor<ui32> loc(#loc859) | |
| %8965 = "mhlo.broadcast_in_dim"(%8964) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8966 = mhlo.shift_right_logical %8959, %8965 : tensor<1xui32> loc(#loc849) | |
| %8967 = mhlo.or %8963, %8966 : tensor<1xui32> loc(#loc862) | |
| %8968 = mhlo.xor %8960, %8967 : tensor<1xui32> loc(#loc858) | |
| %8969 = mhlo.add %8960, %8968 : tensor<1xui32> loc(#loc860) | |
| %8970 = mhlo.constant dense<29> : tensor<ui32> loc(#loc859) | |
| %8971 = "mhlo.broadcast_in_dim"(%8970) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8972 = mhlo.shift_left %8968, %8971 : tensor<1xui32> loc(#loc861) | |
| %8973 = mhlo.constant dense<3> : tensor<ui32> loc(#loc859) | |
| %8974 = "mhlo.broadcast_in_dim"(%8973) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8975 = mhlo.shift_right_logical %8968, %8974 : tensor<1xui32> loc(#loc849) | |
| %8976 = mhlo.or %8972, %8975 : tensor<1xui32> loc(#loc862) | |
| %8977 = mhlo.xor %8969, %8976 : tensor<1xui32> loc(#loc858) | |
| %8978 = mhlo.add %8969, %8977 : tensor<1xui32> loc(#loc860) | |
| %8979 = mhlo.constant dense<16> : tensor<ui32> loc(#loc859) | |
| %8980 = "mhlo.broadcast_in_dim"(%8979) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8981 = mhlo.shift_left %8977, %8980 : tensor<1xui32> loc(#loc861) | |
| %8982 = mhlo.constant dense<16> : tensor<ui32> loc(#loc859) | |
| %8983 = "mhlo.broadcast_in_dim"(%8982) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8984 = mhlo.shift_right_logical %8977, %8983 : tensor<1xui32> loc(#loc849) | |
| %8985 = mhlo.or %8981, %8984 : tensor<1xui32> loc(#loc862) | |
| %8986 = mhlo.xor %8978, %8985 : tensor<1xui32> loc(#loc858) | |
| %8987 = mhlo.add %8978, %8986 : tensor<1xui32> loc(#loc860) | |
| %8988 = mhlo.constant dense<24> : tensor<ui32> loc(#loc859) | |
| %8989 = "mhlo.broadcast_in_dim"(%8988) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %8990 = mhlo.shift_left %8986, %8989 : tensor<1xui32> loc(#loc861) | |
| %8991 = mhlo.constant dense<8> : tensor<ui32> loc(#loc859) | |
| %8992 = "mhlo.broadcast_in_dim"(%8991) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %8993 = mhlo.shift_right_logical %8986, %8992 : tensor<1xui32> loc(#loc849) | |
| %8994 = mhlo.or %8990, %8993 : tensor<1xui32> loc(#loc862) | |
| %8995 = mhlo.xor %8987, %8994 : tensor<1xui32> loc(#loc858) | |
| %8996 = "mhlo.broadcast_in_dim"(%8821) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8997 = mhlo.add %8987, %8996 : tensor<1xui32> loc(#loc860) | |
| %8998 = "mhlo.broadcast_in_dim"(%8826) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %8999 = mhlo.add %8995, %8998 : tensor<1xui32> loc(#loc860) | |
| %9000 = mhlo.constant dense<4> : tensor<ui32> loc(#loc859) | |
| %9001 = "mhlo.broadcast_in_dim"(%9000) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %9002 = mhlo.add %8999, %9001 : tensor<1xui32> loc(#loc860) | |
| %9003 = mhlo.add %8997, %9002 : tensor<1xui32> loc(#loc860) | |
| %9004 = mhlo.constant dense<13> : tensor<ui32> loc(#loc859) | |
| %9005 = "mhlo.broadcast_in_dim"(%9004) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %9006 = mhlo.shift_left %9002, %9005 : tensor<1xui32> loc(#loc861) | |
| %9007 = mhlo.constant dense<19> : tensor<ui32> loc(#loc859) | |
| %9008 = "mhlo.broadcast_in_dim"(%9007) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %9009 = mhlo.shift_right_logical %9002, %9008 : tensor<1xui32> loc(#loc849) | |
| %9010 = mhlo.or %9006, %9009 : tensor<1xui32> loc(#loc862) | |
| %9011 = mhlo.xor %9003, %9010 : tensor<1xui32> loc(#loc858) | |
| %9012 = mhlo.add %9003, %9011 : tensor<1xui32> loc(#loc860) | |
| %9013 = mhlo.constant dense<15> : tensor<ui32> loc(#loc859) | |
| %9014 = "mhlo.broadcast_in_dim"(%9013) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %9015 = mhlo.shift_left %9011, %9014 : tensor<1xui32> loc(#loc861) | |
| %9016 = mhlo.constant dense<17> : tensor<ui32> loc(#loc859) | |
| %9017 = "mhlo.broadcast_in_dim"(%9016) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %9018 = mhlo.shift_right_logical %9011, %9017 : tensor<1xui32> loc(#loc849) | |
| %9019 = mhlo.or %9015, %9018 : tensor<1xui32> loc(#loc862) | |
| %9020 = mhlo.xor %9012, %9019 : tensor<1xui32> loc(#loc858) | |
| %9021 = mhlo.add %9012, %9020 : tensor<1xui32> loc(#loc860) | |
| %9022 = mhlo.constant dense<26> : tensor<ui32> loc(#loc859) | |
| %9023 = "mhlo.broadcast_in_dim"(%9022) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %9024 = mhlo.shift_left %9020, %9023 : tensor<1xui32> loc(#loc861) | |
| %9025 = mhlo.constant dense<6> : tensor<ui32> loc(#loc859) | |
| %9026 = "mhlo.broadcast_in_dim"(%9025) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %9027 = mhlo.shift_right_logical %9020, %9026 : tensor<1xui32> loc(#loc849) | |
| %9028 = mhlo.or %9024, %9027 : tensor<1xui32> loc(#loc862) | |
| %9029 = mhlo.xor %9021, %9028 : tensor<1xui32> loc(#loc858) | |
| %9030 = mhlo.add %9021, %9029 : tensor<1xui32> loc(#loc860) | |
| %9031 = mhlo.constant dense<6> : tensor<ui32> loc(#loc859) | |
| %9032 = "mhlo.broadcast_in_dim"(%9031) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc861) | |
| %9033 = mhlo.shift_left %9029, %9032 : tensor<1xui32> loc(#loc861) | |
| %9034 = mhlo.constant dense<26> : tensor<ui32> loc(#loc859) | |
| %9035 = "mhlo.broadcast_in_dim"(%9034) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc849) | |
| %9036 = mhlo.shift_right_logical %9029, %9035 : tensor<1xui32> loc(#loc849) | |
| %9037 = mhlo.or %9033, %9036 : tensor<1xui32> loc(#loc862) | |
| %9038 = mhlo.xor %9030, %9037 : tensor<1xui32> loc(#loc858) | |
| %9039 = "mhlo.broadcast_in_dim"(%8826) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %9040 = mhlo.add %9030, %9039 : tensor<1xui32> loc(#loc860) | |
| %9041 = "mhlo.broadcast_in_dim"(%8819) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %9042 = mhlo.add %9038, %9041 : tensor<1xui32> loc(#loc860) | |
| %9043 = mhlo.constant dense<5> : tensor<ui32> loc(#loc859) | |
| %9044 = "mhlo.broadcast_in_dim"(%9043) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc860) | |
| %9045 = mhlo.add %9042, %9044 : tensor<1xui32> loc(#loc860) | |
| %9046 = "mhlo.concatenate"(%9040, %9045) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc852) | |
| %9047 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %9048 = "mhlo.broadcast_in_dim"(%9047) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc863) | |
| %9049 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %9050 = "mhlo.broadcast_in_dim"(%9049) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc863) | |
| %9051 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc864) | |
| %9052 = "mhlo.slice"(%9046) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc865) | |
| %9053 = "mhlo.reshape"(%9052) : (tensor<1xui32>) -> tensor<ui32> loc(#loc866) | |
| %9054 = "mhlo.slice"(%9046) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc867) | |
| %9055 = "mhlo.reshape"(%9054) : (tensor<1xui32>) -> tensor<ui32> loc(#loc866) | |
| %9056 = "mhlo.slice"(%9051) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc868) | |
| %9057 = "mhlo.slice"(%9051) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc869) | |
| %9058 = mhlo.xor %9053, %9055 : tensor<ui32> loc(#loc870) | |
| %9059 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc871) | |
| %9060 = mhlo.xor %9058, %9059 : tensor<ui32> loc(#loc870) | |
| %9061 = "mhlo.broadcast_in_dim"(%9053) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9062 = mhlo.add %9056, %9061 : tensor<2097152xui32> loc(#loc872) | |
| %9063 = "mhlo.broadcast_in_dim"(%9055) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9064 = mhlo.add %9057, %9063 : tensor<2097152xui32> loc(#loc872) | |
| %9065 = mhlo.add %9062, %9064 : tensor<2097152xui32> loc(#loc872) | |
| %9066 = mhlo.constant dense<13> : tensor<ui32> loc(#loc871) | |
| %9067 = "mhlo.broadcast_in_dim"(%9066) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9068 = mhlo.shift_left %9064, %9067 : tensor<2097152xui32> loc(#loc873) | |
| %9069 = mhlo.constant dense<19> : tensor<ui32> loc(#loc871) | |
| %9070 = "mhlo.broadcast_in_dim"(%9069) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9071 = mhlo.shift_right_logical %9064, %9070 : tensor<2097152xui32> loc(#loc874) | |
| %9072 = mhlo.or %9068, %9071 : tensor<2097152xui32> loc(#loc875) | |
| %9073 = mhlo.xor %9065, %9072 : tensor<2097152xui32> loc(#loc870) | |
| %9074 = mhlo.add %9065, %9073 : tensor<2097152xui32> loc(#loc872) | |
| %9075 = mhlo.constant dense<15> : tensor<ui32> loc(#loc871) | |
| %9076 = "mhlo.broadcast_in_dim"(%9075) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9077 = mhlo.shift_left %9073, %9076 : tensor<2097152xui32> loc(#loc873) | |
| %9078 = mhlo.constant dense<17> : tensor<ui32> loc(#loc871) | |
| %9079 = "mhlo.broadcast_in_dim"(%9078) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9080 = mhlo.shift_right_logical %9073, %9079 : tensor<2097152xui32> loc(#loc874) | |
| %9081 = mhlo.or %9077, %9080 : tensor<2097152xui32> loc(#loc875) | |
| %9082 = mhlo.xor %9074, %9081 : tensor<2097152xui32> loc(#loc870) | |
| %9083 = mhlo.add %9074, %9082 : tensor<2097152xui32> loc(#loc872) | |
| %9084 = mhlo.constant dense<26> : tensor<ui32> loc(#loc871) | |
| %9085 = "mhlo.broadcast_in_dim"(%9084) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9086 = mhlo.shift_left %9082, %9085 : tensor<2097152xui32> loc(#loc873) | |
| %9087 = mhlo.constant dense<6> : tensor<ui32> loc(#loc871) | |
| %9088 = "mhlo.broadcast_in_dim"(%9087) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9089 = mhlo.shift_right_logical %9082, %9088 : tensor<2097152xui32> loc(#loc874) | |
| %9090 = mhlo.or %9086, %9089 : tensor<2097152xui32> loc(#loc875) | |
| %9091 = mhlo.xor %9083, %9090 : tensor<2097152xui32> loc(#loc870) | |
| %9092 = mhlo.add %9083, %9091 : tensor<2097152xui32> loc(#loc872) | |
| %9093 = mhlo.constant dense<6> : tensor<ui32> loc(#loc871) | |
| %9094 = "mhlo.broadcast_in_dim"(%9093) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9095 = mhlo.shift_left %9091, %9094 : tensor<2097152xui32> loc(#loc873) | |
| %9096 = mhlo.constant dense<26> : tensor<ui32> loc(#loc871) | |
| %9097 = "mhlo.broadcast_in_dim"(%9096) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9098 = mhlo.shift_right_logical %9091, %9097 : tensor<2097152xui32> loc(#loc874) | |
| %9099 = mhlo.or %9095, %9098 : tensor<2097152xui32> loc(#loc875) | |
| %9100 = mhlo.xor %9092, %9099 : tensor<2097152xui32> loc(#loc870) | |
| %9101 = "mhlo.broadcast_in_dim"(%9055) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9102 = mhlo.add %9092, %9101 : tensor<2097152xui32> loc(#loc872) | |
| %9103 = "mhlo.broadcast_in_dim"(%9060) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9104 = mhlo.add %9100, %9103 : tensor<2097152xui32> loc(#loc872) | |
| %9105 = mhlo.constant dense<1> : tensor<ui32> loc(#loc871) | |
| %9106 = "mhlo.broadcast_in_dim"(%9105) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9107 = mhlo.add %9104, %9106 : tensor<2097152xui32> loc(#loc872) | |
| %9108 = mhlo.add %9102, %9107 : tensor<2097152xui32> loc(#loc872) | |
| %9109 = mhlo.constant dense<17> : tensor<ui32> loc(#loc871) | |
| %9110 = "mhlo.broadcast_in_dim"(%9109) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9111 = mhlo.shift_left %9107, %9110 : tensor<2097152xui32> loc(#loc873) | |
| %9112 = mhlo.constant dense<15> : tensor<ui32> loc(#loc871) | |
| %9113 = "mhlo.broadcast_in_dim"(%9112) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9114 = mhlo.shift_right_logical %9107, %9113 : tensor<2097152xui32> loc(#loc874) | |
| %9115 = mhlo.or %9111, %9114 : tensor<2097152xui32> loc(#loc875) | |
| %9116 = mhlo.xor %9108, %9115 : tensor<2097152xui32> loc(#loc870) | |
| %9117 = mhlo.add %9108, %9116 : tensor<2097152xui32> loc(#loc872) | |
| %9118 = mhlo.constant dense<29> : tensor<ui32> loc(#loc871) | |
| %9119 = "mhlo.broadcast_in_dim"(%9118) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9120 = mhlo.shift_left %9116, %9119 : tensor<2097152xui32> loc(#loc873) | |
| %9121 = mhlo.constant dense<3> : tensor<ui32> loc(#loc871) | |
| %9122 = "mhlo.broadcast_in_dim"(%9121) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9123 = mhlo.shift_right_logical %9116, %9122 : tensor<2097152xui32> loc(#loc874) | |
| %9124 = mhlo.or %9120, %9123 : tensor<2097152xui32> loc(#loc875) | |
| %9125 = mhlo.xor %9117, %9124 : tensor<2097152xui32> loc(#loc870) | |
| %9126 = mhlo.add %9117, %9125 : tensor<2097152xui32> loc(#loc872) | |
| %9127 = mhlo.constant dense<16> : tensor<ui32> loc(#loc871) | |
| %9128 = "mhlo.broadcast_in_dim"(%9127) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9129 = mhlo.shift_left %9125, %9128 : tensor<2097152xui32> loc(#loc873) | |
| %9130 = mhlo.constant dense<16> : tensor<ui32> loc(#loc871) | |
| %9131 = "mhlo.broadcast_in_dim"(%9130) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9132 = mhlo.shift_right_logical %9125, %9131 : tensor<2097152xui32> loc(#loc874) | |
| %9133 = mhlo.or %9129, %9132 : tensor<2097152xui32> loc(#loc875) | |
| %9134 = mhlo.xor %9126, %9133 : tensor<2097152xui32> loc(#loc870) | |
| %9135 = mhlo.add %9126, %9134 : tensor<2097152xui32> loc(#loc872) | |
| %9136 = mhlo.constant dense<24> : tensor<ui32> loc(#loc871) | |
| %9137 = "mhlo.broadcast_in_dim"(%9136) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9138 = mhlo.shift_left %9134, %9137 : tensor<2097152xui32> loc(#loc873) | |
| %9139 = mhlo.constant dense<8> : tensor<ui32> loc(#loc871) | |
| %9140 = "mhlo.broadcast_in_dim"(%9139) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9141 = mhlo.shift_right_logical %9134, %9140 : tensor<2097152xui32> loc(#loc874) | |
| %9142 = mhlo.or %9138, %9141 : tensor<2097152xui32> loc(#loc875) | |
| %9143 = mhlo.xor %9135, %9142 : tensor<2097152xui32> loc(#loc870) | |
| %9144 = "mhlo.broadcast_in_dim"(%9060) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9145 = mhlo.add %9135, %9144 : tensor<2097152xui32> loc(#loc872) | |
| %9146 = "mhlo.broadcast_in_dim"(%9053) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9147 = mhlo.add %9143, %9146 : tensor<2097152xui32> loc(#loc872) | |
| %9148 = mhlo.constant dense<2> : tensor<ui32> loc(#loc871) | |
| %9149 = "mhlo.broadcast_in_dim"(%9148) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9150 = mhlo.add %9147, %9149 : tensor<2097152xui32> loc(#loc872) | |
| %9151 = mhlo.add %9145, %9150 : tensor<2097152xui32> loc(#loc872) | |
| %9152 = mhlo.constant dense<13> : tensor<ui32> loc(#loc871) | |
| %9153 = "mhlo.broadcast_in_dim"(%9152) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9154 = mhlo.shift_left %9150, %9153 : tensor<2097152xui32> loc(#loc873) | |
| %9155 = mhlo.constant dense<19> : tensor<ui32> loc(#loc871) | |
| %9156 = "mhlo.broadcast_in_dim"(%9155) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9157 = mhlo.shift_right_logical %9150, %9156 : tensor<2097152xui32> loc(#loc874) | |
| %9158 = mhlo.or %9154, %9157 : tensor<2097152xui32> loc(#loc875) | |
| %9159 = mhlo.xor %9151, %9158 : tensor<2097152xui32> loc(#loc870) | |
| %9160 = mhlo.add %9151, %9159 : tensor<2097152xui32> loc(#loc872) | |
| %9161 = mhlo.constant dense<15> : tensor<ui32> loc(#loc871) | |
| %9162 = "mhlo.broadcast_in_dim"(%9161) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9163 = mhlo.shift_left %9159, %9162 : tensor<2097152xui32> loc(#loc873) | |
| %9164 = mhlo.constant dense<17> : tensor<ui32> loc(#loc871) | |
| %9165 = "mhlo.broadcast_in_dim"(%9164) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9166 = mhlo.shift_right_logical %9159, %9165 : tensor<2097152xui32> loc(#loc874) | |
| %9167 = mhlo.or %9163, %9166 : tensor<2097152xui32> loc(#loc875) | |
| %9168 = mhlo.xor %9160, %9167 : tensor<2097152xui32> loc(#loc870) | |
| %9169 = mhlo.add %9160, %9168 : tensor<2097152xui32> loc(#loc872) | |
| %9170 = mhlo.constant dense<26> : tensor<ui32> loc(#loc871) | |
| %9171 = "mhlo.broadcast_in_dim"(%9170) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9172 = mhlo.shift_left %9168, %9171 : tensor<2097152xui32> loc(#loc873) | |
| %9173 = mhlo.constant dense<6> : tensor<ui32> loc(#loc871) | |
| %9174 = "mhlo.broadcast_in_dim"(%9173) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9175 = mhlo.shift_right_logical %9168, %9174 : tensor<2097152xui32> loc(#loc874) | |
| %9176 = mhlo.or %9172, %9175 : tensor<2097152xui32> loc(#loc875) | |
| %9177 = mhlo.xor %9169, %9176 : tensor<2097152xui32> loc(#loc870) | |
| %9178 = mhlo.add %9169, %9177 : tensor<2097152xui32> loc(#loc872) | |
| %9179 = mhlo.constant dense<6> : tensor<ui32> loc(#loc871) | |
| %9180 = "mhlo.broadcast_in_dim"(%9179) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9181 = mhlo.shift_left %9177, %9180 : tensor<2097152xui32> loc(#loc873) | |
| %9182 = mhlo.constant dense<26> : tensor<ui32> loc(#loc871) | |
| %9183 = "mhlo.broadcast_in_dim"(%9182) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9184 = mhlo.shift_right_logical %9177, %9183 : tensor<2097152xui32> loc(#loc874) | |
| %9185 = mhlo.or %9181, %9184 : tensor<2097152xui32> loc(#loc875) | |
| %9186 = mhlo.xor %9178, %9185 : tensor<2097152xui32> loc(#loc870) | |
| %9187 = "mhlo.broadcast_in_dim"(%9053) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9188 = mhlo.add %9178, %9187 : tensor<2097152xui32> loc(#loc872) | |
| %9189 = "mhlo.broadcast_in_dim"(%9055) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9190 = mhlo.add %9186, %9189 : tensor<2097152xui32> loc(#loc872) | |
| %9191 = mhlo.constant dense<3> : tensor<ui32> loc(#loc871) | |
| %9192 = "mhlo.broadcast_in_dim"(%9191) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9193 = mhlo.add %9190, %9192 : tensor<2097152xui32> loc(#loc872) | |
| %9194 = mhlo.add %9188, %9193 : tensor<2097152xui32> loc(#loc872) | |
| %9195 = mhlo.constant dense<17> : tensor<ui32> loc(#loc871) | |
| %9196 = "mhlo.broadcast_in_dim"(%9195) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9197 = mhlo.shift_left %9193, %9196 : tensor<2097152xui32> loc(#loc873) | |
| %9198 = mhlo.constant dense<15> : tensor<ui32> loc(#loc871) | |
| %9199 = "mhlo.broadcast_in_dim"(%9198) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9200 = mhlo.shift_right_logical %9193, %9199 : tensor<2097152xui32> loc(#loc874) | |
| %9201 = mhlo.or %9197, %9200 : tensor<2097152xui32> loc(#loc875) | |
| %9202 = mhlo.xor %9194, %9201 : tensor<2097152xui32> loc(#loc870) | |
| %9203 = mhlo.add %9194, %9202 : tensor<2097152xui32> loc(#loc872) | |
| %9204 = mhlo.constant dense<29> : tensor<ui32> loc(#loc871) | |
| %9205 = "mhlo.broadcast_in_dim"(%9204) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9206 = mhlo.shift_left %9202, %9205 : tensor<2097152xui32> loc(#loc873) | |
| %9207 = mhlo.constant dense<3> : tensor<ui32> loc(#loc871) | |
| %9208 = "mhlo.broadcast_in_dim"(%9207) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9209 = mhlo.shift_right_logical %9202, %9208 : tensor<2097152xui32> loc(#loc874) | |
| %9210 = mhlo.or %9206, %9209 : tensor<2097152xui32> loc(#loc875) | |
| %9211 = mhlo.xor %9203, %9210 : tensor<2097152xui32> loc(#loc870) | |
| %9212 = mhlo.add %9203, %9211 : tensor<2097152xui32> loc(#loc872) | |
| %9213 = mhlo.constant dense<16> : tensor<ui32> loc(#loc871) | |
| %9214 = "mhlo.broadcast_in_dim"(%9213) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9215 = mhlo.shift_left %9211, %9214 : tensor<2097152xui32> loc(#loc873) | |
| %9216 = mhlo.constant dense<16> : tensor<ui32> loc(#loc871) | |
| %9217 = "mhlo.broadcast_in_dim"(%9216) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9218 = mhlo.shift_right_logical %9211, %9217 : tensor<2097152xui32> loc(#loc874) | |
| %9219 = mhlo.or %9215, %9218 : tensor<2097152xui32> loc(#loc875) | |
| %9220 = mhlo.xor %9212, %9219 : tensor<2097152xui32> loc(#loc870) | |
| %9221 = mhlo.add %9212, %9220 : tensor<2097152xui32> loc(#loc872) | |
| %9222 = mhlo.constant dense<24> : tensor<ui32> loc(#loc871) | |
| %9223 = "mhlo.broadcast_in_dim"(%9222) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9224 = mhlo.shift_left %9220, %9223 : tensor<2097152xui32> loc(#loc873) | |
| %9225 = mhlo.constant dense<8> : tensor<ui32> loc(#loc871) | |
| %9226 = "mhlo.broadcast_in_dim"(%9225) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9227 = mhlo.shift_right_logical %9220, %9226 : tensor<2097152xui32> loc(#loc874) | |
| %9228 = mhlo.or %9224, %9227 : tensor<2097152xui32> loc(#loc875) | |
| %9229 = mhlo.xor %9221, %9228 : tensor<2097152xui32> loc(#loc870) | |
| %9230 = "mhlo.broadcast_in_dim"(%9055) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9231 = mhlo.add %9221, %9230 : tensor<2097152xui32> loc(#loc872) | |
| %9232 = "mhlo.broadcast_in_dim"(%9060) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9233 = mhlo.add %9229, %9232 : tensor<2097152xui32> loc(#loc872) | |
| %9234 = mhlo.constant dense<4> : tensor<ui32> loc(#loc871) | |
| %9235 = "mhlo.broadcast_in_dim"(%9234) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9236 = mhlo.add %9233, %9235 : tensor<2097152xui32> loc(#loc872) | |
| %9237 = mhlo.add %9231, %9236 : tensor<2097152xui32> loc(#loc872) | |
| %9238 = mhlo.constant dense<13> : tensor<ui32> loc(#loc871) | |
| %9239 = "mhlo.broadcast_in_dim"(%9238) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9240 = mhlo.shift_left %9236, %9239 : tensor<2097152xui32> loc(#loc873) | |
| %9241 = mhlo.constant dense<19> : tensor<ui32> loc(#loc871) | |
| %9242 = "mhlo.broadcast_in_dim"(%9241) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9243 = mhlo.shift_right_logical %9236, %9242 : tensor<2097152xui32> loc(#loc874) | |
| %9244 = mhlo.or %9240, %9243 : tensor<2097152xui32> loc(#loc875) | |
| %9245 = mhlo.xor %9237, %9244 : tensor<2097152xui32> loc(#loc870) | |
| %9246 = mhlo.add %9237, %9245 : tensor<2097152xui32> loc(#loc872) | |
| %9247 = mhlo.constant dense<15> : tensor<ui32> loc(#loc871) | |
| %9248 = "mhlo.broadcast_in_dim"(%9247) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9249 = mhlo.shift_left %9245, %9248 : tensor<2097152xui32> loc(#loc873) | |
| %9250 = mhlo.constant dense<17> : tensor<ui32> loc(#loc871) | |
| %9251 = "mhlo.broadcast_in_dim"(%9250) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9252 = mhlo.shift_right_logical %9245, %9251 : tensor<2097152xui32> loc(#loc874) | |
| %9253 = mhlo.or %9249, %9252 : tensor<2097152xui32> loc(#loc875) | |
| %9254 = mhlo.xor %9246, %9253 : tensor<2097152xui32> loc(#loc870) | |
| %9255 = mhlo.add %9246, %9254 : tensor<2097152xui32> loc(#loc872) | |
| %9256 = mhlo.constant dense<26> : tensor<ui32> loc(#loc871) | |
| %9257 = "mhlo.broadcast_in_dim"(%9256) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9258 = mhlo.shift_left %9254, %9257 : tensor<2097152xui32> loc(#loc873) | |
| %9259 = mhlo.constant dense<6> : tensor<ui32> loc(#loc871) | |
| %9260 = "mhlo.broadcast_in_dim"(%9259) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9261 = mhlo.shift_right_logical %9254, %9260 : tensor<2097152xui32> loc(#loc874) | |
| %9262 = mhlo.or %9258, %9261 : tensor<2097152xui32> loc(#loc875) | |
| %9263 = mhlo.xor %9255, %9262 : tensor<2097152xui32> loc(#loc870) | |
| %9264 = mhlo.add %9255, %9263 : tensor<2097152xui32> loc(#loc872) | |
| %9265 = mhlo.constant dense<6> : tensor<ui32> loc(#loc871) | |
| %9266 = "mhlo.broadcast_in_dim"(%9265) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc873) | |
| %9267 = mhlo.shift_left %9263, %9266 : tensor<2097152xui32> loc(#loc873) | |
| %9268 = mhlo.constant dense<26> : tensor<ui32> loc(#loc871) | |
| %9269 = "mhlo.broadcast_in_dim"(%9268) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc874) | |
| %9270 = mhlo.shift_right_logical %9263, %9269 : tensor<2097152xui32> loc(#loc874) | |
| %9271 = mhlo.or %9267, %9270 : tensor<2097152xui32> loc(#loc875) | |
| %9272 = mhlo.xor %9264, %9271 : tensor<2097152xui32> loc(#loc870) | |
| %9273 = "mhlo.broadcast_in_dim"(%9060) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9274 = mhlo.add %9264, %9273 : tensor<2097152xui32> loc(#loc872) | |
| %9275 = "mhlo.broadcast_in_dim"(%9053) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9276 = mhlo.add %9272, %9275 : tensor<2097152xui32> loc(#loc872) | |
| %9277 = mhlo.constant dense<5> : tensor<ui32> loc(#loc871) | |
| %9278 = "mhlo.broadcast_in_dim"(%9277) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc872) | |
| %9279 = mhlo.add %9276, %9278 : tensor<2097152xui32> loc(#loc872) | |
| %9280 = "mhlo.concatenate"(%9274, %9279) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc876) | |
| %9281 = "mhlo.reshape"(%9280) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc877) | |
| %9282 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %9283 = "mhlo.broadcast_in_dim"(%9282) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc874) | |
| %9284 = mhlo.shift_right_logical %9281, %9283 : tensor<2048x2048xui32> loc(#loc874) | |
| %9285 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %9286 = "mhlo.broadcast_in_dim"(%9285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc875) | |
| %9287 = mhlo.or %9284, %9286 : tensor<2048x2048xui32> loc(#loc875) | |
| %9288 = "mhlo.bitcast_convert"(%9287) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc878) | |
| %9289 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %9290 = "mhlo.broadcast_in_dim"(%9289) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc879) | |
| %9291 = mhlo.subtract %9288, %9290 : tensor<2048x2048xf32> loc(#loc879) | |
| %9292 = mhlo.subtract %9050, %9048 : tensor<1x1xf32> loc(#loc879) | |
| %9293 = "mhlo.broadcast_in_dim"(%9292) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc880) | |
| %9294 = mhlo.multiply %9291, %9293 : tensor<2048x2048xf32> loc(#loc880) | |
| %9295 = "mhlo.broadcast_in_dim"(%9048) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc872) | |
| %9296 = mhlo.add %9294, %9295 : tensor<2048x2048xf32> loc(#loc872) | |
| %9297 = "mhlo.broadcast_in_dim"(%9048) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc881) | |
| %9298 = mhlo.maximum %9297, %9296 : tensor<2048x2048xf32> loc(#loc881) | |
| %9299 = func.call @erf_inv_22(%9298) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc882) | |
| %9300 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %9301 = "mhlo.broadcast_in_dim"(%9300) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc880) | |
| %9302 = mhlo.multiply %9299, %9301 : tensor<2048x2048xf32> loc(#loc880) | |
| %9303 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %9304 = "mhlo.broadcast_in_dim"(%9303) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc880) | |
| %9305 = mhlo.multiply %9302, %9304 : tensor<2048x2048xf32> loc(#loc880) | |
| %9306 = mhlo.convert(%9305) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc883) | |
| %9307 = "mhlo.dot_general"(%iterArg_1, %9306) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc884) | |
| %9308 = mhlo.constant dense<673573497> : tensor<ui32> loc(#loc531) | |
| %9309 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %9310 = mhlo.shift_right_logical %9308, %9309 : tensor<ui32> loc(#loc885) | |
| %9311 = "mhlo.reshape"(%9310) : (tensor<ui32>) -> tensor<1xui32> loc(#loc886) | |
| %9312 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %9313 = mhlo.and %9308, %9312 : tensor<ui32> loc(#loc887) | |
| %9314 = "mhlo.reshape"(%9313) : (tensor<ui32>) -> tensor<1xui32> loc(#loc886) | |
| %9315 = "mhlo.concatenate"(%9311, %9314) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc888) | |
| %9316 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc889) | |
| %9317 = "mhlo.reshape"(%9316) : (tensor<1xui32>) -> tensor<ui32> loc(#loc890) | |
| %9318 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc891) | |
| %9319 = "mhlo.reshape"(%9318) : (tensor<1xui32>) -> tensor<ui32> loc(#loc890) | |
| %9320 = "mhlo.slice"(%9315) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc892) | |
| %9321 = "mhlo.slice"(%9315) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc893) | |
| %9322 = mhlo.xor %9317, %9319 : tensor<ui32> loc(#loc894) | |
| %9323 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc895) | |
| %9324 = mhlo.xor %9322, %9323 : tensor<ui32> loc(#loc894) | |
| %9325 = "mhlo.broadcast_in_dim"(%9317) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9326 = mhlo.add %9320, %9325 : tensor<1xui32> loc(#loc896) | |
| %9327 = "mhlo.broadcast_in_dim"(%9319) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9328 = mhlo.add %9321, %9327 : tensor<1xui32> loc(#loc896) | |
| %9329 = mhlo.add %9326, %9328 : tensor<1xui32> loc(#loc896) | |
| %9330 = mhlo.constant dense<13> : tensor<ui32> loc(#loc895) | |
| %9331 = "mhlo.broadcast_in_dim"(%9330) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9332 = mhlo.shift_left %9328, %9331 : tensor<1xui32> loc(#loc897) | |
| %9333 = mhlo.constant dense<19> : tensor<ui32> loc(#loc895) | |
| %9334 = "mhlo.broadcast_in_dim"(%9333) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9335 = mhlo.shift_right_logical %9328, %9334 : tensor<1xui32> loc(#loc885) | |
| %9336 = mhlo.or %9332, %9335 : tensor<1xui32> loc(#loc898) | |
| %9337 = mhlo.xor %9329, %9336 : tensor<1xui32> loc(#loc894) | |
| %9338 = mhlo.add %9329, %9337 : tensor<1xui32> loc(#loc896) | |
| %9339 = mhlo.constant dense<15> : tensor<ui32> loc(#loc895) | |
| %9340 = "mhlo.broadcast_in_dim"(%9339) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9341 = mhlo.shift_left %9337, %9340 : tensor<1xui32> loc(#loc897) | |
| %9342 = mhlo.constant dense<17> : tensor<ui32> loc(#loc895) | |
| %9343 = "mhlo.broadcast_in_dim"(%9342) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9344 = mhlo.shift_right_logical %9337, %9343 : tensor<1xui32> loc(#loc885) | |
| %9345 = mhlo.or %9341, %9344 : tensor<1xui32> loc(#loc898) | |
| %9346 = mhlo.xor %9338, %9345 : tensor<1xui32> loc(#loc894) | |
| %9347 = mhlo.add %9338, %9346 : tensor<1xui32> loc(#loc896) | |
| %9348 = mhlo.constant dense<26> : tensor<ui32> loc(#loc895) | |
| %9349 = "mhlo.broadcast_in_dim"(%9348) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9350 = mhlo.shift_left %9346, %9349 : tensor<1xui32> loc(#loc897) | |
| %9351 = mhlo.constant dense<6> : tensor<ui32> loc(#loc895) | |
| %9352 = "mhlo.broadcast_in_dim"(%9351) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9353 = mhlo.shift_right_logical %9346, %9352 : tensor<1xui32> loc(#loc885) | |
| %9354 = mhlo.or %9350, %9353 : tensor<1xui32> loc(#loc898) | |
| %9355 = mhlo.xor %9347, %9354 : tensor<1xui32> loc(#loc894) | |
| %9356 = mhlo.add %9347, %9355 : tensor<1xui32> loc(#loc896) | |
| %9357 = mhlo.constant dense<6> : tensor<ui32> loc(#loc895) | |
| %9358 = "mhlo.broadcast_in_dim"(%9357) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9359 = mhlo.shift_left %9355, %9358 : tensor<1xui32> loc(#loc897) | |
| %9360 = mhlo.constant dense<26> : tensor<ui32> loc(#loc895) | |
| %9361 = "mhlo.broadcast_in_dim"(%9360) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9362 = mhlo.shift_right_logical %9355, %9361 : tensor<1xui32> loc(#loc885) | |
| %9363 = mhlo.or %9359, %9362 : tensor<1xui32> loc(#loc898) | |
| %9364 = mhlo.xor %9356, %9363 : tensor<1xui32> loc(#loc894) | |
| %9365 = "mhlo.broadcast_in_dim"(%9319) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9366 = mhlo.add %9356, %9365 : tensor<1xui32> loc(#loc896) | |
| %9367 = "mhlo.broadcast_in_dim"(%9324) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9368 = mhlo.add %9364, %9367 : tensor<1xui32> loc(#loc896) | |
| %9369 = mhlo.constant dense<1> : tensor<ui32> loc(#loc895) | |
| %9370 = "mhlo.broadcast_in_dim"(%9369) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9371 = mhlo.add %9368, %9370 : tensor<1xui32> loc(#loc896) | |
| %9372 = mhlo.add %9366, %9371 : tensor<1xui32> loc(#loc896) | |
| %9373 = mhlo.constant dense<17> : tensor<ui32> loc(#loc895) | |
| %9374 = "mhlo.broadcast_in_dim"(%9373) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9375 = mhlo.shift_left %9371, %9374 : tensor<1xui32> loc(#loc897) | |
| %9376 = mhlo.constant dense<15> : tensor<ui32> loc(#loc895) | |
| %9377 = "mhlo.broadcast_in_dim"(%9376) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9378 = mhlo.shift_right_logical %9371, %9377 : tensor<1xui32> loc(#loc885) | |
| %9379 = mhlo.or %9375, %9378 : tensor<1xui32> loc(#loc898) | |
| %9380 = mhlo.xor %9372, %9379 : tensor<1xui32> loc(#loc894) | |
| %9381 = mhlo.add %9372, %9380 : tensor<1xui32> loc(#loc896) | |
| %9382 = mhlo.constant dense<29> : tensor<ui32> loc(#loc895) | |
| %9383 = "mhlo.broadcast_in_dim"(%9382) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9384 = mhlo.shift_left %9380, %9383 : tensor<1xui32> loc(#loc897) | |
| %9385 = mhlo.constant dense<3> : tensor<ui32> loc(#loc895) | |
| %9386 = "mhlo.broadcast_in_dim"(%9385) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9387 = mhlo.shift_right_logical %9380, %9386 : tensor<1xui32> loc(#loc885) | |
| %9388 = mhlo.or %9384, %9387 : tensor<1xui32> loc(#loc898) | |
| %9389 = mhlo.xor %9381, %9388 : tensor<1xui32> loc(#loc894) | |
| %9390 = mhlo.add %9381, %9389 : tensor<1xui32> loc(#loc896) | |
| %9391 = mhlo.constant dense<16> : tensor<ui32> loc(#loc895) | |
| %9392 = "mhlo.broadcast_in_dim"(%9391) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9393 = mhlo.shift_left %9389, %9392 : tensor<1xui32> loc(#loc897) | |
| %9394 = mhlo.constant dense<16> : tensor<ui32> loc(#loc895) | |
| %9395 = "mhlo.broadcast_in_dim"(%9394) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9396 = mhlo.shift_right_logical %9389, %9395 : tensor<1xui32> loc(#loc885) | |
| %9397 = mhlo.or %9393, %9396 : tensor<1xui32> loc(#loc898) | |
| %9398 = mhlo.xor %9390, %9397 : tensor<1xui32> loc(#loc894) | |
| %9399 = mhlo.add %9390, %9398 : tensor<1xui32> loc(#loc896) | |
| %9400 = mhlo.constant dense<24> : tensor<ui32> loc(#loc895) | |
| %9401 = "mhlo.broadcast_in_dim"(%9400) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9402 = mhlo.shift_left %9398, %9401 : tensor<1xui32> loc(#loc897) | |
| %9403 = mhlo.constant dense<8> : tensor<ui32> loc(#loc895) | |
| %9404 = "mhlo.broadcast_in_dim"(%9403) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9405 = mhlo.shift_right_logical %9398, %9404 : tensor<1xui32> loc(#loc885) | |
| %9406 = mhlo.or %9402, %9405 : tensor<1xui32> loc(#loc898) | |
| %9407 = mhlo.xor %9399, %9406 : tensor<1xui32> loc(#loc894) | |
| %9408 = "mhlo.broadcast_in_dim"(%9324) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9409 = mhlo.add %9399, %9408 : tensor<1xui32> loc(#loc896) | |
| %9410 = "mhlo.broadcast_in_dim"(%9317) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9411 = mhlo.add %9407, %9410 : tensor<1xui32> loc(#loc896) | |
| %9412 = mhlo.constant dense<2> : tensor<ui32> loc(#loc895) | |
| %9413 = "mhlo.broadcast_in_dim"(%9412) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9414 = mhlo.add %9411, %9413 : tensor<1xui32> loc(#loc896) | |
| %9415 = mhlo.add %9409, %9414 : tensor<1xui32> loc(#loc896) | |
| %9416 = mhlo.constant dense<13> : tensor<ui32> loc(#loc895) | |
| %9417 = "mhlo.broadcast_in_dim"(%9416) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9418 = mhlo.shift_left %9414, %9417 : tensor<1xui32> loc(#loc897) | |
| %9419 = mhlo.constant dense<19> : tensor<ui32> loc(#loc895) | |
| %9420 = "mhlo.broadcast_in_dim"(%9419) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9421 = mhlo.shift_right_logical %9414, %9420 : tensor<1xui32> loc(#loc885) | |
| %9422 = mhlo.or %9418, %9421 : tensor<1xui32> loc(#loc898) | |
| %9423 = mhlo.xor %9415, %9422 : tensor<1xui32> loc(#loc894) | |
| %9424 = mhlo.add %9415, %9423 : tensor<1xui32> loc(#loc896) | |
| %9425 = mhlo.constant dense<15> : tensor<ui32> loc(#loc895) | |
| %9426 = "mhlo.broadcast_in_dim"(%9425) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9427 = mhlo.shift_left %9423, %9426 : tensor<1xui32> loc(#loc897) | |
| %9428 = mhlo.constant dense<17> : tensor<ui32> loc(#loc895) | |
| %9429 = "mhlo.broadcast_in_dim"(%9428) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9430 = mhlo.shift_right_logical %9423, %9429 : tensor<1xui32> loc(#loc885) | |
| %9431 = mhlo.or %9427, %9430 : tensor<1xui32> loc(#loc898) | |
| %9432 = mhlo.xor %9424, %9431 : tensor<1xui32> loc(#loc894) | |
| %9433 = mhlo.add %9424, %9432 : tensor<1xui32> loc(#loc896) | |
| %9434 = mhlo.constant dense<26> : tensor<ui32> loc(#loc895) | |
| %9435 = "mhlo.broadcast_in_dim"(%9434) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9436 = mhlo.shift_left %9432, %9435 : tensor<1xui32> loc(#loc897) | |
| %9437 = mhlo.constant dense<6> : tensor<ui32> loc(#loc895) | |
| %9438 = "mhlo.broadcast_in_dim"(%9437) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9439 = mhlo.shift_right_logical %9432, %9438 : tensor<1xui32> loc(#loc885) | |
| %9440 = mhlo.or %9436, %9439 : tensor<1xui32> loc(#loc898) | |
| %9441 = mhlo.xor %9433, %9440 : tensor<1xui32> loc(#loc894) | |
| %9442 = mhlo.add %9433, %9441 : tensor<1xui32> loc(#loc896) | |
| %9443 = mhlo.constant dense<6> : tensor<ui32> loc(#loc895) | |
| %9444 = "mhlo.broadcast_in_dim"(%9443) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9445 = mhlo.shift_left %9441, %9444 : tensor<1xui32> loc(#loc897) | |
| %9446 = mhlo.constant dense<26> : tensor<ui32> loc(#loc895) | |
| %9447 = "mhlo.broadcast_in_dim"(%9446) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9448 = mhlo.shift_right_logical %9441, %9447 : tensor<1xui32> loc(#loc885) | |
| %9449 = mhlo.or %9445, %9448 : tensor<1xui32> loc(#loc898) | |
| %9450 = mhlo.xor %9442, %9449 : tensor<1xui32> loc(#loc894) | |
| %9451 = "mhlo.broadcast_in_dim"(%9317) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9452 = mhlo.add %9442, %9451 : tensor<1xui32> loc(#loc896) | |
| %9453 = "mhlo.broadcast_in_dim"(%9319) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9454 = mhlo.add %9450, %9453 : tensor<1xui32> loc(#loc896) | |
| %9455 = mhlo.constant dense<3> : tensor<ui32> loc(#loc895) | |
| %9456 = "mhlo.broadcast_in_dim"(%9455) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9457 = mhlo.add %9454, %9456 : tensor<1xui32> loc(#loc896) | |
| %9458 = mhlo.add %9452, %9457 : tensor<1xui32> loc(#loc896) | |
| %9459 = mhlo.constant dense<17> : tensor<ui32> loc(#loc895) | |
| %9460 = "mhlo.broadcast_in_dim"(%9459) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9461 = mhlo.shift_left %9457, %9460 : tensor<1xui32> loc(#loc897) | |
| %9462 = mhlo.constant dense<15> : tensor<ui32> loc(#loc895) | |
| %9463 = "mhlo.broadcast_in_dim"(%9462) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9464 = mhlo.shift_right_logical %9457, %9463 : tensor<1xui32> loc(#loc885) | |
| %9465 = mhlo.or %9461, %9464 : tensor<1xui32> loc(#loc898) | |
| %9466 = mhlo.xor %9458, %9465 : tensor<1xui32> loc(#loc894) | |
| %9467 = mhlo.add %9458, %9466 : tensor<1xui32> loc(#loc896) | |
| %9468 = mhlo.constant dense<29> : tensor<ui32> loc(#loc895) | |
| %9469 = "mhlo.broadcast_in_dim"(%9468) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9470 = mhlo.shift_left %9466, %9469 : tensor<1xui32> loc(#loc897) | |
| %9471 = mhlo.constant dense<3> : tensor<ui32> loc(#loc895) | |
| %9472 = "mhlo.broadcast_in_dim"(%9471) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9473 = mhlo.shift_right_logical %9466, %9472 : tensor<1xui32> loc(#loc885) | |
| %9474 = mhlo.or %9470, %9473 : tensor<1xui32> loc(#loc898) | |
| %9475 = mhlo.xor %9467, %9474 : tensor<1xui32> loc(#loc894) | |
| %9476 = mhlo.add %9467, %9475 : tensor<1xui32> loc(#loc896) | |
| %9477 = mhlo.constant dense<16> : tensor<ui32> loc(#loc895) | |
| %9478 = "mhlo.broadcast_in_dim"(%9477) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9479 = mhlo.shift_left %9475, %9478 : tensor<1xui32> loc(#loc897) | |
| %9480 = mhlo.constant dense<16> : tensor<ui32> loc(#loc895) | |
| %9481 = "mhlo.broadcast_in_dim"(%9480) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9482 = mhlo.shift_right_logical %9475, %9481 : tensor<1xui32> loc(#loc885) | |
| %9483 = mhlo.or %9479, %9482 : tensor<1xui32> loc(#loc898) | |
| %9484 = mhlo.xor %9476, %9483 : tensor<1xui32> loc(#loc894) | |
| %9485 = mhlo.add %9476, %9484 : tensor<1xui32> loc(#loc896) | |
| %9486 = mhlo.constant dense<24> : tensor<ui32> loc(#loc895) | |
| %9487 = "mhlo.broadcast_in_dim"(%9486) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9488 = mhlo.shift_left %9484, %9487 : tensor<1xui32> loc(#loc897) | |
| %9489 = mhlo.constant dense<8> : tensor<ui32> loc(#loc895) | |
| %9490 = "mhlo.broadcast_in_dim"(%9489) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9491 = mhlo.shift_right_logical %9484, %9490 : tensor<1xui32> loc(#loc885) | |
| %9492 = mhlo.or %9488, %9491 : tensor<1xui32> loc(#loc898) | |
| %9493 = mhlo.xor %9485, %9492 : tensor<1xui32> loc(#loc894) | |
| %9494 = "mhlo.broadcast_in_dim"(%9319) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9495 = mhlo.add %9485, %9494 : tensor<1xui32> loc(#loc896) | |
| %9496 = "mhlo.broadcast_in_dim"(%9324) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9497 = mhlo.add %9493, %9496 : tensor<1xui32> loc(#loc896) | |
| %9498 = mhlo.constant dense<4> : tensor<ui32> loc(#loc895) | |
| %9499 = "mhlo.broadcast_in_dim"(%9498) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9500 = mhlo.add %9497, %9499 : tensor<1xui32> loc(#loc896) | |
| %9501 = mhlo.add %9495, %9500 : tensor<1xui32> loc(#loc896) | |
| %9502 = mhlo.constant dense<13> : tensor<ui32> loc(#loc895) | |
| %9503 = "mhlo.broadcast_in_dim"(%9502) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9504 = mhlo.shift_left %9500, %9503 : tensor<1xui32> loc(#loc897) | |
| %9505 = mhlo.constant dense<19> : tensor<ui32> loc(#loc895) | |
| %9506 = "mhlo.broadcast_in_dim"(%9505) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9507 = mhlo.shift_right_logical %9500, %9506 : tensor<1xui32> loc(#loc885) | |
| %9508 = mhlo.or %9504, %9507 : tensor<1xui32> loc(#loc898) | |
| %9509 = mhlo.xor %9501, %9508 : tensor<1xui32> loc(#loc894) | |
| %9510 = mhlo.add %9501, %9509 : tensor<1xui32> loc(#loc896) | |
| %9511 = mhlo.constant dense<15> : tensor<ui32> loc(#loc895) | |
| %9512 = "mhlo.broadcast_in_dim"(%9511) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9513 = mhlo.shift_left %9509, %9512 : tensor<1xui32> loc(#loc897) | |
| %9514 = mhlo.constant dense<17> : tensor<ui32> loc(#loc895) | |
| %9515 = "mhlo.broadcast_in_dim"(%9514) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9516 = mhlo.shift_right_logical %9509, %9515 : tensor<1xui32> loc(#loc885) | |
| %9517 = mhlo.or %9513, %9516 : tensor<1xui32> loc(#loc898) | |
| %9518 = mhlo.xor %9510, %9517 : tensor<1xui32> loc(#loc894) | |
| %9519 = mhlo.add %9510, %9518 : tensor<1xui32> loc(#loc896) | |
| %9520 = mhlo.constant dense<26> : tensor<ui32> loc(#loc895) | |
| %9521 = "mhlo.broadcast_in_dim"(%9520) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9522 = mhlo.shift_left %9518, %9521 : tensor<1xui32> loc(#loc897) | |
| %9523 = mhlo.constant dense<6> : tensor<ui32> loc(#loc895) | |
| %9524 = "mhlo.broadcast_in_dim"(%9523) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9525 = mhlo.shift_right_logical %9518, %9524 : tensor<1xui32> loc(#loc885) | |
| %9526 = mhlo.or %9522, %9525 : tensor<1xui32> loc(#loc898) | |
| %9527 = mhlo.xor %9519, %9526 : tensor<1xui32> loc(#loc894) | |
| %9528 = mhlo.add %9519, %9527 : tensor<1xui32> loc(#loc896) | |
| %9529 = mhlo.constant dense<6> : tensor<ui32> loc(#loc895) | |
| %9530 = "mhlo.broadcast_in_dim"(%9529) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc897) | |
| %9531 = mhlo.shift_left %9527, %9530 : tensor<1xui32> loc(#loc897) | |
| %9532 = mhlo.constant dense<26> : tensor<ui32> loc(#loc895) | |
| %9533 = "mhlo.broadcast_in_dim"(%9532) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc885) | |
| %9534 = mhlo.shift_right_logical %9527, %9533 : tensor<1xui32> loc(#loc885) | |
| %9535 = mhlo.or %9531, %9534 : tensor<1xui32> loc(#loc898) | |
| %9536 = mhlo.xor %9528, %9535 : tensor<1xui32> loc(#loc894) | |
| %9537 = "mhlo.broadcast_in_dim"(%9324) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9538 = mhlo.add %9528, %9537 : tensor<1xui32> loc(#loc896) | |
| %9539 = "mhlo.broadcast_in_dim"(%9317) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9540 = mhlo.add %9536, %9539 : tensor<1xui32> loc(#loc896) | |
| %9541 = mhlo.constant dense<5> : tensor<ui32> loc(#loc895) | |
| %9542 = "mhlo.broadcast_in_dim"(%9541) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc896) | |
| %9543 = mhlo.add %9540, %9542 : tensor<1xui32> loc(#loc896) | |
| %9544 = "mhlo.concatenate"(%9538, %9543) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc888) | |
| %9545 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %9546 = "mhlo.broadcast_in_dim"(%9545) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc899) | |
| %9547 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %9548 = "mhlo.broadcast_in_dim"(%9547) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc899) | |
| %9549 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc900) | |
| %9550 = "mhlo.slice"(%9544) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc901) | |
| %9551 = "mhlo.reshape"(%9550) : (tensor<1xui32>) -> tensor<ui32> loc(#loc902) | |
| %9552 = "mhlo.slice"(%9544) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc903) | |
| %9553 = "mhlo.reshape"(%9552) : (tensor<1xui32>) -> tensor<ui32> loc(#loc902) | |
| %9554 = "mhlo.slice"(%9549) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc904) | |
| %9555 = "mhlo.slice"(%9549) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc905) | |
| %9556 = mhlo.xor %9551, %9553 : tensor<ui32> loc(#loc906) | |
| %9557 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc907) | |
| %9558 = mhlo.xor %9556, %9557 : tensor<ui32> loc(#loc906) | |
| %9559 = "mhlo.broadcast_in_dim"(%9551) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9560 = mhlo.add %9554, %9559 : tensor<2097152xui32> loc(#loc908) | |
| %9561 = "mhlo.broadcast_in_dim"(%9553) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9562 = mhlo.add %9555, %9561 : tensor<2097152xui32> loc(#loc908) | |
| %9563 = mhlo.add %9560, %9562 : tensor<2097152xui32> loc(#loc908) | |
| %9564 = mhlo.constant dense<13> : tensor<ui32> loc(#loc907) | |
| %9565 = "mhlo.broadcast_in_dim"(%9564) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9566 = mhlo.shift_left %9562, %9565 : tensor<2097152xui32> loc(#loc909) | |
| %9567 = mhlo.constant dense<19> : tensor<ui32> loc(#loc907) | |
| %9568 = "mhlo.broadcast_in_dim"(%9567) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9569 = mhlo.shift_right_logical %9562, %9568 : tensor<2097152xui32> loc(#loc910) | |
| %9570 = mhlo.or %9566, %9569 : tensor<2097152xui32> loc(#loc911) | |
| %9571 = mhlo.xor %9563, %9570 : tensor<2097152xui32> loc(#loc906) | |
| %9572 = mhlo.add %9563, %9571 : tensor<2097152xui32> loc(#loc908) | |
| %9573 = mhlo.constant dense<15> : tensor<ui32> loc(#loc907) | |
| %9574 = "mhlo.broadcast_in_dim"(%9573) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9575 = mhlo.shift_left %9571, %9574 : tensor<2097152xui32> loc(#loc909) | |
| %9576 = mhlo.constant dense<17> : tensor<ui32> loc(#loc907) | |
| %9577 = "mhlo.broadcast_in_dim"(%9576) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9578 = mhlo.shift_right_logical %9571, %9577 : tensor<2097152xui32> loc(#loc910) | |
| %9579 = mhlo.or %9575, %9578 : tensor<2097152xui32> loc(#loc911) | |
| %9580 = mhlo.xor %9572, %9579 : tensor<2097152xui32> loc(#loc906) | |
| %9581 = mhlo.add %9572, %9580 : tensor<2097152xui32> loc(#loc908) | |
| %9582 = mhlo.constant dense<26> : tensor<ui32> loc(#loc907) | |
| %9583 = "mhlo.broadcast_in_dim"(%9582) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9584 = mhlo.shift_left %9580, %9583 : tensor<2097152xui32> loc(#loc909) | |
| %9585 = mhlo.constant dense<6> : tensor<ui32> loc(#loc907) | |
| %9586 = "mhlo.broadcast_in_dim"(%9585) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9587 = mhlo.shift_right_logical %9580, %9586 : tensor<2097152xui32> loc(#loc910) | |
| %9588 = mhlo.or %9584, %9587 : tensor<2097152xui32> loc(#loc911) | |
| %9589 = mhlo.xor %9581, %9588 : tensor<2097152xui32> loc(#loc906) | |
| %9590 = mhlo.add %9581, %9589 : tensor<2097152xui32> loc(#loc908) | |
| %9591 = mhlo.constant dense<6> : tensor<ui32> loc(#loc907) | |
| %9592 = "mhlo.broadcast_in_dim"(%9591) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9593 = mhlo.shift_left %9589, %9592 : tensor<2097152xui32> loc(#loc909) | |
| %9594 = mhlo.constant dense<26> : tensor<ui32> loc(#loc907) | |
| %9595 = "mhlo.broadcast_in_dim"(%9594) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9596 = mhlo.shift_right_logical %9589, %9595 : tensor<2097152xui32> loc(#loc910) | |
| %9597 = mhlo.or %9593, %9596 : tensor<2097152xui32> loc(#loc911) | |
| %9598 = mhlo.xor %9590, %9597 : tensor<2097152xui32> loc(#loc906) | |
| %9599 = "mhlo.broadcast_in_dim"(%9553) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9600 = mhlo.add %9590, %9599 : tensor<2097152xui32> loc(#loc908) | |
| %9601 = "mhlo.broadcast_in_dim"(%9558) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9602 = mhlo.add %9598, %9601 : tensor<2097152xui32> loc(#loc908) | |
| %9603 = mhlo.constant dense<1> : tensor<ui32> loc(#loc907) | |
| %9604 = "mhlo.broadcast_in_dim"(%9603) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9605 = mhlo.add %9602, %9604 : tensor<2097152xui32> loc(#loc908) | |
| %9606 = mhlo.add %9600, %9605 : tensor<2097152xui32> loc(#loc908) | |
| %9607 = mhlo.constant dense<17> : tensor<ui32> loc(#loc907) | |
| %9608 = "mhlo.broadcast_in_dim"(%9607) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9609 = mhlo.shift_left %9605, %9608 : tensor<2097152xui32> loc(#loc909) | |
| %9610 = mhlo.constant dense<15> : tensor<ui32> loc(#loc907) | |
| %9611 = "mhlo.broadcast_in_dim"(%9610) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9612 = mhlo.shift_right_logical %9605, %9611 : tensor<2097152xui32> loc(#loc910) | |
| %9613 = mhlo.or %9609, %9612 : tensor<2097152xui32> loc(#loc911) | |
| %9614 = mhlo.xor %9606, %9613 : tensor<2097152xui32> loc(#loc906) | |
| %9615 = mhlo.add %9606, %9614 : tensor<2097152xui32> loc(#loc908) | |
| %9616 = mhlo.constant dense<29> : tensor<ui32> loc(#loc907) | |
| %9617 = "mhlo.broadcast_in_dim"(%9616) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9618 = mhlo.shift_left %9614, %9617 : tensor<2097152xui32> loc(#loc909) | |
| %9619 = mhlo.constant dense<3> : tensor<ui32> loc(#loc907) | |
| %9620 = "mhlo.broadcast_in_dim"(%9619) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9621 = mhlo.shift_right_logical %9614, %9620 : tensor<2097152xui32> loc(#loc910) | |
| %9622 = mhlo.or %9618, %9621 : tensor<2097152xui32> loc(#loc911) | |
| %9623 = mhlo.xor %9615, %9622 : tensor<2097152xui32> loc(#loc906) | |
| %9624 = mhlo.add %9615, %9623 : tensor<2097152xui32> loc(#loc908) | |
| %9625 = mhlo.constant dense<16> : tensor<ui32> loc(#loc907) | |
| %9626 = "mhlo.broadcast_in_dim"(%9625) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9627 = mhlo.shift_left %9623, %9626 : tensor<2097152xui32> loc(#loc909) | |
| %9628 = mhlo.constant dense<16> : tensor<ui32> loc(#loc907) | |
| %9629 = "mhlo.broadcast_in_dim"(%9628) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9630 = mhlo.shift_right_logical %9623, %9629 : tensor<2097152xui32> loc(#loc910) | |
| %9631 = mhlo.or %9627, %9630 : tensor<2097152xui32> loc(#loc911) | |
| %9632 = mhlo.xor %9624, %9631 : tensor<2097152xui32> loc(#loc906) | |
| %9633 = mhlo.add %9624, %9632 : tensor<2097152xui32> loc(#loc908) | |
| %9634 = mhlo.constant dense<24> : tensor<ui32> loc(#loc907) | |
| %9635 = "mhlo.broadcast_in_dim"(%9634) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9636 = mhlo.shift_left %9632, %9635 : tensor<2097152xui32> loc(#loc909) | |
| %9637 = mhlo.constant dense<8> : tensor<ui32> loc(#loc907) | |
| %9638 = "mhlo.broadcast_in_dim"(%9637) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9639 = mhlo.shift_right_logical %9632, %9638 : tensor<2097152xui32> loc(#loc910) | |
| %9640 = mhlo.or %9636, %9639 : tensor<2097152xui32> loc(#loc911) | |
| %9641 = mhlo.xor %9633, %9640 : tensor<2097152xui32> loc(#loc906) | |
| %9642 = "mhlo.broadcast_in_dim"(%9558) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9643 = mhlo.add %9633, %9642 : tensor<2097152xui32> loc(#loc908) | |
| %9644 = "mhlo.broadcast_in_dim"(%9551) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9645 = mhlo.add %9641, %9644 : tensor<2097152xui32> loc(#loc908) | |
| %9646 = mhlo.constant dense<2> : tensor<ui32> loc(#loc907) | |
| %9647 = "mhlo.broadcast_in_dim"(%9646) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9648 = mhlo.add %9645, %9647 : tensor<2097152xui32> loc(#loc908) | |
| %9649 = mhlo.add %9643, %9648 : tensor<2097152xui32> loc(#loc908) | |
| %9650 = mhlo.constant dense<13> : tensor<ui32> loc(#loc907) | |
| %9651 = "mhlo.broadcast_in_dim"(%9650) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9652 = mhlo.shift_left %9648, %9651 : tensor<2097152xui32> loc(#loc909) | |
| %9653 = mhlo.constant dense<19> : tensor<ui32> loc(#loc907) | |
| %9654 = "mhlo.broadcast_in_dim"(%9653) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9655 = mhlo.shift_right_logical %9648, %9654 : tensor<2097152xui32> loc(#loc910) | |
| %9656 = mhlo.or %9652, %9655 : tensor<2097152xui32> loc(#loc911) | |
| %9657 = mhlo.xor %9649, %9656 : tensor<2097152xui32> loc(#loc906) | |
| %9658 = mhlo.add %9649, %9657 : tensor<2097152xui32> loc(#loc908) | |
| %9659 = mhlo.constant dense<15> : tensor<ui32> loc(#loc907) | |
| %9660 = "mhlo.broadcast_in_dim"(%9659) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9661 = mhlo.shift_left %9657, %9660 : tensor<2097152xui32> loc(#loc909) | |
| %9662 = mhlo.constant dense<17> : tensor<ui32> loc(#loc907) | |
| %9663 = "mhlo.broadcast_in_dim"(%9662) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9664 = mhlo.shift_right_logical %9657, %9663 : tensor<2097152xui32> loc(#loc910) | |
| %9665 = mhlo.or %9661, %9664 : tensor<2097152xui32> loc(#loc911) | |
| %9666 = mhlo.xor %9658, %9665 : tensor<2097152xui32> loc(#loc906) | |
| %9667 = mhlo.add %9658, %9666 : tensor<2097152xui32> loc(#loc908) | |
| %9668 = mhlo.constant dense<26> : tensor<ui32> loc(#loc907) | |
| %9669 = "mhlo.broadcast_in_dim"(%9668) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9670 = mhlo.shift_left %9666, %9669 : tensor<2097152xui32> loc(#loc909) | |
| %9671 = mhlo.constant dense<6> : tensor<ui32> loc(#loc907) | |
| %9672 = "mhlo.broadcast_in_dim"(%9671) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9673 = mhlo.shift_right_logical %9666, %9672 : tensor<2097152xui32> loc(#loc910) | |
| %9674 = mhlo.or %9670, %9673 : tensor<2097152xui32> loc(#loc911) | |
| %9675 = mhlo.xor %9667, %9674 : tensor<2097152xui32> loc(#loc906) | |
| %9676 = mhlo.add %9667, %9675 : tensor<2097152xui32> loc(#loc908) | |
| %9677 = mhlo.constant dense<6> : tensor<ui32> loc(#loc907) | |
| %9678 = "mhlo.broadcast_in_dim"(%9677) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9679 = mhlo.shift_left %9675, %9678 : tensor<2097152xui32> loc(#loc909) | |
| %9680 = mhlo.constant dense<26> : tensor<ui32> loc(#loc907) | |
| %9681 = "mhlo.broadcast_in_dim"(%9680) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9682 = mhlo.shift_right_logical %9675, %9681 : tensor<2097152xui32> loc(#loc910) | |
| %9683 = mhlo.or %9679, %9682 : tensor<2097152xui32> loc(#loc911) | |
| %9684 = mhlo.xor %9676, %9683 : tensor<2097152xui32> loc(#loc906) | |
| %9685 = "mhlo.broadcast_in_dim"(%9551) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9686 = mhlo.add %9676, %9685 : tensor<2097152xui32> loc(#loc908) | |
| %9687 = "mhlo.broadcast_in_dim"(%9553) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9688 = mhlo.add %9684, %9687 : tensor<2097152xui32> loc(#loc908) | |
| %9689 = mhlo.constant dense<3> : tensor<ui32> loc(#loc907) | |
| %9690 = "mhlo.broadcast_in_dim"(%9689) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9691 = mhlo.add %9688, %9690 : tensor<2097152xui32> loc(#loc908) | |
| %9692 = mhlo.add %9686, %9691 : tensor<2097152xui32> loc(#loc908) | |
| %9693 = mhlo.constant dense<17> : tensor<ui32> loc(#loc907) | |
| %9694 = "mhlo.broadcast_in_dim"(%9693) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9695 = mhlo.shift_left %9691, %9694 : tensor<2097152xui32> loc(#loc909) | |
| %9696 = mhlo.constant dense<15> : tensor<ui32> loc(#loc907) | |
| %9697 = "mhlo.broadcast_in_dim"(%9696) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9698 = mhlo.shift_right_logical %9691, %9697 : tensor<2097152xui32> loc(#loc910) | |
| %9699 = mhlo.or %9695, %9698 : tensor<2097152xui32> loc(#loc911) | |
| %9700 = mhlo.xor %9692, %9699 : tensor<2097152xui32> loc(#loc906) | |
| %9701 = mhlo.add %9692, %9700 : tensor<2097152xui32> loc(#loc908) | |
| %9702 = mhlo.constant dense<29> : tensor<ui32> loc(#loc907) | |
| %9703 = "mhlo.broadcast_in_dim"(%9702) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9704 = mhlo.shift_left %9700, %9703 : tensor<2097152xui32> loc(#loc909) | |
| %9705 = mhlo.constant dense<3> : tensor<ui32> loc(#loc907) | |
| %9706 = "mhlo.broadcast_in_dim"(%9705) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9707 = mhlo.shift_right_logical %9700, %9706 : tensor<2097152xui32> loc(#loc910) | |
| %9708 = mhlo.or %9704, %9707 : tensor<2097152xui32> loc(#loc911) | |
| %9709 = mhlo.xor %9701, %9708 : tensor<2097152xui32> loc(#loc906) | |
| %9710 = mhlo.add %9701, %9709 : tensor<2097152xui32> loc(#loc908) | |
| %9711 = mhlo.constant dense<16> : tensor<ui32> loc(#loc907) | |
| %9712 = "mhlo.broadcast_in_dim"(%9711) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9713 = mhlo.shift_left %9709, %9712 : tensor<2097152xui32> loc(#loc909) | |
| %9714 = mhlo.constant dense<16> : tensor<ui32> loc(#loc907) | |
| %9715 = "mhlo.broadcast_in_dim"(%9714) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9716 = mhlo.shift_right_logical %9709, %9715 : tensor<2097152xui32> loc(#loc910) | |
| %9717 = mhlo.or %9713, %9716 : tensor<2097152xui32> loc(#loc911) | |
| %9718 = mhlo.xor %9710, %9717 : tensor<2097152xui32> loc(#loc906) | |
| %9719 = mhlo.add %9710, %9718 : tensor<2097152xui32> loc(#loc908) | |
| %9720 = mhlo.constant dense<24> : tensor<ui32> loc(#loc907) | |
| %9721 = "mhlo.broadcast_in_dim"(%9720) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9722 = mhlo.shift_left %9718, %9721 : tensor<2097152xui32> loc(#loc909) | |
| %9723 = mhlo.constant dense<8> : tensor<ui32> loc(#loc907) | |
| %9724 = "mhlo.broadcast_in_dim"(%9723) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9725 = mhlo.shift_right_logical %9718, %9724 : tensor<2097152xui32> loc(#loc910) | |
| %9726 = mhlo.or %9722, %9725 : tensor<2097152xui32> loc(#loc911) | |
| %9727 = mhlo.xor %9719, %9726 : tensor<2097152xui32> loc(#loc906) | |
| %9728 = "mhlo.broadcast_in_dim"(%9553) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9729 = mhlo.add %9719, %9728 : tensor<2097152xui32> loc(#loc908) | |
| %9730 = "mhlo.broadcast_in_dim"(%9558) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9731 = mhlo.add %9727, %9730 : tensor<2097152xui32> loc(#loc908) | |
| %9732 = mhlo.constant dense<4> : tensor<ui32> loc(#loc907) | |
| %9733 = "mhlo.broadcast_in_dim"(%9732) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9734 = mhlo.add %9731, %9733 : tensor<2097152xui32> loc(#loc908) | |
| %9735 = mhlo.add %9729, %9734 : tensor<2097152xui32> loc(#loc908) | |
| %9736 = mhlo.constant dense<13> : tensor<ui32> loc(#loc907) | |
| %9737 = "mhlo.broadcast_in_dim"(%9736) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9738 = mhlo.shift_left %9734, %9737 : tensor<2097152xui32> loc(#loc909) | |
| %9739 = mhlo.constant dense<19> : tensor<ui32> loc(#loc907) | |
| %9740 = "mhlo.broadcast_in_dim"(%9739) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9741 = mhlo.shift_right_logical %9734, %9740 : tensor<2097152xui32> loc(#loc910) | |
| %9742 = mhlo.or %9738, %9741 : tensor<2097152xui32> loc(#loc911) | |
| %9743 = mhlo.xor %9735, %9742 : tensor<2097152xui32> loc(#loc906) | |
| %9744 = mhlo.add %9735, %9743 : tensor<2097152xui32> loc(#loc908) | |
| %9745 = mhlo.constant dense<15> : tensor<ui32> loc(#loc907) | |
| %9746 = "mhlo.broadcast_in_dim"(%9745) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9747 = mhlo.shift_left %9743, %9746 : tensor<2097152xui32> loc(#loc909) | |
| %9748 = mhlo.constant dense<17> : tensor<ui32> loc(#loc907) | |
| %9749 = "mhlo.broadcast_in_dim"(%9748) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9750 = mhlo.shift_right_logical %9743, %9749 : tensor<2097152xui32> loc(#loc910) | |
| %9751 = mhlo.or %9747, %9750 : tensor<2097152xui32> loc(#loc911) | |
| %9752 = mhlo.xor %9744, %9751 : tensor<2097152xui32> loc(#loc906) | |
| %9753 = mhlo.add %9744, %9752 : tensor<2097152xui32> loc(#loc908) | |
| %9754 = mhlo.constant dense<26> : tensor<ui32> loc(#loc907) | |
| %9755 = "mhlo.broadcast_in_dim"(%9754) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9756 = mhlo.shift_left %9752, %9755 : tensor<2097152xui32> loc(#loc909) | |
| %9757 = mhlo.constant dense<6> : tensor<ui32> loc(#loc907) | |
| %9758 = "mhlo.broadcast_in_dim"(%9757) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9759 = mhlo.shift_right_logical %9752, %9758 : tensor<2097152xui32> loc(#loc910) | |
| %9760 = mhlo.or %9756, %9759 : tensor<2097152xui32> loc(#loc911) | |
| %9761 = mhlo.xor %9753, %9760 : tensor<2097152xui32> loc(#loc906) | |
| %9762 = mhlo.add %9753, %9761 : tensor<2097152xui32> loc(#loc908) | |
| %9763 = mhlo.constant dense<6> : tensor<ui32> loc(#loc907) | |
| %9764 = "mhlo.broadcast_in_dim"(%9763) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc909) | |
| %9765 = mhlo.shift_left %9761, %9764 : tensor<2097152xui32> loc(#loc909) | |
| %9766 = mhlo.constant dense<26> : tensor<ui32> loc(#loc907) | |
| %9767 = "mhlo.broadcast_in_dim"(%9766) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc910) | |
| %9768 = mhlo.shift_right_logical %9761, %9767 : tensor<2097152xui32> loc(#loc910) | |
| %9769 = mhlo.or %9765, %9768 : tensor<2097152xui32> loc(#loc911) | |
| %9770 = mhlo.xor %9762, %9769 : tensor<2097152xui32> loc(#loc906) | |
| %9771 = "mhlo.broadcast_in_dim"(%9558) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9772 = mhlo.add %9762, %9771 : tensor<2097152xui32> loc(#loc908) | |
| %9773 = "mhlo.broadcast_in_dim"(%9551) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9774 = mhlo.add %9770, %9773 : tensor<2097152xui32> loc(#loc908) | |
| %9775 = mhlo.constant dense<5> : tensor<ui32> loc(#loc907) | |
| %9776 = "mhlo.broadcast_in_dim"(%9775) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc908) | |
| %9777 = mhlo.add %9774, %9776 : tensor<2097152xui32> loc(#loc908) | |
| %9778 = "mhlo.concatenate"(%9772, %9777) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc912) | |
| %9779 = "mhlo.reshape"(%9778) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc913) | |
| %9780 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %9781 = "mhlo.broadcast_in_dim"(%9780) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc910) | |
| %9782 = mhlo.shift_right_logical %9779, %9781 : tensor<2048x2048xui32> loc(#loc910) | |
| %9783 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %9784 = "mhlo.broadcast_in_dim"(%9783) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc911) | |
| %9785 = mhlo.or %9782, %9784 : tensor<2048x2048xui32> loc(#loc911) | |
| %9786 = "mhlo.bitcast_convert"(%9785) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc914) | |
| %9787 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %9788 = "mhlo.broadcast_in_dim"(%9787) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc915) | |
| %9789 = mhlo.subtract %9786, %9788 : tensor<2048x2048xf32> loc(#loc915) | |
| %9790 = mhlo.subtract %9548, %9546 : tensor<1x1xf32> loc(#loc915) | |
| %9791 = "mhlo.broadcast_in_dim"(%9790) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc916) | |
| %9792 = mhlo.multiply %9789, %9791 : tensor<2048x2048xf32> loc(#loc916) | |
| %9793 = "mhlo.broadcast_in_dim"(%9546) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc908) | |
| %9794 = mhlo.add %9792, %9793 : tensor<2048x2048xf32> loc(#loc908) | |
| %9795 = "mhlo.broadcast_in_dim"(%9546) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc917) | |
| %9796 = mhlo.maximum %9795, %9794 : tensor<2048x2048xf32> loc(#loc917) | |
| %9797 = func.call @erf_inv_22(%9796) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc918) | |
| %9798 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %9799 = "mhlo.broadcast_in_dim"(%9798) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc916) | |
| %9800 = mhlo.multiply %9797, %9799 : tensor<2048x2048xf32> loc(#loc916) | |
| %9801 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %9802 = "mhlo.broadcast_in_dim"(%9801) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc916) | |
| %9803 = mhlo.multiply %9800, %9802 : tensor<2048x2048xf32> loc(#loc916) | |
| %9804 = mhlo.convert(%9803) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc919) | |
| %9805 = "mhlo.dot_general"(%iterArg_1, %9804) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x64x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x64x2048xf16> loc(#loc920) | |
| %9806 = "mhlo.reshape"(%8809) : (tensor<1x256x2048xf16>) -> tensor<1x256x32x64xf16> loc(#loc921) | |
| %9807 = "mhlo.reshape"(%9307) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc922) | |
| %9808 = "mhlo.reshape"(%9805) : (tensor<1x64x2048xf16>) -> tensor<1x64x32x64xf16> loc(#loc922) | |
| %9809 = mhlo.constant dense<6.400000e+01> : tensor<f32> loc(#loc531) | |
| %9810 = mhlo.sqrt %9809 : tensor<f32> loc(#loc923) | |
| %9811 = mhlo.convert(%9810) : (tensor<f32>) -> tensor<f16> loc(#loc924) | |
| %9812 = "mhlo.broadcast_in_dim"(%9811) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x32x64xf16> loc(#loc925) | |
| %9813 = mhlo.divide %9806, %9812 : tensor<1x256x32x64xf16> loc(#loc925) | |
| %9814 = func.call @_einsum_25(%9813, %9807) : (tensor<1x256x32x64xf16>, tensor<1x64x32x64xf16>) -> tensor<1x32x256x64xf16> loc(#loc926) | |
| %9815 = mhlo.constant dense<0xFC00> : tensor<f16> loc(#loc927) | |
| %9816 = mhlo.reduce(%9814 init: %9815) across dimensions = [3] : (tensor<1x32x256x64xf16>, tensor<f16>) -> tensor<1x32x256xf16> | |
| reducer(%arg47: tensor<f16> loc(unknown), %arg48: tensor<f16> loc(unknown)) { | |
| %13358 = mhlo.maximum %arg47, %arg48 : tensor<f16> loc(#loc927) | |
| "mhlo.return"(%13358) : (tensor<f16>) -> () loc(#loc927) | |
| } loc(#loc927) | |
| %9817 = "mhlo.broadcast_in_dim"(%9816) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x256xf16>) -> tensor<1x32x256x1xf16> loc(#loc928) | |
| %9818 = "mhlo.broadcast_in_dim"(%9817) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x256x1xf16>) -> tensor<1x32x256x64xf16> loc(#loc929) | |
| %9819 = mhlo.subtract %9814, %9818 : tensor<1x32x256x64xf16> loc(#loc929) | |
| %9820 = mhlo.exponential %9819 : tensor<1x32x256x64xf16> loc(#loc930) | |
| %9821 = mhlo.convert(%9820) : (tensor<1x32x256x64xf16>) -> tensor<1x32x256x64xf32> loc(#loc931) | |
| %9822 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc932) | |
| %9823 = mhlo.reduce(%9821 init: %9822) across dimensions = [3] : (tensor<1x32x256x64xf32>, tensor<f32>) -> tensor<1x32x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc932) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc932) | |
| } loc(#loc932) | |
| %9824 = "mhlo.broadcast_in_dim"(%9823) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x32x256xf32>) -> tensor<1x32x256x1xf32> loc(#loc928) | |
| %9825 = mhlo.convert(%9824) : (tensor<1x32x256x1xf32>) -> tensor<1x32x256x1xf16> loc(#loc933) | |
| %9826 = "mhlo.broadcast_in_dim"(%9825) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x32x256x1xf16>) -> tensor<1x32x256x64xf16> loc(#loc934) | |
| %9827 = mhlo.divide %9820, %9826 : tensor<1x32x256x64xf16> loc(#loc934) | |
| %9828 = func.call @_einsum_26(%9827, %9808) : (tensor<1x32x256x64xf16>, tensor<1x64x32x64xf16>) -> tensor<1x256x32x64xf16> loc(#loc935) | |
| %9829 = "mhlo.reshape"(%9828) : (tensor<1x256x32x64xf16>) -> tensor<1x256x2048xf16> loc(#loc936) | |
| %9830 = mhlo.constant dense<1063172292> : tensor<ui32> loc(#loc531) | |
| %9831 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %9832 = mhlo.shift_right_logical %9830, %9831 : tensor<ui32> loc(#loc937) | |
| %9833 = "mhlo.reshape"(%9832) : (tensor<ui32>) -> tensor<1xui32> loc(#loc938) | |
| %9834 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %9835 = mhlo.and %9830, %9834 : tensor<ui32> loc(#loc939) | |
| %9836 = "mhlo.reshape"(%9835) : (tensor<ui32>) -> tensor<1xui32> loc(#loc938) | |
| %9837 = "mhlo.concatenate"(%9833, %9836) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc940) | |
| %9838 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc941) | |
| %9839 = "mhlo.reshape"(%9838) : (tensor<1xui32>) -> tensor<ui32> loc(#loc942) | |
| %9840 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc943) | |
| %9841 = "mhlo.reshape"(%9840) : (tensor<1xui32>) -> tensor<ui32> loc(#loc942) | |
| %9842 = "mhlo.slice"(%9837) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc944) | |
| %9843 = "mhlo.slice"(%9837) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc945) | |
| %9844 = mhlo.xor %9839, %9841 : tensor<ui32> loc(#loc946) | |
| %9845 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc947) | |
| %9846 = mhlo.xor %9844, %9845 : tensor<ui32> loc(#loc946) | |
| %9847 = "mhlo.broadcast_in_dim"(%9839) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9848 = mhlo.add %9842, %9847 : tensor<1xui32> loc(#loc948) | |
| %9849 = "mhlo.broadcast_in_dim"(%9841) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9850 = mhlo.add %9843, %9849 : tensor<1xui32> loc(#loc948) | |
| %9851 = mhlo.add %9848, %9850 : tensor<1xui32> loc(#loc948) | |
| %9852 = mhlo.constant dense<13> : tensor<ui32> loc(#loc947) | |
| %9853 = "mhlo.broadcast_in_dim"(%9852) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9854 = mhlo.shift_left %9850, %9853 : tensor<1xui32> loc(#loc949) | |
| %9855 = mhlo.constant dense<19> : tensor<ui32> loc(#loc947) | |
| %9856 = "mhlo.broadcast_in_dim"(%9855) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9857 = mhlo.shift_right_logical %9850, %9856 : tensor<1xui32> loc(#loc937) | |
| %9858 = mhlo.or %9854, %9857 : tensor<1xui32> loc(#loc950) | |
| %9859 = mhlo.xor %9851, %9858 : tensor<1xui32> loc(#loc946) | |
| %9860 = mhlo.add %9851, %9859 : tensor<1xui32> loc(#loc948) | |
| %9861 = mhlo.constant dense<15> : tensor<ui32> loc(#loc947) | |
| %9862 = "mhlo.broadcast_in_dim"(%9861) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9863 = mhlo.shift_left %9859, %9862 : tensor<1xui32> loc(#loc949) | |
| %9864 = mhlo.constant dense<17> : tensor<ui32> loc(#loc947) | |
| %9865 = "mhlo.broadcast_in_dim"(%9864) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9866 = mhlo.shift_right_logical %9859, %9865 : tensor<1xui32> loc(#loc937) | |
| %9867 = mhlo.or %9863, %9866 : tensor<1xui32> loc(#loc950) | |
| %9868 = mhlo.xor %9860, %9867 : tensor<1xui32> loc(#loc946) | |
| %9869 = mhlo.add %9860, %9868 : tensor<1xui32> loc(#loc948) | |
| %9870 = mhlo.constant dense<26> : tensor<ui32> loc(#loc947) | |
| %9871 = "mhlo.broadcast_in_dim"(%9870) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9872 = mhlo.shift_left %9868, %9871 : tensor<1xui32> loc(#loc949) | |
| %9873 = mhlo.constant dense<6> : tensor<ui32> loc(#loc947) | |
| %9874 = "mhlo.broadcast_in_dim"(%9873) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9875 = mhlo.shift_right_logical %9868, %9874 : tensor<1xui32> loc(#loc937) | |
| %9876 = mhlo.or %9872, %9875 : tensor<1xui32> loc(#loc950) | |
| %9877 = mhlo.xor %9869, %9876 : tensor<1xui32> loc(#loc946) | |
| %9878 = mhlo.add %9869, %9877 : tensor<1xui32> loc(#loc948) | |
| %9879 = mhlo.constant dense<6> : tensor<ui32> loc(#loc947) | |
| %9880 = "mhlo.broadcast_in_dim"(%9879) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9881 = mhlo.shift_left %9877, %9880 : tensor<1xui32> loc(#loc949) | |
| %9882 = mhlo.constant dense<26> : tensor<ui32> loc(#loc947) | |
| %9883 = "mhlo.broadcast_in_dim"(%9882) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9884 = mhlo.shift_right_logical %9877, %9883 : tensor<1xui32> loc(#loc937) | |
| %9885 = mhlo.or %9881, %9884 : tensor<1xui32> loc(#loc950) | |
| %9886 = mhlo.xor %9878, %9885 : tensor<1xui32> loc(#loc946) | |
| %9887 = "mhlo.broadcast_in_dim"(%9841) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9888 = mhlo.add %9878, %9887 : tensor<1xui32> loc(#loc948) | |
| %9889 = "mhlo.broadcast_in_dim"(%9846) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9890 = mhlo.add %9886, %9889 : tensor<1xui32> loc(#loc948) | |
| %9891 = mhlo.constant dense<1> : tensor<ui32> loc(#loc947) | |
| %9892 = "mhlo.broadcast_in_dim"(%9891) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9893 = mhlo.add %9890, %9892 : tensor<1xui32> loc(#loc948) | |
| %9894 = mhlo.add %9888, %9893 : tensor<1xui32> loc(#loc948) | |
| %9895 = mhlo.constant dense<17> : tensor<ui32> loc(#loc947) | |
| %9896 = "mhlo.broadcast_in_dim"(%9895) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9897 = mhlo.shift_left %9893, %9896 : tensor<1xui32> loc(#loc949) | |
| %9898 = mhlo.constant dense<15> : tensor<ui32> loc(#loc947) | |
| %9899 = "mhlo.broadcast_in_dim"(%9898) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9900 = mhlo.shift_right_logical %9893, %9899 : tensor<1xui32> loc(#loc937) | |
| %9901 = mhlo.or %9897, %9900 : tensor<1xui32> loc(#loc950) | |
| %9902 = mhlo.xor %9894, %9901 : tensor<1xui32> loc(#loc946) | |
| %9903 = mhlo.add %9894, %9902 : tensor<1xui32> loc(#loc948) | |
| %9904 = mhlo.constant dense<29> : tensor<ui32> loc(#loc947) | |
| %9905 = "mhlo.broadcast_in_dim"(%9904) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9906 = mhlo.shift_left %9902, %9905 : tensor<1xui32> loc(#loc949) | |
| %9907 = mhlo.constant dense<3> : tensor<ui32> loc(#loc947) | |
| %9908 = "mhlo.broadcast_in_dim"(%9907) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9909 = mhlo.shift_right_logical %9902, %9908 : tensor<1xui32> loc(#loc937) | |
| %9910 = mhlo.or %9906, %9909 : tensor<1xui32> loc(#loc950) | |
| %9911 = mhlo.xor %9903, %9910 : tensor<1xui32> loc(#loc946) | |
| %9912 = mhlo.add %9903, %9911 : tensor<1xui32> loc(#loc948) | |
| %9913 = mhlo.constant dense<16> : tensor<ui32> loc(#loc947) | |
| %9914 = "mhlo.broadcast_in_dim"(%9913) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9915 = mhlo.shift_left %9911, %9914 : tensor<1xui32> loc(#loc949) | |
| %9916 = mhlo.constant dense<16> : tensor<ui32> loc(#loc947) | |
| %9917 = "mhlo.broadcast_in_dim"(%9916) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9918 = mhlo.shift_right_logical %9911, %9917 : tensor<1xui32> loc(#loc937) | |
| %9919 = mhlo.or %9915, %9918 : tensor<1xui32> loc(#loc950) | |
| %9920 = mhlo.xor %9912, %9919 : tensor<1xui32> loc(#loc946) | |
| %9921 = mhlo.add %9912, %9920 : tensor<1xui32> loc(#loc948) | |
| %9922 = mhlo.constant dense<24> : tensor<ui32> loc(#loc947) | |
| %9923 = "mhlo.broadcast_in_dim"(%9922) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9924 = mhlo.shift_left %9920, %9923 : tensor<1xui32> loc(#loc949) | |
| %9925 = mhlo.constant dense<8> : tensor<ui32> loc(#loc947) | |
| %9926 = "mhlo.broadcast_in_dim"(%9925) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9927 = mhlo.shift_right_logical %9920, %9926 : tensor<1xui32> loc(#loc937) | |
| %9928 = mhlo.or %9924, %9927 : tensor<1xui32> loc(#loc950) | |
| %9929 = mhlo.xor %9921, %9928 : tensor<1xui32> loc(#loc946) | |
| %9930 = "mhlo.broadcast_in_dim"(%9846) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9931 = mhlo.add %9921, %9930 : tensor<1xui32> loc(#loc948) | |
| %9932 = "mhlo.broadcast_in_dim"(%9839) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9933 = mhlo.add %9929, %9932 : tensor<1xui32> loc(#loc948) | |
| %9934 = mhlo.constant dense<2> : tensor<ui32> loc(#loc947) | |
| %9935 = "mhlo.broadcast_in_dim"(%9934) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9936 = mhlo.add %9933, %9935 : tensor<1xui32> loc(#loc948) | |
| %9937 = mhlo.add %9931, %9936 : tensor<1xui32> loc(#loc948) | |
| %9938 = mhlo.constant dense<13> : tensor<ui32> loc(#loc947) | |
| %9939 = "mhlo.broadcast_in_dim"(%9938) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9940 = mhlo.shift_left %9936, %9939 : tensor<1xui32> loc(#loc949) | |
| %9941 = mhlo.constant dense<19> : tensor<ui32> loc(#loc947) | |
| %9942 = "mhlo.broadcast_in_dim"(%9941) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9943 = mhlo.shift_right_logical %9936, %9942 : tensor<1xui32> loc(#loc937) | |
| %9944 = mhlo.or %9940, %9943 : tensor<1xui32> loc(#loc950) | |
| %9945 = mhlo.xor %9937, %9944 : tensor<1xui32> loc(#loc946) | |
| %9946 = mhlo.add %9937, %9945 : tensor<1xui32> loc(#loc948) | |
| %9947 = mhlo.constant dense<15> : tensor<ui32> loc(#loc947) | |
| %9948 = "mhlo.broadcast_in_dim"(%9947) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9949 = mhlo.shift_left %9945, %9948 : tensor<1xui32> loc(#loc949) | |
| %9950 = mhlo.constant dense<17> : tensor<ui32> loc(#loc947) | |
| %9951 = "mhlo.broadcast_in_dim"(%9950) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9952 = mhlo.shift_right_logical %9945, %9951 : tensor<1xui32> loc(#loc937) | |
| %9953 = mhlo.or %9949, %9952 : tensor<1xui32> loc(#loc950) | |
| %9954 = mhlo.xor %9946, %9953 : tensor<1xui32> loc(#loc946) | |
| %9955 = mhlo.add %9946, %9954 : tensor<1xui32> loc(#loc948) | |
| %9956 = mhlo.constant dense<26> : tensor<ui32> loc(#loc947) | |
| %9957 = "mhlo.broadcast_in_dim"(%9956) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9958 = mhlo.shift_left %9954, %9957 : tensor<1xui32> loc(#loc949) | |
| %9959 = mhlo.constant dense<6> : tensor<ui32> loc(#loc947) | |
| %9960 = "mhlo.broadcast_in_dim"(%9959) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9961 = mhlo.shift_right_logical %9954, %9960 : tensor<1xui32> loc(#loc937) | |
| %9962 = mhlo.or %9958, %9961 : tensor<1xui32> loc(#loc950) | |
| %9963 = mhlo.xor %9955, %9962 : tensor<1xui32> loc(#loc946) | |
| %9964 = mhlo.add %9955, %9963 : tensor<1xui32> loc(#loc948) | |
| %9965 = mhlo.constant dense<6> : tensor<ui32> loc(#loc947) | |
| %9966 = "mhlo.broadcast_in_dim"(%9965) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9967 = mhlo.shift_left %9963, %9966 : tensor<1xui32> loc(#loc949) | |
| %9968 = mhlo.constant dense<26> : tensor<ui32> loc(#loc947) | |
| %9969 = "mhlo.broadcast_in_dim"(%9968) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9970 = mhlo.shift_right_logical %9963, %9969 : tensor<1xui32> loc(#loc937) | |
| %9971 = mhlo.or %9967, %9970 : tensor<1xui32> loc(#loc950) | |
| %9972 = mhlo.xor %9964, %9971 : tensor<1xui32> loc(#loc946) | |
| %9973 = "mhlo.broadcast_in_dim"(%9839) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9974 = mhlo.add %9964, %9973 : tensor<1xui32> loc(#loc948) | |
| %9975 = "mhlo.broadcast_in_dim"(%9841) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9976 = mhlo.add %9972, %9975 : tensor<1xui32> loc(#loc948) | |
| %9977 = mhlo.constant dense<3> : tensor<ui32> loc(#loc947) | |
| %9978 = "mhlo.broadcast_in_dim"(%9977) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %9979 = mhlo.add %9976, %9978 : tensor<1xui32> loc(#loc948) | |
| %9980 = mhlo.add %9974, %9979 : tensor<1xui32> loc(#loc948) | |
| %9981 = mhlo.constant dense<17> : tensor<ui32> loc(#loc947) | |
| %9982 = "mhlo.broadcast_in_dim"(%9981) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9983 = mhlo.shift_left %9979, %9982 : tensor<1xui32> loc(#loc949) | |
| %9984 = mhlo.constant dense<15> : tensor<ui32> loc(#loc947) | |
| %9985 = "mhlo.broadcast_in_dim"(%9984) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9986 = mhlo.shift_right_logical %9979, %9985 : tensor<1xui32> loc(#loc937) | |
| %9987 = mhlo.or %9983, %9986 : tensor<1xui32> loc(#loc950) | |
| %9988 = mhlo.xor %9980, %9987 : tensor<1xui32> loc(#loc946) | |
| %9989 = mhlo.add %9980, %9988 : tensor<1xui32> loc(#loc948) | |
| %9990 = mhlo.constant dense<29> : tensor<ui32> loc(#loc947) | |
| %9991 = "mhlo.broadcast_in_dim"(%9990) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %9992 = mhlo.shift_left %9988, %9991 : tensor<1xui32> loc(#loc949) | |
| %9993 = mhlo.constant dense<3> : tensor<ui32> loc(#loc947) | |
| %9994 = "mhlo.broadcast_in_dim"(%9993) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %9995 = mhlo.shift_right_logical %9988, %9994 : tensor<1xui32> loc(#loc937) | |
| %9996 = mhlo.or %9992, %9995 : tensor<1xui32> loc(#loc950) | |
| %9997 = mhlo.xor %9989, %9996 : tensor<1xui32> loc(#loc946) | |
| %9998 = mhlo.add %9989, %9997 : tensor<1xui32> loc(#loc948) | |
| %9999 = mhlo.constant dense<16> : tensor<ui32> loc(#loc947) | |
| %10000 = "mhlo.broadcast_in_dim"(%9999) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %10001 = mhlo.shift_left %9997, %10000 : tensor<1xui32> loc(#loc949) | |
| %10002 = mhlo.constant dense<16> : tensor<ui32> loc(#loc947) | |
| %10003 = "mhlo.broadcast_in_dim"(%10002) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %10004 = mhlo.shift_right_logical %9997, %10003 : tensor<1xui32> loc(#loc937) | |
| %10005 = mhlo.or %10001, %10004 : tensor<1xui32> loc(#loc950) | |
| %10006 = mhlo.xor %9998, %10005 : tensor<1xui32> loc(#loc946) | |
| %10007 = mhlo.add %9998, %10006 : tensor<1xui32> loc(#loc948) | |
| %10008 = mhlo.constant dense<24> : tensor<ui32> loc(#loc947) | |
| %10009 = "mhlo.broadcast_in_dim"(%10008) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %10010 = mhlo.shift_left %10006, %10009 : tensor<1xui32> loc(#loc949) | |
| %10011 = mhlo.constant dense<8> : tensor<ui32> loc(#loc947) | |
| %10012 = "mhlo.broadcast_in_dim"(%10011) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %10013 = mhlo.shift_right_logical %10006, %10012 : tensor<1xui32> loc(#loc937) | |
| %10014 = mhlo.or %10010, %10013 : tensor<1xui32> loc(#loc950) | |
| %10015 = mhlo.xor %10007, %10014 : tensor<1xui32> loc(#loc946) | |
| %10016 = "mhlo.broadcast_in_dim"(%9841) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %10017 = mhlo.add %10007, %10016 : tensor<1xui32> loc(#loc948) | |
| %10018 = "mhlo.broadcast_in_dim"(%9846) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %10019 = mhlo.add %10015, %10018 : tensor<1xui32> loc(#loc948) | |
| %10020 = mhlo.constant dense<4> : tensor<ui32> loc(#loc947) | |
| %10021 = "mhlo.broadcast_in_dim"(%10020) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %10022 = mhlo.add %10019, %10021 : tensor<1xui32> loc(#loc948) | |
| %10023 = mhlo.add %10017, %10022 : tensor<1xui32> loc(#loc948) | |
| %10024 = mhlo.constant dense<13> : tensor<ui32> loc(#loc947) | |
| %10025 = "mhlo.broadcast_in_dim"(%10024) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %10026 = mhlo.shift_left %10022, %10025 : tensor<1xui32> loc(#loc949) | |
| %10027 = mhlo.constant dense<19> : tensor<ui32> loc(#loc947) | |
| %10028 = "mhlo.broadcast_in_dim"(%10027) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %10029 = mhlo.shift_right_logical %10022, %10028 : tensor<1xui32> loc(#loc937) | |
| %10030 = mhlo.or %10026, %10029 : tensor<1xui32> loc(#loc950) | |
| %10031 = mhlo.xor %10023, %10030 : tensor<1xui32> loc(#loc946) | |
| %10032 = mhlo.add %10023, %10031 : tensor<1xui32> loc(#loc948) | |
| %10033 = mhlo.constant dense<15> : tensor<ui32> loc(#loc947) | |
| %10034 = "mhlo.broadcast_in_dim"(%10033) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %10035 = mhlo.shift_left %10031, %10034 : tensor<1xui32> loc(#loc949) | |
| %10036 = mhlo.constant dense<17> : tensor<ui32> loc(#loc947) | |
| %10037 = "mhlo.broadcast_in_dim"(%10036) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %10038 = mhlo.shift_right_logical %10031, %10037 : tensor<1xui32> loc(#loc937) | |
| %10039 = mhlo.or %10035, %10038 : tensor<1xui32> loc(#loc950) | |
| %10040 = mhlo.xor %10032, %10039 : tensor<1xui32> loc(#loc946) | |
| %10041 = mhlo.add %10032, %10040 : tensor<1xui32> loc(#loc948) | |
| %10042 = mhlo.constant dense<26> : tensor<ui32> loc(#loc947) | |
| %10043 = "mhlo.broadcast_in_dim"(%10042) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %10044 = mhlo.shift_left %10040, %10043 : tensor<1xui32> loc(#loc949) | |
| %10045 = mhlo.constant dense<6> : tensor<ui32> loc(#loc947) | |
| %10046 = "mhlo.broadcast_in_dim"(%10045) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %10047 = mhlo.shift_right_logical %10040, %10046 : tensor<1xui32> loc(#loc937) | |
| %10048 = mhlo.or %10044, %10047 : tensor<1xui32> loc(#loc950) | |
| %10049 = mhlo.xor %10041, %10048 : tensor<1xui32> loc(#loc946) | |
| %10050 = mhlo.add %10041, %10049 : tensor<1xui32> loc(#loc948) | |
| %10051 = mhlo.constant dense<6> : tensor<ui32> loc(#loc947) | |
| %10052 = "mhlo.broadcast_in_dim"(%10051) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc949) | |
| %10053 = mhlo.shift_left %10049, %10052 : tensor<1xui32> loc(#loc949) | |
| %10054 = mhlo.constant dense<26> : tensor<ui32> loc(#loc947) | |
| %10055 = "mhlo.broadcast_in_dim"(%10054) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc937) | |
| %10056 = mhlo.shift_right_logical %10049, %10055 : tensor<1xui32> loc(#loc937) | |
| %10057 = mhlo.or %10053, %10056 : tensor<1xui32> loc(#loc950) | |
| %10058 = mhlo.xor %10050, %10057 : tensor<1xui32> loc(#loc946) | |
| %10059 = "mhlo.broadcast_in_dim"(%9846) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %10060 = mhlo.add %10050, %10059 : tensor<1xui32> loc(#loc948) | |
| %10061 = "mhlo.broadcast_in_dim"(%9839) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %10062 = mhlo.add %10058, %10061 : tensor<1xui32> loc(#loc948) | |
| %10063 = mhlo.constant dense<5> : tensor<ui32> loc(#loc947) | |
| %10064 = "mhlo.broadcast_in_dim"(%10063) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc948) | |
| %10065 = mhlo.add %10062, %10064 : tensor<1xui32> loc(#loc948) | |
| %10066 = "mhlo.concatenate"(%10060, %10065) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc940) | |
| %10067 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %10068 = "mhlo.broadcast_in_dim"(%10067) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc951) | |
| %10069 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %10070 = "mhlo.broadcast_in_dim"(%10069) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc951) | |
| %10071 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4194304xui32> loc(#loc952) | |
| %10072 = "mhlo.slice"(%10066) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc953) | |
| %10073 = "mhlo.reshape"(%10072) : (tensor<1xui32>) -> tensor<ui32> loc(#loc954) | |
| %10074 = "mhlo.slice"(%10066) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc955) | |
| %10075 = "mhlo.reshape"(%10074) : (tensor<1xui32>) -> tensor<ui32> loc(#loc954) | |
| %10076 = "mhlo.slice"(%10071) {limit_indices = dense<2097152> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc956) | |
| %10077 = "mhlo.slice"(%10071) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<2097152> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4194304xui32>) -> tensor<2097152xui32> loc(#loc957) | |
| %10078 = mhlo.xor %10073, %10075 : tensor<ui32> loc(#loc958) | |
| %10079 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc959) | |
| %10080 = mhlo.xor %10078, %10079 : tensor<ui32> loc(#loc958) | |
| %10081 = "mhlo.broadcast_in_dim"(%10073) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10082 = mhlo.add %10076, %10081 : tensor<2097152xui32> loc(#loc960) | |
| %10083 = "mhlo.broadcast_in_dim"(%10075) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10084 = mhlo.add %10077, %10083 : tensor<2097152xui32> loc(#loc960) | |
| %10085 = mhlo.add %10082, %10084 : tensor<2097152xui32> loc(#loc960) | |
| %10086 = mhlo.constant dense<13> : tensor<ui32> loc(#loc959) | |
| %10087 = "mhlo.broadcast_in_dim"(%10086) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10088 = mhlo.shift_left %10084, %10087 : tensor<2097152xui32> loc(#loc961) | |
| %10089 = mhlo.constant dense<19> : tensor<ui32> loc(#loc959) | |
| %10090 = "mhlo.broadcast_in_dim"(%10089) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10091 = mhlo.shift_right_logical %10084, %10090 : tensor<2097152xui32> loc(#loc962) | |
| %10092 = mhlo.or %10088, %10091 : tensor<2097152xui32> loc(#loc963) | |
| %10093 = mhlo.xor %10085, %10092 : tensor<2097152xui32> loc(#loc958) | |
| %10094 = mhlo.add %10085, %10093 : tensor<2097152xui32> loc(#loc960) | |
| %10095 = mhlo.constant dense<15> : tensor<ui32> loc(#loc959) | |
| %10096 = "mhlo.broadcast_in_dim"(%10095) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10097 = mhlo.shift_left %10093, %10096 : tensor<2097152xui32> loc(#loc961) | |
| %10098 = mhlo.constant dense<17> : tensor<ui32> loc(#loc959) | |
| %10099 = "mhlo.broadcast_in_dim"(%10098) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10100 = mhlo.shift_right_logical %10093, %10099 : tensor<2097152xui32> loc(#loc962) | |
| %10101 = mhlo.or %10097, %10100 : tensor<2097152xui32> loc(#loc963) | |
| %10102 = mhlo.xor %10094, %10101 : tensor<2097152xui32> loc(#loc958) | |
| %10103 = mhlo.add %10094, %10102 : tensor<2097152xui32> loc(#loc960) | |
| %10104 = mhlo.constant dense<26> : tensor<ui32> loc(#loc959) | |
| %10105 = "mhlo.broadcast_in_dim"(%10104) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10106 = mhlo.shift_left %10102, %10105 : tensor<2097152xui32> loc(#loc961) | |
| %10107 = mhlo.constant dense<6> : tensor<ui32> loc(#loc959) | |
| %10108 = "mhlo.broadcast_in_dim"(%10107) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10109 = mhlo.shift_right_logical %10102, %10108 : tensor<2097152xui32> loc(#loc962) | |
| %10110 = mhlo.or %10106, %10109 : tensor<2097152xui32> loc(#loc963) | |
| %10111 = mhlo.xor %10103, %10110 : tensor<2097152xui32> loc(#loc958) | |
| %10112 = mhlo.add %10103, %10111 : tensor<2097152xui32> loc(#loc960) | |
| %10113 = mhlo.constant dense<6> : tensor<ui32> loc(#loc959) | |
| %10114 = "mhlo.broadcast_in_dim"(%10113) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10115 = mhlo.shift_left %10111, %10114 : tensor<2097152xui32> loc(#loc961) | |
| %10116 = mhlo.constant dense<26> : tensor<ui32> loc(#loc959) | |
| %10117 = "mhlo.broadcast_in_dim"(%10116) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10118 = mhlo.shift_right_logical %10111, %10117 : tensor<2097152xui32> loc(#loc962) | |
| %10119 = mhlo.or %10115, %10118 : tensor<2097152xui32> loc(#loc963) | |
| %10120 = mhlo.xor %10112, %10119 : tensor<2097152xui32> loc(#loc958) | |
| %10121 = "mhlo.broadcast_in_dim"(%10075) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10122 = mhlo.add %10112, %10121 : tensor<2097152xui32> loc(#loc960) | |
| %10123 = "mhlo.broadcast_in_dim"(%10080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10124 = mhlo.add %10120, %10123 : tensor<2097152xui32> loc(#loc960) | |
| %10125 = mhlo.constant dense<1> : tensor<ui32> loc(#loc959) | |
| %10126 = "mhlo.broadcast_in_dim"(%10125) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10127 = mhlo.add %10124, %10126 : tensor<2097152xui32> loc(#loc960) | |
| %10128 = mhlo.add %10122, %10127 : tensor<2097152xui32> loc(#loc960) | |
| %10129 = mhlo.constant dense<17> : tensor<ui32> loc(#loc959) | |
| %10130 = "mhlo.broadcast_in_dim"(%10129) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10131 = mhlo.shift_left %10127, %10130 : tensor<2097152xui32> loc(#loc961) | |
| %10132 = mhlo.constant dense<15> : tensor<ui32> loc(#loc959) | |
| %10133 = "mhlo.broadcast_in_dim"(%10132) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10134 = mhlo.shift_right_logical %10127, %10133 : tensor<2097152xui32> loc(#loc962) | |
| %10135 = mhlo.or %10131, %10134 : tensor<2097152xui32> loc(#loc963) | |
| %10136 = mhlo.xor %10128, %10135 : tensor<2097152xui32> loc(#loc958) | |
| %10137 = mhlo.add %10128, %10136 : tensor<2097152xui32> loc(#loc960) | |
| %10138 = mhlo.constant dense<29> : tensor<ui32> loc(#loc959) | |
| %10139 = "mhlo.broadcast_in_dim"(%10138) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10140 = mhlo.shift_left %10136, %10139 : tensor<2097152xui32> loc(#loc961) | |
| %10141 = mhlo.constant dense<3> : tensor<ui32> loc(#loc959) | |
| %10142 = "mhlo.broadcast_in_dim"(%10141) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10143 = mhlo.shift_right_logical %10136, %10142 : tensor<2097152xui32> loc(#loc962) | |
| %10144 = mhlo.or %10140, %10143 : tensor<2097152xui32> loc(#loc963) | |
| %10145 = mhlo.xor %10137, %10144 : tensor<2097152xui32> loc(#loc958) | |
| %10146 = mhlo.add %10137, %10145 : tensor<2097152xui32> loc(#loc960) | |
| %10147 = mhlo.constant dense<16> : tensor<ui32> loc(#loc959) | |
| %10148 = "mhlo.broadcast_in_dim"(%10147) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10149 = mhlo.shift_left %10145, %10148 : tensor<2097152xui32> loc(#loc961) | |
| %10150 = mhlo.constant dense<16> : tensor<ui32> loc(#loc959) | |
| %10151 = "mhlo.broadcast_in_dim"(%10150) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10152 = mhlo.shift_right_logical %10145, %10151 : tensor<2097152xui32> loc(#loc962) | |
| %10153 = mhlo.or %10149, %10152 : tensor<2097152xui32> loc(#loc963) | |
| %10154 = mhlo.xor %10146, %10153 : tensor<2097152xui32> loc(#loc958) | |
| %10155 = mhlo.add %10146, %10154 : tensor<2097152xui32> loc(#loc960) | |
| %10156 = mhlo.constant dense<24> : tensor<ui32> loc(#loc959) | |
| %10157 = "mhlo.broadcast_in_dim"(%10156) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10158 = mhlo.shift_left %10154, %10157 : tensor<2097152xui32> loc(#loc961) | |
| %10159 = mhlo.constant dense<8> : tensor<ui32> loc(#loc959) | |
| %10160 = "mhlo.broadcast_in_dim"(%10159) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10161 = mhlo.shift_right_logical %10154, %10160 : tensor<2097152xui32> loc(#loc962) | |
| %10162 = mhlo.or %10158, %10161 : tensor<2097152xui32> loc(#loc963) | |
| %10163 = mhlo.xor %10155, %10162 : tensor<2097152xui32> loc(#loc958) | |
| %10164 = "mhlo.broadcast_in_dim"(%10080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10165 = mhlo.add %10155, %10164 : tensor<2097152xui32> loc(#loc960) | |
| %10166 = "mhlo.broadcast_in_dim"(%10073) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10167 = mhlo.add %10163, %10166 : tensor<2097152xui32> loc(#loc960) | |
| %10168 = mhlo.constant dense<2> : tensor<ui32> loc(#loc959) | |
| %10169 = "mhlo.broadcast_in_dim"(%10168) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10170 = mhlo.add %10167, %10169 : tensor<2097152xui32> loc(#loc960) | |
| %10171 = mhlo.add %10165, %10170 : tensor<2097152xui32> loc(#loc960) | |
| %10172 = mhlo.constant dense<13> : tensor<ui32> loc(#loc959) | |
| %10173 = "mhlo.broadcast_in_dim"(%10172) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10174 = mhlo.shift_left %10170, %10173 : tensor<2097152xui32> loc(#loc961) | |
| %10175 = mhlo.constant dense<19> : tensor<ui32> loc(#loc959) | |
| %10176 = "mhlo.broadcast_in_dim"(%10175) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10177 = mhlo.shift_right_logical %10170, %10176 : tensor<2097152xui32> loc(#loc962) | |
| %10178 = mhlo.or %10174, %10177 : tensor<2097152xui32> loc(#loc963) | |
| %10179 = mhlo.xor %10171, %10178 : tensor<2097152xui32> loc(#loc958) | |
| %10180 = mhlo.add %10171, %10179 : tensor<2097152xui32> loc(#loc960) | |
| %10181 = mhlo.constant dense<15> : tensor<ui32> loc(#loc959) | |
| %10182 = "mhlo.broadcast_in_dim"(%10181) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10183 = mhlo.shift_left %10179, %10182 : tensor<2097152xui32> loc(#loc961) | |
| %10184 = mhlo.constant dense<17> : tensor<ui32> loc(#loc959) | |
| %10185 = "mhlo.broadcast_in_dim"(%10184) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10186 = mhlo.shift_right_logical %10179, %10185 : tensor<2097152xui32> loc(#loc962) | |
| %10187 = mhlo.or %10183, %10186 : tensor<2097152xui32> loc(#loc963) | |
| %10188 = mhlo.xor %10180, %10187 : tensor<2097152xui32> loc(#loc958) | |
| %10189 = mhlo.add %10180, %10188 : tensor<2097152xui32> loc(#loc960) | |
| %10190 = mhlo.constant dense<26> : tensor<ui32> loc(#loc959) | |
| %10191 = "mhlo.broadcast_in_dim"(%10190) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10192 = mhlo.shift_left %10188, %10191 : tensor<2097152xui32> loc(#loc961) | |
| %10193 = mhlo.constant dense<6> : tensor<ui32> loc(#loc959) | |
| %10194 = "mhlo.broadcast_in_dim"(%10193) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10195 = mhlo.shift_right_logical %10188, %10194 : tensor<2097152xui32> loc(#loc962) | |
| %10196 = mhlo.or %10192, %10195 : tensor<2097152xui32> loc(#loc963) | |
| %10197 = mhlo.xor %10189, %10196 : tensor<2097152xui32> loc(#loc958) | |
| %10198 = mhlo.add %10189, %10197 : tensor<2097152xui32> loc(#loc960) | |
| %10199 = mhlo.constant dense<6> : tensor<ui32> loc(#loc959) | |
| %10200 = "mhlo.broadcast_in_dim"(%10199) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10201 = mhlo.shift_left %10197, %10200 : tensor<2097152xui32> loc(#loc961) | |
| %10202 = mhlo.constant dense<26> : tensor<ui32> loc(#loc959) | |
| %10203 = "mhlo.broadcast_in_dim"(%10202) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10204 = mhlo.shift_right_logical %10197, %10203 : tensor<2097152xui32> loc(#loc962) | |
| %10205 = mhlo.or %10201, %10204 : tensor<2097152xui32> loc(#loc963) | |
| %10206 = mhlo.xor %10198, %10205 : tensor<2097152xui32> loc(#loc958) | |
| %10207 = "mhlo.broadcast_in_dim"(%10073) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10208 = mhlo.add %10198, %10207 : tensor<2097152xui32> loc(#loc960) | |
| %10209 = "mhlo.broadcast_in_dim"(%10075) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10210 = mhlo.add %10206, %10209 : tensor<2097152xui32> loc(#loc960) | |
| %10211 = mhlo.constant dense<3> : tensor<ui32> loc(#loc959) | |
| %10212 = "mhlo.broadcast_in_dim"(%10211) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10213 = mhlo.add %10210, %10212 : tensor<2097152xui32> loc(#loc960) | |
| %10214 = mhlo.add %10208, %10213 : tensor<2097152xui32> loc(#loc960) | |
| %10215 = mhlo.constant dense<17> : tensor<ui32> loc(#loc959) | |
| %10216 = "mhlo.broadcast_in_dim"(%10215) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10217 = mhlo.shift_left %10213, %10216 : tensor<2097152xui32> loc(#loc961) | |
| %10218 = mhlo.constant dense<15> : tensor<ui32> loc(#loc959) | |
| %10219 = "mhlo.broadcast_in_dim"(%10218) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10220 = mhlo.shift_right_logical %10213, %10219 : tensor<2097152xui32> loc(#loc962) | |
| %10221 = mhlo.or %10217, %10220 : tensor<2097152xui32> loc(#loc963) | |
| %10222 = mhlo.xor %10214, %10221 : tensor<2097152xui32> loc(#loc958) | |
| %10223 = mhlo.add %10214, %10222 : tensor<2097152xui32> loc(#loc960) | |
| %10224 = mhlo.constant dense<29> : tensor<ui32> loc(#loc959) | |
| %10225 = "mhlo.broadcast_in_dim"(%10224) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10226 = mhlo.shift_left %10222, %10225 : tensor<2097152xui32> loc(#loc961) | |
| %10227 = mhlo.constant dense<3> : tensor<ui32> loc(#loc959) | |
| %10228 = "mhlo.broadcast_in_dim"(%10227) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10229 = mhlo.shift_right_logical %10222, %10228 : tensor<2097152xui32> loc(#loc962) | |
| %10230 = mhlo.or %10226, %10229 : tensor<2097152xui32> loc(#loc963) | |
| %10231 = mhlo.xor %10223, %10230 : tensor<2097152xui32> loc(#loc958) | |
| %10232 = mhlo.add %10223, %10231 : tensor<2097152xui32> loc(#loc960) | |
| %10233 = mhlo.constant dense<16> : tensor<ui32> loc(#loc959) | |
| %10234 = "mhlo.broadcast_in_dim"(%10233) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10235 = mhlo.shift_left %10231, %10234 : tensor<2097152xui32> loc(#loc961) | |
| %10236 = mhlo.constant dense<16> : tensor<ui32> loc(#loc959) | |
| %10237 = "mhlo.broadcast_in_dim"(%10236) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10238 = mhlo.shift_right_logical %10231, %10237 : tensor<2097152xui32> loc(#loc962) | |
| %10239 = mhlo.or %10235, %10238 : tensor<2097152xui32> loc(#loc963) | |
| %10240 = mhlo.xor %10232, %10239 : tensor<2097152xui32> loc(#loc958) | |
| %10241 = mhlo.add %10232, %10240 : tensor<2097152xui32> loc(#loc960) | |
| %10242 = mhlo.constant dense<24> : tensor<ui32> loc(#loc959) | |
| %10243 = "mhlo.broadcast_in_dim"(%10242) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10244 = mhlo.shift_left %10240, %10243 : tensor<2097152xui32> loc(#loc961) | |
| %10245 = mhlo.constant dense<8> : tensor<ui32> loc(#loc959) | |
| %10246 = "mhlo.broadcast_in_dim"(%10245) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10247 = mhlo.shift_right_logical %10240, %10246 : tensor<2097152xui32> loc(#loc962) | |
| %10248 = mhlo.or %10244, %10247 : tensor<2097152xui32> loc(#loc963) | |
| %10249 = mhlo.xor %10241, %10248 : tensor<2097152xui32> loc(#loc958) | |
| %10250 = "mhlo.broadcast_in_dim"(%10075) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10251 = mhlo.add %10241, %10250 : tensor<2097152xui32> loc(#loc960) | |
| %10252 = "mhlo.broadcast_in_dim"(%10080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10253 = mhlo.add %10249, %10252 : tensor<2097152xui32> loc(#loc960) | |
| %10254 = mhlo.constant dense<4> : tensor<ui32> loc(#loc959) | |
| %10255 = "mhlo.broadcast_in_dim"(%10254) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10256 = mhlo.add %10253, %10255 : tensor<2097152xui32> loc(#loc960) | |
| %10257 = mhlo.add %10251, %10256 : tensor<2097152xui32> loc(#loc960) | |
| %10258 = mhlo.constant dense<13> : tensor<ui32> loc(#loc959) | |
| %10259 = "mhlo.broadcast_in_dim"(%10258) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10260 = mhlo.shift_left %10256, %10259 : tensor<2097152xui32> loc(#loc961) | |
| %10261 = mhlo.constant dense<19> : tensor<ui32> loc(#loc959) | |
| %10262 = "mhlo.broadcast_in_dim"(%10261) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10263 = mhlo.shift_right_logical %10256, %10262 : tensor<2097152xui32> loc(#loc962) | |
| %10264 = mhlo.or %10260, %10263 : tensor<2097152xui32> loc(#loc963) | |
| %10265 = mhlo.xor %10257, %10264 : tensor<2097152xui32> loc(#loc958) | |
| %10266 = mhlo.add %10257, %10265 : tensor<2097152xui32> loc(#loc960) | |
| %10267 = mhlo.constant dense<15> : tensor<ui32> loc(#loc959) | |
| %10268 = "mhlo.broadcast_in_dim"(%10267) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10269 = mhlo.shift_left %10265, %10268 : tensor<2097152xui32> loc(#loc961) | |
| %10270 = mhlo.constant dense<17> : tensor<ui32> loc(#loc959) | |
| %10271 = "mhlo.broadcast_in_dim"(%10270) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10272 = mhlo.shift_right_logical %10265, %10271 : tensor<2097152xui32> loc(#loc962) | |
| %10273 = mhlo.or %10269, %10272 : tensor<2097152xui32> loc(#loc963) | |
| %10274 = mhlo.xor %10266, %10273 : tensor<2097152xui32> loc(#loc958) | |
| %10275 = mhlo.add %10266, %10274 : tensor<2097152xui32> loc(#loc960) | |
| %10276 = mhlo.constant dense<26> : tensor<ui32> loc(#loc959) | |
| %10277 = "mhlo.broadcast_in_dim"(%10276) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10278 = mhlo.shift_left %10274, %10277 : tensor<2097152xui32> loc(#loc961) | |
| %10279 = mhlo.constant dense<6> : tensor<ui32> loc(#loc959) | |
| %10280 = "mhlo.broadcast_in_dim"(%10279) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10281 = mhlo.shift_right_logical %10274, %10280 : tensor<2097152xui32> loc(#loc962) | |
| %10282 = mhlo.or %10278, %10281 : tensor<2097152xui32> loc(#loc963) | |
| %10283 = mhlo.xor %10275, %10282 : tensor<2097152xui32> loc(#loc958) | |
| %10284 = mhlo.add %10275, %10283 : tensor<2097152xui32> loc(#loc960) | |
| %10285 = mhlo.constant dense<6> : tensor<ui32> loc(#loc959) | |
| %10286 = "mhlo.broadcast_in_dim"(%10285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc961) | |
| %10287 = mhlo.shift_left %10283, %10286 : tensor<2097152xui32> loc(#loc961) | |
| %10288 = mhlo.constant dense<26> : tensor<ui32> loc(#loc959) | |
| %10289 = "mhlo.broadcast_in_dim"(%10288) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc962) | |
| %10290 = mhlo.shift_right_logical %10283, %10289 : tensor<2097152xui32> loc(#loc962) | |
| %10291 = mhlo.or %10287, %10290 : tensor<2097152xui32> loc(#loc963) | |
| %10292 = mhlo.xor %10284, %10291 : tensor<2097152xui32> loc(#loc958) | |
| %10293 = "mhlo.broadcast_in_dim"(%10080) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10294 = mhlo.add %10284, %10293 : tensor<2097152xui32> loc(#loc960) | |
| %10295 = "mhlo.broadcast_in_dim"(%10073) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10296 = mhlo.add %10292, %10295 : tensor<2097152xui32> loc(#loc960) | |
| %10297 = mhlo.constant dense<5> : tensor<ui32> loc(#loc959) | |
| %10298 = "mhlo.broadcast_in_dim"(%10297) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2097152xui32> loc(#loc960) | |
| %10299 = mhlo.add %10296, %10298 : tensor<2097152xui32> loc(#loc960) | |
| %10300 = "mhlo.concatenate"(%10294, %10299) {dimension = 0 : i64} : (tensor<2097152xui32>, tensor<2097152xui32>) -> tensor<4194304xui32> loc(#loc964) | |
| %10301 = "mhlo.reshape"(%10300) : (tensor<4194304xui32>) -> tensor<2048x2048xui32> loc(#loc965) | |
| %10302 = mhlo.constant dense<9> : tensor<ui32> loc(#loc531) | |
| %10303 = "mhlo.broadcast_in_dim"(%10302) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc962) | |
| %10304 = mhlo.shift_right_logical %10301, %10303 : tensor<2048x2048xui32> loc(#loc962) | |
| %10305 = mhlo.constant dense<1065353216> : tensor<ui32> loc(#loc531) | |
| %10306 = "mhlo.broadcast_in_dim"(%10305) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<2048x2048xui32> loc(#loc963) | |
| %10307 = mhlo.or %10304, %10306 : tensor<2048x2048xui32> loc(#loc963) | |
| %10308 = "mhlo.bitcast_convert"(%10307) : (tensor<2048x2048xui32>) -> tensor<2048x2048xf32> loc(#loc966) | |
| %10309 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %10310 = "mhlo.broadcast_in_dim"(%10309) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc967) | |
| %10311 = mhlo.subtract %10308, %10310 : tensor<2048x2048xf32> loc(#loc967) | |
| %10312 = mhlo.subtract %10070, %10068 : tensor<1x1xf32> loc(#loc967) | |
| %10313 = "mhlo.broadcast_in_dim"(%10312) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc968) | |
| %10314 = mhlo.multiply %10311, %10313 : tensor<2048x2048xf32> loc(#loc968) | |
| %10315 = "mhlo.broadcast_in_dim"(%10068) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc960) | |
| %10316 = mhlo.add %10314, %10315 : tensor<2048x2048xf32> loc(#loc960) | |
| %10317 = "mhlo.broadcast_in_dim"(%10068) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1xf32>) -> tensor<2048x2048xf32> loc(#loc969) | |
| %10318 = mhlo.maximum %10317, %10316 : tensor<2048x2048xf32> loc(#loc969) | |
| %10319 = func.call @erf_inv_22(%10318) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf32> loc(#loc970) | |
| %10320 = mhlo.constant dense<1.41421354> : tensor<f32> loc(#loc531) | |
| %10321 = "mhlo.broadcast_in_dim"(%10320) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc968) | |
| %10322 = mhlo.multiply %10319, %10321 : tensor<2048x2048xf32> loc(#loc968) | |
| %10323 = mhlo.constant dense<0.00999999977> : tensor<f32> loc(#loc531) | |
| %10324 = "mhlo.broadcast_in_dim"(%10323) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x2048xf32> loc(#loc968) | |
| %10325 = mhlo.multiply %10322, %10324 : tensor<2048x2048xf32> loc(#loc968) | |
| %10326 = mhlo.convert(%10325) : (tensor<2048x2048xf32>) -> tensor<2048x2048xf16> loc(#loc971) | |
| %10327 = "mhlo.dot_general"(%9829, %10326) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [2], rhs_contracting_dimensions = [0]>, precision_config = [#mhlo<"precision DEFAULT">, #mhlo<"precision DEFAULT">]} : (tensor<1x256x2048xf16>, tensor<2048x2048xf16>) -> tensor<1x256x2048xf16> loc(#loc972) | |
| %10328 = mhlo.convert(%10327) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc973) | |
| %10329 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc974) | |
| %10330 = mhlo.reduce(%10328 init: %10329) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc974) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc974) | |
| } loc(#loc974) | |
| %10331 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %10332 = "mhlo.broadcast_in_dim"(%10331) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc975) | |
| %10333 = mhlo.divide %10330, %10332 : tensor<1x256xf32> loc(#loc975) | |
| %10334 = mhlo.multiply %10328, %10328 : tensor<1x256x2048xf32> loc(#loc976) | |
| %10335 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc977) | |
| %10336 = mhlo.reduce(%10334 init: %10335) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc977) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc977) | |
| } loc(#loc977) | |
| %10337 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %10338 = "mhlo.broadcast_in_dim"(%10337) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc978) | |
| %10339 = mhlo.divide %10336, %10338 : tensor<1x256xf32> loc(#loc978) | |
| %10340 = mhlo.multiply %10333, %10333 : tensor<1x256xf32> loc(#loc976) | |
| %10341 = mhlo.subtract %10339, %10340 : tensor<1x256xf32> loc(#loc979) | |
| %10342 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %10343 = "mhlo.broadcast_in_dim"(%10342) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc980) | |
| %10344 = mhlo.maximum %10343, %10341 : tensor<1x256xf32> loc(#loc980) | |
| %10345 = "mhlo.reshape"(%10333) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc981) | |
| %10346 = "mhlo.reshape"(%10344) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc982) | |
| %10347 = mhlo.convert(%10327) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc983) | |
| %10348 = "mhlo.broadcast_in_dim"(%10345) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc984) | |
| %10349 = mhlo.subtract %10347, %10348 : tensor<1x256x2048xf32> loc(#loc984) | |
| %10350 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc531) | |
| %10351 = "mhlo.broadcast_in_dim"(%10350) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256x1xf32> loc(#loc985) | |
| %10352 = mhlo.add %10346, %10351 : tensor<1x256x1xf32> loc(#loc985) | |
| %10353 = mhlo.rsqrt %10352 : tensor<1x256x1xf32> loc(#loc986) | |
| %10354 = mhlo.constant dense<764051246> : tensor<ui32> loc(#loc531) | |
| %10355 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %10356 = mhlo.shift_right_logical %10354, %10355 : tensor<ui32> loc(#loc987) | |
| %10357 = "mhlo.reshape"(%10356) : (tensor<ui32>) -> tensor<1xui32> loc(#loc988) | |
| %10358 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %10359 = mhlo.and %10354, %10358 : tensor<ui32> loc(#loc989) | |
| %10360 = "mhlo.reshape"(%10359) : (tensor<ui32>) -> tensor<1xui32> loc(#loc988) | |
| %10361 = "mhlo.concatenate"(%10357, %10360) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc990) | |
| %10362 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc991) | |
| %10363 = "mhlo.reshape"(%10362) : (tensor<1xui32>) -> tensor<ui32> loc(#loc992) | |
| %10364 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc993) | |
| %10365 = "mhlo.reshape"(%10364) : (tensor<1xui32>) -> tensor<ui32> loc(#loc992) | |
| %10366 = "mhlo.slice"(%10361) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc994) | |
| %10367 = "mhlo.slice"(%10361) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc995) | |
| %10368 = mhlo.xor %10363, %10365 : tensor<ui32> loc(#loc996) | |
| %10369 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc997) | |
| %10370 = mhlo.xor %10368, %10369 : tensor<ui32> loc(#loc996) | |
| %10371 = "mhlo.broadcast_in_dim"(%10363) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10372 = mhlo.add %10366, %10371 : tensor<1xui32> loc(#loc998) | |
| %10373 = "mhlo.broadcast_in_dim"(%10365) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10374 = mhlo.add %10367, %10373 : tensor<1xui32> loc(#loc998) | |
| %10375 = mhlo.add %10372, %10374 : tensor<1xui32> loc(#loc998) | |
| %10376 = mhlo.constant dense<13> : tensor<ui32> loc(#loc997) | |
| %10377 = "mhlo.broadcast_in_dim"(%10376) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10378 = mhlo.shift_left %10374, %10377 : tensor<1xui32> loc(#loc999) | |
| %10379 = mhlo.constant dense<19> : tensor<ui32> loc(#loc997) | |
| %10380 = "mhlo.broadcast_in_dim"(%10379) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10381 = mhlo.shift_right_logical %10374, %10380 : tensor<1xui32> loc(#loc987) | |
| %10382 = mhlo.or %10378, %10381 : tensor<1xui32> loc(#loc1000) | |
| %10383 = mhlo.xor %10375, %10382 : tensor<1xui32> loc(#loc996) | |
| %10384 = mhlo.add %10375, %10383 : tensor<1xui32> loc(#loc998) | |
| %10385 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10386 = "mhlo.broadcast_in_dim"(%10385) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10387 = mhlo.shift_left %10383, %10386 : tensor<1xui32> loc(#loc999) | |
| %10388 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10389 = "mhlo.broadcast_in_dim"(%10388) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10390 = mhlo.shift_right_logical %10383, %10389 : tensor<1xui32> loc(#loc987) | |
| %10391 = mhlo.or %10387, %10390 : tensor<1xui32> loc(#loc1000) | |
| %10392 = mhlo.xor %10384, %10391 : tensor<1xui32> loc(#loc996) | |
| %10393 = mhlo.add %10384, %10392 : tensor<1xui32> loc(#loc998) | |
| %10394 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10395 = "mhlo.broadcast_in_dim"(%10394) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10396 = mhlo.shift_left %10392, %10395 : tensor<1xui32> loc(#loc999) | |
| %10397 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10398 = "mhlo.broadcast_in_dim"(%10397) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10399 = mhlo.shift_right_logical %10392, %10398 : tensor<1xui32> loc(#loc987) | |
| %10400 = mhlo.or %10396, %10399 : tensor<1xui32> loc(#loc1000) | |
| %10401 = mhlo.xor %10393, %10400 : tensor<1xui32> loc(#loc996) | |
| %10402 = mhlo.add %10393, %10401 : tensor<1xui32> loc(#loc998) | |
| %10403 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10404 = "mhlo.broadcast_in_dim"(%10403) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10405 = mhlo.shift_left %10401, %10404 : tensor<1xui32> loc(#loc999) | |
| %10406 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10407 = "mhlo.broadcast_in_dim"(%10406) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10408 = mhlo.shift_right_logical %10401, %10407 : tensor<1xui32> loc(#loc987) | |
| %10409 = mhlo.or %10405, %10408 : tensor<1xui32> loc(#loc1000) | |
| %10410 = mhlo.xor %10402, %10409 : tensor<1xui32> loc(#loc996) | |
| %10411 = "mhlo.broadcast_in_dim"(%10365) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10412 = mhlo.add %10402, %10411 : tensor<1xui32> loc(#loc998) | |
| %10413 = "mhlo.broadcast_in_dim"(%10370) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10414 = mhlo.add %10410, %10413 : tensor<1xui32> loc(#loc998) | |
| %10415 = mhlo.constant dense<1> : tensor<ui32> loc(#loc997) | |
| %10416 = "mhlo.broadcast_in_dim"(%10415) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10417 = mhlo.add %10414, %10416 : tensor<1xui32> loc(#loc998) | |
| %10418 = mhlo.add %10412, %10417 : tensor<1xui32> loc(#loc998) | |
| %10419 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10420 = "mhlo.broadcast_in_dim"(%10419) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10421 = mhlo.shift_left %10417, %10420 : tensor<1xui32> loc(#loc999) | |
| %10422 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10423 = "mhlo.broadcast_in_dim"(%10422) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10424 = mhlo.shift_right_logical %10417, %10423 : tensor<1xui32> loc(#loc987) | |
| %10425 = mhlo.or %10421, %10424 : tensor<1xui32> loc(#loc1000) | |
| %10426 = mhlo.xor %10418, %10425 : tensor<1xui32> loc(#loc996) | |
| %10427 = mhlo.add %10418, %10426 : tensor<1xui32> loc(#loc998) | |
| %10428 = mhlo.constant dense<29> : tensor<ui32> loc(#loc997) | |
| %10429 = "mhlo.broadcast_in_dim"(%10428) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10430 = mhlo.shift_left %10426, %10429 : tensor<1xui32> loc(#loc999) | |
| %10431 = mhlo.constant dense<3> : tensor<ui32> loc(#loc997) | |
| %10432 = "mhlo.broadcast_in_dim"(%10431) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10433 = mhlo.shift_right_logical %10426, %10432 : tensor<1xui32> loc(#loc987) | |
| %10434 = mhlo.or %10430, %10433 : tensor<1xui32> loc(#loc1000) | |
| %10435 = mhlo.xor %10427, %10434 : tensor<1xui32> loc(#loc996) | |
| %10436 = mhlo.add %10427, %10435 : tensor<1xui32> loc(#loc998) | |
| %10437 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10438 = "mhlo.broadcast_in_dim"(%10437) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10439 = mhlo.shift_left %10435, %10438 : tensor<1xui32> loc(#loc999) | |
| %10440 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10441 = "mhlo.broadcast_in_dim"(%10440) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10442 = mhlo.shift_right_logical %10435, %10441 : tensor<1xui32> loc(#loc987) | |
| %10443 = mhlo.or %10439, %10442 : tensor<1xui32> loc(#loc1000) | |
| %10444 = mhlo.xor %10436, %10443 : tensor<1xui32> loc(#loc996) | |
| %10445 = mhlo.add %10436, %10444 : tensor<1xui32> loc(#loc998) | |
| %10446 = mhlo.constant dense<24> : tensor<ui32> loc(#loc997) | |
| %10447 = "mhlo.broadcast_in_dim"(%10446) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10448 = mhlo.shift_left %10444, %10447 : tensor<1xui32> loc(#loc999) | |
| %10449 = mhlo.constant dense<8> : tensor<ui32> loc(#loc997) | |
| %10450 = "mhlo.broadcast_in_dim"(%10449) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10451 = mhlo.shift_right_logical %10444, %10450 : tensor<1xui32> loc(#loc987) | |
| %10452 = mhlo.or %10448, %10451 : tensor<1xui32> loc(#loc1000) | |
| %10453 = mhlo.xor %10445, %10452 : tensor<1xui32> loc(#loc996) | |
| %10454 = "mhlo.broadcast_in_dim"(%10370) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10455 = mhlo.add %10445, %10454 : tensor<1xui32> loc(#loc998) | |
| %10456 = "mhlo.broadcast_in_dim"(%10363) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10457 = mhlo.add %10453, %10456 : tensor<1xui32> loc(#loc998) | |
| %10458 = mhlo.constant dense<2> : tensor<ui32> loc(#loc997) | |
| %10459 = "mhlo.broadcast_in_dim"(%10458) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10460 = mhlo.add %10457, %10459 : tensor<1xui32> loc(#loc998) | |
| %10461 = mhlo.add %10455, %10460 : tensor<1xui32> loc(#loc998) | |
| %10462 = mhlo.constant dense<13> : tensor<ui32> loc(#loc997) | |
| %10463 = "mhlo.broadcast_in_dim"(%10462) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10464 = mhlo.shift_left %10460, %10463 : tensor<1xui32> loc(#loc999) | |
| %10465 = mhlo.constant dense<19> : tensor<ui32> loc(#loc997) | |
| %10466 = "mhlo.broadcast_in_dim"(%10465) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10467 = mhlo.shift_right_logical %10460, %10466 : tensor<1xui32> loc(#loc987) | |
| %10468 = mhlo.or %10464, %10467 : tensor<1xui32> loc(#loc1000) | |
| %10469 = mhlo.xor %10461, %10468 : tensor<1xui32> loc(#loc996) | |
| %10470 = mhlo.add %10461, %10469 : tensor<1xui32> loc(#loc998) | |
| %10471 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10472 = "mhlo.broadcast_in_dim"(%10471) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10473 = mhlo.shift_left %10469, %10472 : tensor<1xui32> loc(#loc999) | |
| %10474 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10475 = "mhlo.broadcast_in_dim"(%10474) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10476 = mhlo.shift_right_logical %10469, %10475 : tensor<1xui32> loc(#loc987) | |
| %10477 = mhlo.or %10473, %10476 : tensor<1xui32> loc(#loc1000) | |
| %10478 = mhlo.xor %10470, %10477 : tensor<1xui32> loc(#loc996) | |
| %10479 = mhlo.add %10470, %10478 : tensor<1xui32> loc(#loc998) | |
| %10480 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10481 = "mhlo.broadcast_in_dim"(%10480) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10482 = mhlo.shift_left %10478, %10481 : tensor<1xui32> loc(#loc999) | |
| %10483 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10484 = "mhlo.broadcast_in_dim"(%10483) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10485 = mhlo.shift_right_logical %10478, %10484 : tensor<1xui32> loc(#loc987) | |
| %10486 = mhlo.or %10482, %10485 : tensor<1xui32> loc(#loc1000) | |
| %10487 = mhlo.xor %10479, %10486 : tensor<1xui32> loc(#loc996) | |
| %10488 = mhlo.add %10479, %10487 : tensor<1xui32> loc(#loc998) | |
| %10489 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10490 = "mhlo.broadcast_in_dim"(%10489) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10491 = mhlo.shift_left %10487, %10490 : tensor<1xui32> loc(#loc999) | |
| %10492 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10493 = "mhlo.broadcast_in_dim"(%10492) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10494 = mhlo.shift_right_logical %10487, %10493 : tensor<1xui32> loc(#loc987) | |
| %10495 = mhlo.or %10491, %10494 : tensor<1xui32> loc(#loc1000) | |
| %10496 = mhlo.xor %10488, %10495 : tensor<1xui32> loc(#loc996) | |
| %10497 = "mhlo.broadcast_in_dim"(%10363) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10498 = mhlo.add %10488, %10497 : tensor<1xui32> loc(#loc998) | |
| %10499 = "mhlo.broadcast_in_dim"(%10365) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10500 = mhlo.add %10496, %10499 : tensor<1xui32> loc(#loc998) | |
| %10501 = mhlo.constant dense<3> : tensor<ui32> loc(#loc997) | |
| %10502 = "mhlo.broadcast_in_dim"(%10501) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10503 = mhlo.add %10500, %10502 : tensor<1xui32> loc(#loc998) | |
| %10504 = mhlo.add %10498, %10503 : tensor<1xui32> loc(#loc998) | |
| %10505 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10506 = "mhlo.broadcast_in_dim"(%10505) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10507 = mhlo.shift_left %10503, %10506 : tensor<1xui32> loc(#loc999) | |
| %10508 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10509 = "mhlo.broadcast_in_dim"(%10508) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10510 = mhlo.shift_right_logical %10503, %10509 : tensor<1xui32> loc(#loc987) | |
| %10511 = mhlo.or %10507, %10510 : tensor<1xui32> loc(#loc1000) | |
| %10512 = mhlo.xor %10504, %10511 : tensor<1xui32> loc(#loc996) | |
| %10513 = mhlo.add %10504, %10512 : tensor<1xui32> loc(#loc998) | |
| %10514 = mhlo.constant dense<29> : tensor<ui32> loc(#loc997) | |
| %10515 = "mhlo.broadcast_in_dim"(%10514) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10516 = mhlo.shift_left %10512, %10515 : tensor<1xui32> loc(#loc999) | |
| %10517 = mhlo.constant dense<3> : tensor<ui32> loc(#loc997) | |
| %10518 = "mhlo.broadcast_in_dim"(%10517) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10519 = mhlo.shift_right_logical %10512, %10518 : tensor<1xui32> loc(#loc987) | |
| %10520 = mhlo.or %10516, %10519 : tensor<1xui32> loc(#loc1000) | |
| %10521 = mhlo.xor %10513, %10520 : tensor<1xui32> loc(#loc996) | |
| %10522 = mhlo.add %10513, %10521 : tensor<1xui32> loc(#loc998) | |
| %10523 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10524 = "mhlo.broadcast_in_dim"(%10523) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10525 = mhlo.shift_left %10521, %10524 : tensor<1xui32> loc(#loc999) | |
| %10526 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10527 = "mhlo.broadcast_in_dim"(%10526) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10528 = mhlo.shift_right_logical %10521, %10527 : tensor<1xui32> loc(#loc987) | |
| %10529 = mhlo.or %10525, %10528 : tensor<1xui32> loc(#loc1000) | |
| %10530 = mhlo.xor %10522, %10529 : tensor<1xui32> loc(#loc996) | |
| %10531 = mhlo.add %10522, %10530 : tensor<1xui32> loc(#loc998) | |
| %10532 = mhlo.constant dense<24> : tensor<ui32> loc(#loc997) | |
| %10533 = "mhlo.broadcast_in_dim"(%10532) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10534 = mhlo.shift_left %10530, %10533 : tensor<1xui32> loc(#loc999) | |
| %10535 = mhlo.constant dense<8> : tensor<ui32> loc(#loc997) | |
| %10536 = "mhlo.broadcast_in_dim"(%10535) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10537 = mhlo.shift_right_logical %10530, %10536 : tensor<1xui32> loc(#loc987) | |
| %10538 = mhlo.or %10534, %10537 : tensor<1xui32> loc(#loc1000) | |
| %10539 = mhlo.xor %10531, %10538 : tensor<1xui32> loc(#loc996) | |
| %10540 = "mhlo.broadcast_in_dim"(%10365) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10541 = mhlo.add %10531, %10540 : tensor<1xui32> loc(#loc998) | |
| %10542 = "mhlo.broadcast_in_dim"(%10370) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10543 = mhlo.add %10539, %10542 : tensor<1xui32> loc(#loc998) | |
| %10544 = mhlo.constant dense<4> : tensor<ui32> loc(#loc997) | |
| %10545 = "mhlo.broadcast_in_dim"(%10544) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10546 = mhlo.add %10543, %10545 : tensor<1xui32> loc(#loc998) | |
| %10547 = mhlo.add %10541, %10546 : tensor<1xui32> loc(#loc998) | |
| %10548 = mhlo.constant dense<13> : tensor<ui32> loc(#loc997) | |
| %10549 = "mhlo.broadcast_in_dim"(%10548) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10550 = mhlo.shift_left %10546, %10549 : tensor<1xui32> loc(#loc999) | |
| %10551 = mhlo.constant dense<19> : tensor<ui32> loc(#loc997) | |
| %10552 = "mhlo.broadcast_in_dim"(%10551) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10553 = mhlo.shift_right_logical %10546, %10552 : tensor<1xui32> loc(#loc987) | |
| %10554 = mhlo.or %10550, %10553 : tensor<1xui32> loc(#loc1000) | |
| %10555 = mhlo.xor %10547, %10554 : tensor<1xui32> loc(#loc996) | |
| %10556 = mhlo.add %10547, %10555 : tensor<1xui32> loc(#loc998) | |
| %10557 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10558 = "mhlo.broadcast_in_dim"(%10557) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10559 = mhlo.shift_left %10555, %10558 : tensor<1xui32> loc(#loc999) | |
| %10560 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10561 = "mhlo.broadcast_in_dim"(%10560) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10562 = mhlo.shift_right_logical %10555, %10561 : tensor<1xui32> loc(#loc987) | |
| %10563 = mhlo.or %10559, %10562 : tensor<1xui32> loc(#loc1000) | |
| %10564 = mhlo.xor %10556, %10563 : tensor<1xui32> loc(#loc996) | |
| %10565 = mhlo.add %10556, %10564 : tensor<1xui32> loc(#loc998) | |
| %10566 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10567 = "mhlo.broadcast_in_dim"(%10566) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10568 = mhlo.shift_left %10564, %10567 : tensor<1xui32> loc(#loc999) | |
| %10569 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10570 = "mhlo.broadcast_in_dim"(%10569) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10571 = mhlo.shift_right_logical %10564, %10570 : tensor<1xui32> loc(#loc987) | |
| %10572 = mhlo.or %10568, %10571 : tensor<1xui32> loc(#loc1000) | |
| %10573 = mhlo.xor %10565, %10572 : tensor<1xui32> loc(#loc996) | |
| %10574 = mhlo.add %10565, %10573 : tensor<1xui32> loc(#loc998) | |
| %10575 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10576 = "mhlo.broadcast_in_dim"(%10575) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10577 = mhlo.shift_left %10573, %10576 : tensor<1xui32> loc(#loc999) | |
| %10578 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10579 = "mhlo.broadcast_in_dim"(%10578) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10580 = mhlo.shift_right_logical %10573, %10579 : tensor<1xui32> loc(#loc987) | |
| %10581 = mhlo.or %10577, %10580 : tensor<1xui32> loc(#loc1000) | |
| %10582 = mhlo.xor %10574, %10581 : tensor<1xui32> loc(#loc996) | |
| %10583 = "mhlo.broadcast_in_dim"(%10370) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10584 = mhlo.add %10574, %10583 : tensor<1xui32> loc(#loc998) | |
| %10585 = "mhlo.broadcast_in_dim"(%10363) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10586 = mhlo.add %10582, %10585 : tensor<1xui32> loc(#loc998) | |
| %10587 = mhlo.constant dense<5> : tensor<ui32> loc(#loc997) | |
| %10588 = "mhlo.broadcast_in_dim"(%10587) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10589 = mhlo.add %10586, %10588 : tensor<1xui32> loc(#loc998) | |
| %10590 = "mhlo.concatenate"(%10584, %10589) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc990) | |
| %10591 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %10592 = "mhlo.broadcast_in_dim"(%10591) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc1001) | |
| %10593 = "mhlo.reshape"(%10592) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc1002) | |
| %10594 = "mhlo.broadcast_in_dim"(%10353) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc1003) | |
| %10595 = "mhlo.broadcast_in_dim"(%10593) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc1003) | |
| %10596 = mhlo.multiply %10594, %10595 : tensor<1x256x2048xf32> loc(#loc1003) | |
| %10597 = mhlo.multiply %10349, %10596 : tensor<1x256x2048xf32> loc(#loc1004) | |
| %10598 = mhlo.constant dense<2730799930> : tensor<ui32> loc(#loc531) | |
| %10599 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %10600 = mhlo.shift_right_logical %10598, %10599 : tensor<ui32> loc(#loc987) | |
| %10601 = "mhlo.reshape"(%10600) : (tensor<ui32>) -> tensor<1xui32> loc(#loc988) | |
| %10602 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %10603 = mhlo.and %10598, %10602 : tensor<ui32> loc(#loc989) | |
| %10604 = "mhlo.reshape"(%10603) : (tensor<ui32>) -> tensor<1xui32> loc(#loc988) | |
| %10605 = "mhlo.concatenate"(%10601, %10604) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc990) | |
| %10606 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc991) | |
| %10607 = "mhlo.reshape"(%10606) : (tensor<1xui32>) -> tensor<ui32> loc(#loc992) | |
| %10608 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc993) | |
| %10609 = "mhlo.reshape"(%10608) : (tensor<1xui32>) -> tensor<ui32> loc(#loc992) | |
| %10610 = "mhlo.slice"(%10605) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc994) | |
| %10611 = "mhlo.slice"(%10605) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc995) | |
| %10612 = mhlo.xor %10607, %10609 : tensor<ui32> loc(#loc996) | |
| %10613 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc997) | |
| %10614 = mhlo.xor %10612, %10613 : tensor<ui32> loc(#loc996) | |
| %10615 = "mhlo.broadcast_in_dim"(%10607) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10616 = mhlo.add %10610, %10615 : tensor<1xui32> loc(#loc998) | |
| %10617 = "mhlo.broadcast_in_dim"(%10609) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10618 = mhlo.add %10611, %10617 : tensor<1xui32> loc(#loc998) | |
| %10619 = mhlo.add %10616, %10618 : tensor<1xui32> loc(#loc998) | |
| %10620 = mhlo.constant dense<13> : tensor<ui32> loc(#loc997) | |
| %10621 = "mhlo.broadcast_in_dim"(%10620) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10622 = mhlo.shift_left %10618, %10621 : tensor<1xui32> loc(#loc999) | |
| %10623 = mhlo.constant dense<19> : tensor<ui32> loc(#loc997) | |
| %10624 = "mhlo.broadcast_in_dim"(%10623) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10625 = mhlo.shift_right_logical %10618, %10624 : tensor<1xui32> loc(#loc987) | |
| %10626 = mhlo.or %10622, %10625 : tensor<1xui32> loc(#loc1000) | |
| %10627 = mhlo.xor %10619, %10626 : tensor<1xui32> loc(#loc996) | |
| %10628 = mhlo.add %10619, %10627 : tensor<1xui32> loc(#loc998) | |
| %10629 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10630 = "mhlo.broadcast_in_dim"(%10629) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10631 = mhlo.shift_left %10627, %10630 : tensor<1xui32> loc(#loc999) | |
| %10632 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10633 = "mhlo.broadcast_in_dim"(%10632) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10634 = mhlo.shift_right_logical %10627, %10633 : tensor<1xui32> loc(#loc987) | |
| %10635 = mhlo.or %10631, %10634 : tensor<1xui32> loc(#loc1000) | |
| %10636 = mhlo.xor %10628, %10635 : tensor<1xui32> loc(#loc996) | |
| %10637 = mhlo.add %10628, %10636 : tensor<1xui32> loc(#loc998) | |
| %10638 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10639 = "mhlo.broadcast_in_dim"(%10638) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10640 = mhlo.shift_left %10636, %10639 : tensor<1xui32> loc(#loc999) | |
| %10641 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10642 = "mhlo.broadcast_in_dim"(%10641) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10643 = mhlo.shift_right_logical %10636, %10642 : tensor<1xui32> loc(#loc987) | |
| %10644 = mhlo.or %10640, %10643 : tensor<1xui32> loc(#loc1000) | |
| %10645 = mhlo.xor %10637, %10644 : tensor<1xui32> loc(#loc996) | |
| %10646 = mhlo.add %10637, %10645 : tensor<1xui32> loc(#loc998) | |
| %10647 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10648 = "mhlo.broadcast_in_dim"(%10647) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10649 = mhlo.shift_left %10645, %10648 : tensor<1xui32> loc(#loc999) | |
| %10650 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10651 = "mhlo.broadcast_in_dim"(%10650) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10652 = mhlo.shift_right_logical %10645, %10651 : tensor<1xui32> loc(#loc987) | |
| %10653 = mhlo.or %10649, %10652 : tensor<1xui32> loc(#loc1000) | |
| %10654 = mhlo.xor %10646, %10653 : tensor<1xui32> loc(#loc996) | |
| %10655 = "mhlo.broadcast_in_dim"(%10609) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10656 = mhlo.add %10646, %10655 : tensor<1xui32> loc(#loc998) | |
| %10657 = "mhlo.broadcast_in_dim"(%10614) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10658 = mhlo.add %10654, %10657 : tensor<1xui32> loc(#loc998) | |
| %10659 = mhlo.constant dense<1> : tensor<ui32> loc(#loc997) | |
| %10660 = "mhlo.broadcast_in_dim"(%10659) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10661 = mhlo.add %10658, %10660 : tensor<1xui32> loc(#loc998) | |
| %10662 = mhlo.add %10656, %10661 : tensor<1xui32> loc(#loc998) | |
| %10663 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10664 = "mhlo.broadcast_in_dim"(%10663) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10665 = mhlo.shift_left %10661, %10664 : tensor<1xui32> loc(#loc999) | |
| %10666 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10667 = "mhlo.broadcast_in_dim"(%10666) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10668 = mhlo.shift_right_logical %10661, %10667 : tensor<1xui32> loc(#loc987) | |
| %10669 = mhlo.or %10665, %10668 : tensor<1xui32> loc(#loc1000) | |
| %10670 = mhlo.xor %10662, %10669 : tensor<1xui32> loc(#loc996) | |
| %10671 = mhlo.add %10662, %10670 : tensor<1xui32> loc(#loc998) | |
| %10672 = mhlo.constant dense<29> : tensor<ui32> loc(#loc997) | |
| %10673 = "mhlo.broadcast_in_dim"(%10672) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10674 = mhlo.shift_left %10670, %10673 : tensor<1xui32> loc(#loc999) | |
| %10675 = mhlo.constant dense<3> : tensor<ui32> loc(#loc997) | |
| %10676 = "mhlo.broadcast_in_dim"(%10675) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10677 = mhlo.shift_right_logical %10670, %10676 : tensor<1xui32> loc(#loc987) | |
| %10678 = mhlo.or %10674, %10677 : tensor<1xui32> loc(#loc1000) | |
| %10679 = mhlo.xor %10671, %10678 : tensor<1xui32> loc(#loc996) | |
| %10680 = mhlo.add %10671, %10679 : tensor<1xui32> loc(#loc998) | |
| %10681 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10682 = "mhlo.broadcast_in_dim"(%10681) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10683 = mhlo.shift_left %10679, %10682 : tensor<1xui32> loc(#loc999) | |
| %10684 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10685 = "mhlo.broadcast_in_dim"(%10684) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10686 = mhlo.shift_right_logical %10679, %10685 : tensor<1xui32> loc(#loc987) | |
| %10687 = mhlo.or %10683, %10686 : tensor<1xui32> loc(#loc1000) | |
| %10688 = mhlo.xor %10680, %10687 : tensor<1xui32> loc(#loc996) | |
| %10689 = mhlo.add %10680, %10688 : tensor<1xui32> loc(#loc998) | |
| %10690 = mhlo.constant dense<24> : tensor<ui32> loc(#loc997) | |
| %10691 = "mhlo.broadcast_in_dim"(%10690) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10692 = mhlo.shift_left %10688, %10691 : tensor<1xui32> loc(#loc999) | |
| %10693 = mhlo.constant dense<8> : tensor<ui32> loc(#loc997) | |
| %10694 = "mhlo.broadcast_in_dim"(%10693) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10695 = mhlo.shift_right_logical %10688, %10694 : tensor<1xui32> loc(#loc987) | |
| %10696 = mhlo.or %10692, %10695 : tensor<1xui32> loc(#loc1000) | |
| %10697 = mhlo.xor %10689, %10696 : tensor<1xui32> loc(#loc996) | |
| %10698 = "mhlo.broadcast_in_dim"(%10614) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10699 = mhlo.add %10689, %10698 : tensor<1xui32> loc(#loc998) | |
| %10700 = "mhlo.broadcast_in_dim"(%10607) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10701 = mhlo.add %10697, %10700 : tensor<1xui32> loc(#loc998) | |
| %10702 = mhlo.constant dense<2> : tensor<ui32> loc(#loc997) | |
| %10703 = "mhlo.broadcast_in_dim"(%10702) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10704 = mhlo.add %10701, %10703 : tensor<1xui32> loc(#loc998) | |
| %10705 = mhlo.add %10699, %10704 : tensor<1xui32> loc(#loc998) | |
| %10706 = mhlo.constant dense<13> : tensor<ui32> loc(#loc997) | |
| %10707 = "mhlo.broadcast_in_dim"(%10706) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10708 = mhlo.shift_left %10704, %10707 : tensor<1xui32> loc(#loc999) | |
| %10709 = mhlo.constant dense<19> : tensor<ui32> loc(#loc997) | |
| %10710 = "mhlo.broadcast_in_dim"(%10709) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10711 = mhlo.shift_right_logical %10704, %10710 : tensor<1xui32> loc(#loc987) | |
| %10712 = mhlo.or %10708, %10711 : tensor<1xui32> loc(#loc1000) | |
| %10713 = mhlo.xor %10705, %10712 : tensor<1xui32> loc(#loc996) | |
| %10714 = mhlo.add %10705, %10713 : tensor<1xui32> loc(#loc998) | |
| %10715 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10716 = "mhlo.broadcast_in_dim"(%10715) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10717 = mhlo.shift_left %10713, %10716 : tensor<1xui32> loc(#loc999) | |
| %10718 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10719 = "mhlo.broadcast_in_dim"(%10718) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10720 = mhlo.shift_right_logical %10713, %10719 : tensor<1xui32> loc(#loc987) | |
| %10721 = mhlo.or %10717, %10720 : tensor<1xui32> loc(#loc1000) | |
| %10722 = mhlo.xor %10714, %10721 : tensor<1xui32> loc(#loc996) | |
| %10723 = mhlo.add %10714, %10722 : tensor<1xui32> loc(#loc998) | |
| %10724 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10725 = "mhlo.broadcast_in_dim"(%10724) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10726 = mhlo.shift_left %10722, %10725 : tensor<1xui32> loc(#loc999) | |
| %10727 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10728 = "mhlo.broadcast_in_dim"(%10727) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10729 = mhlo.shift_right_logical %10722, %10728 : tensor<1xui32> loc(#loc987) | |
| %10730 = mhlo.or %10726, %10729 : tensor<1xui32> loc(#loc1000) | |
| %10731 = mhlo.xor %10723, %10730 : tensor<1xui32> loc(#loc996) | |
| %10732 = mhlo.add %10723, %10731 : tensor<1xui32> loc(#loc998) | |
| %10733 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10734 = "mhlo.broadcast_in_dim"(%10733) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10735 = mhlo.shift_left %10731, %10734 : tensor<1xui32> loc(#loc999) | |
| %10736 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10737 = "mhlo.broadcast_in_dim"(%10736) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10738 = mhlo.shift_right_logical %10731, %10737 : tensor<1xui32> loc(#loc987) | |
| %10739 = mhlo.or %10735, %10738 : tensor<1xui32> loc(#loc1000) | |
| %10740 = mhlo.xor %10732, %10739 : tensor<1xui32> loc(#loc996) | |
| %10741 = "mhlo.broadcast_in_dim"(%10607) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10742 = mhlo.add %10732, %10741 : tensor<1xui32> loc(#loc998) | |
| %10743 = "mhlo.broadcast_in_dim"(%10609) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10744 = mhlo.add %10740, %10743 : tensor<1xui32> loc(#loc998) | |
| %10745 = mhlo.constant dense<3> : tensor<ui32> loc(#loc997) | |
| %10746 = "mhlo.broadcast_in_dim"(%10745) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10747 = mhlo.add %10744, %10746 : tensor<1xui32> loc(#loc998) | |
| %10748 = mhlo.add %10742, %10747 : tensor<1xui32> loc(#loc998) | |
| %10749 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10750 = "mhlo.broadcast_in_dim"(%10749) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10751 = mhlo.shift_left %10747, %10750 : tensor<1xui32> loc(#loc999) | |
| %10752 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10753 = "mhlo.broadcast_in_dim"(%10752) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10754 = mhlo.shift_right_logical %10747, %10753 : tensor<1xui32> loc(#loc987) | |
| %10755 = mhlo.or %10751, %10754 : tensor<1xui32> loc(#loc1000) | |
| %10756 = mhlo.xor %10748, %10755 : tensor<1xui32> loc(#loc996) | |
| %10757 = mhlo.add %10748, %10756 : tensor<1xui32> loc(#loc998) | |
| %10758 = mhlo.constant dense<29> : tensor<ui32> loc(#loc997) | |
| %10759 = "mhlo.broadcast_in_dim"(%10758) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10760 = mhlo.shift_left %10756, %10759 : tensor<1xui32> loc(#loc999) | |
| %10761 = mhlo.constant dense<3> : tensor<ui32> loc(#loc997) | |
| %10762 = "mhlo.broadcast_in_dim"(%10761) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10763 = mhlo.shift_right_logical %10756, %10762 : tensor<1xui32> loc(#loc987) | |
| %10764 = mhlo.or %10760, %10763 : tensor<1xui32> loc(#loc1000) | |
| %10765 = mhlo.xor %10757, %10764 : tensor<1xui32> loc(#loc996) | |
| %10766 = mhlo.add %10757, %10765 : tensor<1xui32> loc(#loc998) | |
| %10767 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10768 = "mhlo.broadcast_in_dim"(%10767) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10769 = mhlo.shift_left %10765, %10768 : tensor<1xui32> loc(#loc999) | |
| %10770 = mhlo.constant dense<16> : tensor<ui32> loc(#loc997) | |
| %10771 = "mhlo.broadcast_in_dim"(%10770) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10772 = mhlo.shift_right_logical %10765, %10771 : tensor<1xui32> loc(#loc987) | |
| %10773 = mhlo.or %10769, %10772 : tensor<1xui32> loc(#loc1000) | |
| %10774 = mhlo.xor %10766, %10773 : tensor<1xui32> loc(#loc996) | |
| %10775 = mhlo.add %10766, %10774 : tensor<1xui32> loc(#loc998) | |
| %10776 = mhlo.constant dense<24> : tensor<ui32> loc(#loc997) | |
| %10777 = "mhlo.broadcast_in_dim"(%10776) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10778 = mhlo.shift_left %10774, %10777 : tensor<1xui32> loc(#loc999) | |
| %10779 = mhlo.constant dense<8> : tensor<ui32> loc(#loc997) | |
| %10780 = "mhlo.broadcast_in_dim"(%10779) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10781 = mhlo.shift_right_logical %10774, %10780 : tensor<1xui32> loc(#loc987) | |
| %10782 = mhlo.or %10778, %10781 : tensor<1xui32> loc(#loc1000) | |
| %10783 = mhlo.xor %10775, %10782 : tensor<1xui32> loc(#loc996) | |
| %10784 = "mhlo.broadcast_in_dim"(%10609) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10785 = mhlo.add %10775, %10784 : tensor<1xui32> loc(#loc998) | |
| %10786 = "mhlo.broadcast_in_dim"(%10614) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10787 = mhlo.add %10783, %10786 : tensor<1xui32> loc(#loc998) | |
| %10788 = mhlo.constant dense<4> : tensor<ui32> loc(#loc997) | |
| %10789 = "mhlo.broadcast_in_dim"(%10788) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10790 = mhlo.add %10787, %10789 : tensor<1xui32> loc(#loc998) | |
| %10791 = mhlo.add %10785, %10790 : tensor<1xui32> loc(#loc998) | |
| %10792 = mhlo.constant dense<13> : tensor<ui32> loc(#loc997) | |
| %10793 = "mhlo.broadcast_in_dim"(%10792) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10794 = mhlo.shift_left %10790, %10793 : tensor<1xui32> loc(#loc999) | |
| %10795 = mhlo.constant dense<19> : tensor<ui32> loc(#loc997) | |
| %10796 = "mhlo.broadcast_in_dim"(%10795) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10797 = mhlo.shift_right_logical %10790, %10796 : tensor<1xui32> loc(#loc987) | |
| %10798 = mhlo.or %10794, %10797 : tensor<1xui32> loc(#loc1000) | |
| %10799 = mhlo.xor %10791, %10798 : tensor<1xui32> loc(#loc996) | |
| %10800 = mhlo.add %10791, %10799 : tensor<1xui32> loc(#loc998) | |
| %10801 = mhlo.constant dense<15> : tensor<ui32> loc(#loc997) | |
| %10802 = "mhlo.broadcast_in_dim"(%10801) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10803 = mhlo.shift_left %10799, %10802 : tensor<1xui32> loc(#loc999) | |
| %10804 = mhlo.constant dense<17> : tensor<ui32> loc(#loc997) | |
| %10805 = "mhlo.broadcast_in_dim"(%10804) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10806 = mhlo.shift_right_logical %10799, %10805 : tensor<1xui32> loc(#loc987) | |
| %10807 = mhlo.or %10803, %10806 : tensor<1xui32> loc(#loc1000) | |
| %10808 = mhlo.xor %10800, %10807 : tensor<1xui32> loc(#loc996) | |
| %10809 = mhlo.add %10800, %10808 : tensor<1xui32> loc(#loc998) | |
| %10810 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10811 = "mhlo.broadcast_in_dim"(%10810) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10812 = mhlo.shift_left %10808, %10811 : tensor<1xui32> loc(#loc999) | |
| %10813 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10814 = "mhlo.broadcast_in_dim"(%10813) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10815 = mhlo.shift_right_logical %10808, %10814 : tensor<1xui32> loc(#loc987) | |
| %10816 = mhlo.or %10812, %10815 : tensor<1xui32> loc(#loc1000) | |
| %10817 = mhlo.xor %10809, %10816 : tensor<1xui32> loc(#loc996) | |
| %10818 = mhlo.add %10809, %10817 : tensor<1xui32> loc(#loc998) | |
| %10819 = mhlo.constant dense<6> : tensor<ui32> loc(#loc997) | |
| %10820 = "mhlo.broadcast_in_dim"(%10819) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc999) | |
| %10821 = mhlo.shift_left %10817, %10820 : tensor<1xui32> loc(#loc999) | |
| %10822 = mhlo.constant dense<26> : tensor<ui32> loc(#loc997) | |
| %10823 = "mhlo.broadcast_in_dim"(%10822) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc987) | |
| %10824 = mhlo.shift_right_logical %10817, %10823 : tensor<1xui32> loc(#loc987) | |
| %10825 = mhlo.or %10821, %10824 : tensor<1xui32> loc(#loc1000) | |
| %10826 = mhlo.xor %10818, %10825 : tensor<1xui32> loc(#loc996) | |
| %10827 = "mhlo.broadcast_in_dim"(%10614) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10828 = mhlo.add %10818, %10827 : tensor<1xui32> loc(#loc998) | |
| %10829 = "mhlo.broadcast_in_dim"(%10607) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10830 = mhlo.add %10826, %10829 : tensor<1xui32> loc(#loc998) | |
| %10831 = mhlo.constant dense<5> : tensor<ui32> loc(#loc997) | |
| %10832 = "mhlo.broadcast_in_dim"(%10831) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc998) | |
| %10833 = mhlo.add %10830, %10832 : tensor<1xui32> loc(#loc998) | |
| %10834 = "mhlo.concatenate"(%10828, %10833) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc990) | |
| %10835 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %10836 = "mhlo.broadcast_in_dim"(%10835) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc1001) | |
| %10837 = "mhlo.reshape"(%10836) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc1005) | |
| %10838 = "mhlo.broadcast_in_dim"(%10837) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc1006) | |
| %10839 = mhlo.add %10597, %10838 : tensor<1x256x2048xf32> loc(#loc1006) | |
| %10840 = mhlo.convert(%10839) : (tensor<1x256x2048xf32>) -> tensor<1x256x2048xf16> loc(#loc1007) | |
| %10841 = mhlo.constant dense<1.000000e+00> : tensor<f16> loc(#loc531) | |
| %10842 = "mhlo.broadcast_in_dim"(%10841) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f16>) -> tensor<1x256x2048xf16> loc(#loc1008) | |
| %10843 = mhlo.multiply %8040, %10842 : tensor<1x256x2048xf16> loc(#loc1008) | |
| %10844 = mhlo.add %10843, %10840 : tensor<1x256x2048xf16> loc(#loc1009) | |
| %10845 = mhlo.convert(%10844) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc1010) | |
| %10846 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc1011) | |
| %10847 = mhlo.reduce(%10845 init: %10846) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc1011) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc1011) | |
| } loc(#loc1011) | |
| %10848 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %10849 = "mhlo.broadcast_in_dim"(%10848) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc1012) | |
| %10850 = mhlo.divide %10847, %10849 : tensor<1x256xf32> loc(#loc1012) | |
| %10851 = mhlo.multiply %10845, %10845 : tensor<1x256x2048xf32> loc(#loc1013) | |
| %10852 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc1014) | |
| %10853 = mhlo.reduce(%10851 init: %10852) across dimensions = [2] : (tensor<1x256x2048xf32>, tensor<f32>) -> tensor<1x256xf32> | |
| reducer(%arg47: tensor<f32> loc(unknown), %arg48: tensor<f32> loc(unknown)) { | |
| %13358 = mhlo.add %arg47, %arg48 : tensor<f32> loc(#loc1014) | |
| "mhlo.return"(%13358) : (tensor<f32>) -> () loc(#loc1014) | |
| } loc(#loc1014) | |
| %10854 = mhlo.constant dense<2.048000e+03> : tensor<f32> loc(#loc531) | |
| %10855 = "mhlo.broadcast_in_dim"(%10854) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc1015) | |
| %10856 = mhlo.divide %10853, %10855 : tensor<1x256xf32> loc(#loc1015) | |
| %10857 = mhlo.multiply %10850, %10850 : tensor<1x256xf32> loc(#loc1013) | |
| %10858 = mhlo.subtract %10856, %10857 : tensor<1x256xf32> loc(#loc1016) | |
| %10859 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %10860 = "mhlo.broadcast_in_dim"(%10859) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256xf32> loc(#loc1017) | |
| %10861 = mhlo.maximum %10860, %10858 : tensor<1x256xf32> loc(#loc1017) | |
| %10862 = "mhlo.reshape"(%10850) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc1018) | |
| %10863 = "mhlo.reshape"(%10861) : (tensor<1x256xf32>) -> tensor<1x256x1xf32> loc(#loc1019) | |
| %10864 = mhlo.convert(%10844) : (tensor<1x256x2048xf16>) -> tensor<1x256x2048xf32> loc(#loc1020) | |
| %10865 = "mhlo.broadcast_in_dim"(%10862) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc1021) | |
| %10866 = mhlo.subtract %10864, %10865 : tensor<1x256x2048xf32> loc(#loc1021) | |
| %10867 = mhlo.constant dense<9.99999974E-6> : tensor<f32> loc(#loc531) | |
| %10868 = "mhlo.broadcast_in_dim"(%10867) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x256x1xf32> loc(#loc1022) | |
| %10869 = mhlo.add %10863, %10868 : tensor<1x256x1xf32> loc(#loc1022) | |
| %10870 = mhlo.rsqrt %10869 : tensor<1x256x1xf32> loc(#loc1023) | |
| %10871 = "mhlo.broadcast_in_dim"(%10870) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x256x1xf32>) -> tensor<1x256x2048xf32> loc(#loc1024) | |
| %10872 = mhlo.multiply %10866, %10871 : tensor<1x256x2048xf32> loc(#loc1024) | |
| %10873 = mhlo.constant dense<949201226> : tensor<ui32> loc(#loc531) | |
| %10874 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %10875 = mhlo.shift_right_logical %10873, %10874 : tensor<ui32> loc(#loc1025) | |
| %10876 = "mhlo.reshape"(%10875) : (tensor<ui32>) -> tensor<1xui32> loc(#loc1026) | |
| %10877 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %10878 = mhlo.and %10873, %10877 : tensor<ui32> loc(#loc1027) | |
| %10879 = "mhlo.reshape"(%10878) : (tensor<ui32>) -> tensor<1xui32> loc(#loc1026) | |
| %10880 = "mhlo.concatenate"(%10876, %10879) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc1028) | |
| %10881 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1029) | |
| %10882 = "mhlo.reshape"(%10881) : (tensor<1xui32>) -> tensor<ui32> loc(#loc1030) | |
| %10883 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1031) | |
| %10884 = "mhlo.reshape"(%10883) : (tensor<1xui32>) -> tensor<ui32> loc(#loc1030) | |
| %10885 = "mhlo.slice"(%10880) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1032) | |
| %10886 = "mhlo.slice"(%10880) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1033) | |
| %10887 = mhlo.xor %10882, %10884 : tensor<ui32> loc(#loc1034) | |
| %10888 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc1035) | |
| %10889 = mhlo.xor %10887, %10888 : tensor<ui32> loc(#loc1034) | |
| %10890 = "mhlo.broadcast_in_dim"(%10882) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10891 = mhlo.add %10885, %10890 : tensor<1xui32> loc(#loc1036) | |
| %10892 = "mhlo.broadcast_in_dim"(%10884) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10893 = mhlo.add %10886, %10892 : tensor<1xui32> loc(#loc1036) | |
| %10894 = mhlo.add %10891, %10893 : tensor<1xui32> loc(#loc1036) | |
| %10895 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1035) | |
| %10896 = "mhlo.broadcast_in_dim"(%10895) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10897 = mhlo.shift_left %10893, %10896 : tensor<1xui32> loc(#loc1037) | |
| %10898 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1035) | |
| %10899 = "mhlo.broadcast_in_dim"(%10898) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10900 = mhlo.shift_right_logical %10893, %10899 : tensor<1xui32> loc(#loc1025) | |
| %10901 = mhlo.or %10897, %10900 : tensor<1xui32> loc(#loc1038) | |
| %10902 = mhlo.xor %10894, %10901 : tensor<1xui32> loc(#loc1034) | |
| %10903 = mhlo.add %10894, %10902 : tensor<1xui32> loc(#loc1036) | |
| %10904 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1035) | |
| %10905 = "mhlo.broadcast_in_dim"(%10904) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10906 = mhlo.shift_left %10902, %10905 : tensor<1xui32> loc(#loc1037) | |
| %10907 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1035) | |
| %10908 = "mhlo.broadcast_in_dim"(%10907) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10909 = mhlo.shift_right_logical %10902, %10908 : tensor<1xui32> loc(#loc1025) | |
| %10910 = mhlo.or %10906, %10909 : tensor<1xui32> loc(#loc1038) | |
| %10911 = mhlo.xor %10903, %10910 : tensor<1xui32> loc(#loc1034) | |
| %10912 = mhlo.add %10903, %10911 : tensor<1xui32> loc(#loc1036) | |
| %10913 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1035) | |
| %10914 = "mhlo.broadcast_in_dim"(%10913) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10915 = mhlo.shift_left %10911, %10914 : tensor<1xui32> loc(#loc1037) | |
| %10916 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1035) | |
| %10917 = "mhlo.broadcast_in_dim"(%10916) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10918 = mhlo.shift_right_logical %10911, %10917 : tensor<1xui32> loc(#loc1025) | |
| %10919 = mhlo.or %10915, %10918 : tensor<1xui32> loc(#loc1038) | |
| %10920 = mhlo.xor %10912, %10919 : tensor<1xui32> loc(#loc1034) | |
| %10921 = mhlo.add %10912, %10920 : tensor<1xui32> loc(#loc1036) | |
| %10922 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1035) | |
| %10923 = "mhlo.broadcast_in_dim"(%10922) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10924 = mhlo.shift_left %10920, %10923 : tensor<1xui32> loc(#loc1037) | |
| %10925 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1035) | |
| %10926 = "mhlo.broadcast_in_dim"(%10925) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10927 = mhlo.shift_right_logical %10920, %10926 : tensor<1xui32> loc(#loc1025) | |
| %10928 = mhlo.or %10924, %10927 : tensor<1xui32> loc(#loc1038) | |
| %10929 = mhlo.xor %10921, %10928 : tensor<1xui32> loc(#loc1034) | |
| %10930 = "mhlo.broadcast_in_dim"(%10884) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10931 = mhlo.add %10921, %10930 : tensor<1xui32> loc(#loc1036) | |
| %10932 = "mhlo.broadcast_in_dim"(%10889) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10933 = mhlo.add %10929, %10932 : tensor<1xui32> loc(#loc1036) | |
| %10934 = mhlo.constant dense<1> : tensor<ui32> loc(#loc1035) | |
| %10935 = "mhlo.broadcast_in_dim"(%10934) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10936 = mhlo.add %10933, %10935 : tensor<1xui32> loc(#loc1036) | |
| %10937 = mhlo.add %10931, %10936 : tensor<1xui32> loc(#loc1036) | |
| %10938 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1035) | |
| %10939 = "mhlo.broadcast_in_dim"(%10938) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10940 = mhlo.shift_left %10936, %10939 : tensor<1xui32> loc(#loc1037) | |
| %10941 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1035) | |
| %10942 = "mhlo.broadcast_in_dim"(%10941) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10943 = mhlo.shift_right_logical %10936, %10942 : tensor<1xui32> loc(#loc1025) | |
| %10944 = mhlo.or %10940, %10943 : tensor<1xui32> loc(#loc1038) | |
| %10945 = mhlo.xor %10937, %10944 : tensor<1xui32> loc(#loc1034) | |
| %10946 = mhlo.add %10937, %10945 : tensor<1xui32> loc(#loc1036) | |
| %10947 = mhlo.constant dense<29> : tensor<ui32> loc(#loc1035) | |
| %10948 = "mhlo.broadcast_in_dim"(%10947) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10949 = mhlo.shift_left %10945, %10948 : tensor<1xui32> loc(#loc1037) | |
| %10950 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1035) | |
| %10951 = "mhlo.broadcast_in_dim"(%10950) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10952 = mhlo.shift_right_logical %10945, %10951 : tensor<1xui32> loc(#loc1025) | |
| %10953 = mhlo.or %10949, %10952 : tensor<1xui32> loc(#loc1038) | |
| %10954 = mhlo.xor %10946, %10953 : tensor<1xui32> loc(#loc1034) | |
| %10955 = mhlo.add %10946, %10954 : tensor<1xui32> loc(#loc1036) | |
| %10956 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1035) | |
| %10957 = "mhlo.broadcast_in_dim"(%10956) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10958 = mhlo.shift_left %10954, %10957 : tensor<1xui32> loc(#loc1037) | |
| %10959 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1035) | |
| %10960 = "mhlo.broadcast_in_dim"(%10959) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10961 = mhlo.shift_right_logical %10954, %10960 : tensor<1xui32> loc(#loc1025) | |
| %10962 = mhlo.or %10958, %10961 : tensor<1xui32> loc(#loc1038) | |
| %10963 = mhlo.xor %10955, %10962 : tensor<1xui32> loc(#loc1034) | |
| %10964 = mhlo.add %10955, %10963 : tensor<1xui32> loc(#loc1036) | |
| %10965 = mhlo.constant dense<24> : tensor<ui32> loc(#loc1035) | |
| %10966 = "mhlo.broadcast_in_dim"(%10965) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10967 = mhlo.shift_left %10963, %10966 : tensor<1xui32> loc(#loc1037) | |
| %10968 = mhlo.constant dense<8> : tensor<ui32> loc(#loc1035) | |
| %10969 = "mhlo.broadcast_in_dim"(%10968) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10970 = mhlo.shift_right_logical %10963, %10969 : tensor<1xui32> loc(#loc1025) | |
| %10971 = mhlo.or %10967, %10970 : tensor<1xui32> loc(#loc1038) | |
| %10972 = mhlo.xor %10964, %10971 : tensor<1xui32> loc(#loc1034) | |
| %10973 = "mhlo.broadcast_in_dim"(%10889) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10974 = mhlo.add %10964, %10973 : tensor<1xui32> loc(#loc1036) | |
| %10975 = "mhlo.broadcast_in_dim"(%10882) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10976 = mhlo.add %10972, %10975 : tensor<1xui32> loc(#loc1036) | |
| %10977 = mhlo.constant dense<2> : tensor<ui32> loc(#loc1035) | |
| %10978 = "mhlo.broadcast_in_dim"(%10977) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %10979 = mhlo.add %10976, %10978 : tensor<1xui32> loc(#loc1036) | |
| %10980 = mhlo.add %10974, %10979 : tensor<1xui32> loc(#loc1036) | |
| %10981 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1035) | |
| %10982 = "mhlo.broadcast_in_dim"(%10981) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10983 = mhlo.shift_left %10979, %10982 : tensor<1xui32> loc(#loc1037) | |
| %10984 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1035) | |
| %10985 = "mhlo.broadcast_in_dim"(%10984) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10986 = mhlo.shift_right_logical %10979, %10985 : tensor<1xui32> loc(#loc1025) | |
| %10987 = mhlo.or %10983, %10986 : tensor<1xui32> loc(#loc1038) | |
| %10988 = mhlo.xor %10980, %10987 : tensor<1xui32> loc(#loc1034) | |
| %10989 = mhlo.add %10980, %10988 : tensor<1xui32> loc(#loc1036) | |
| %10990 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1035) | |
| %10991 = "mhlo.broadcast_in_dim"(%10990) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %10992 = mhlo.shift_left %10988, %10991 : tensor<1xui32> loc(#loc1037) | |
| %10993 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1035) | |
| %10994 = "mhlo.broadcast_in_dim"(%10993) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %10995 = mhlo.shift_right_logical %10988, %10994 : tensor<1xui32> loc(#loc1025) | |
| %10996 = mhlo.or %10992, %10995 : tensor<1xui32> loc(#loc1038) | |
| %10997 = mhlo.xor %10989, %10996 : tensor<1xui32> loc(#loc1034) | |
| %10998 = mhlo.add %10989, %10997 : tensor<1xui32> loc(#loc1036) | |
| %10999 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1035) | |
| %11000 = "mhlo.broadcast_in_dim"(%10999) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11001 = mhlo.shift_left %10997, %11000 : tensor<1xui32> loc(#loc1037) | |
| %11002 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1035) | |
| %11003 = "mhlo.broadcast_in_dim"(%11002) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11004 = mhlo.shift_right_logical %10997, %11003 : tensor<1xui32> loc(#loc1025) | |
| %11005 = mhlo.or %11001, %11004 : tensor<1xui32> loc(#loc1038) | |
| %11006 = mhlo.xor %10998, %11005 : tensor<1xui32> loc(#loc1034) | |
| %11007 = mhlo.add %10998, %11006 : tensor<1xui32> loc(#loc1036) | |
| %11008 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1035) | |
| %11009 = "mhlo.broadcast_in_dim"(%11008) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11010 = mhlo.shift_left %11006, %11009 : tensor<1xui32> loc(#loc1037) | |
| %11011 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1035) | |
| %11012 = "mhlo.broadcast_in_dim"(%11011) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11013 = mhlo.shift_right_logical %11006, %11012 : tensor<1xui32> loc(#loc1025) | |
| %11014 = mhlo.or %11010, %11013 : tensor<1xui32> loc(#loc1038) | |
| %11015 = mhlo.xor %11007, %11014 : tensor<1xui32> loc(#loc1034) | |
| %11016 = "mhlo.broadcast_in_dim"(%10882) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11017 = mhlo.add %11007, %11016 : tensor<1xui32> loc(#loc1036) | |
| %11018 = "mhlo.broadcast_in_dim"(%10884) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11019 = mhlo.add %11015, %11018 : tensor<1xui32> loc(#loc1036) | |
| %11020 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1035) | |
| %11021 = "mhlo.broadcast_in_dim"(%11020) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11022 = mhlo.add %11019, %11021 : tensor<1xui32> loc(#loc1036) | |
| %11023 = mhlo.add %11017, %11022 : tensor<1xui32> loc(#loc1036) | |
| %11024 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1035) | |
| %11025 = "mhlo.broadcast_in_dim"(%11024) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11026 = mhlo.shift_left %11022, %11025 : tensor<1xui32> loc(#loc1037) | |
| %11027 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1035) | |
| %11028 = "mhlo.broadcast_in_dim"(%11027) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11029 = mhlo.shift_right_logical %11022, %11028 : tensor<1xui32> loc(#loc1025) | |
| %11030 = mhlo.or %11026, %11029 : tensor<1xui32> loc(#loc1038) | |
| %11031 = mhlo.xor %11023, %11030 : tensor<1xui32> loc(#loc1034) | |
| %11032 = mhlo.add %11023, %11031 : tensor<1xui32> loc(#loc1036) | |
| %11033 = mhlo.constant dense<29> : tensor<ui32> loc(#loc1035) | |
| %11034 = "mhlo.broadcast_in_dim"(%11033) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11035 = mhlo.shift_left %11031, %11034 : tensor<1xui32> loc(#loc1037) | |
| %11036 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1035) | |
| %11037 = "mhlo.broadcast_in_dim"(%11036) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11038 = mhlo.shift_right_logical %11031, %11037 : tensor<1xui32> loc(#loc1025) | |
| %11039 = mhlo.or %11035, %11038 : tensor<1xui32> loc(#loc1038) | |
| %11040 = mhlo.xor %11032, %11039 : tensor<1xui32> loc(#loc1034) | |
| %11041 = mhlo.add %11032, %11040 : tensor<1xui32> loc(#loc1036) | |
| %11042 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1035) | |
| %11043 = "mhlo.broadcast_in_dim"(%11042) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11044 = mhlo.shift_left %11040, %11043 : tensor<1xui32> loc(#loc1037) | |
| %11045 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1035) | |
| %11046 = "mhlo.broadcast_in_dim"(%11045) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11047 = mhlo.shift_right_logical %11040, %11046 : tensor<1xui32> loc(#loc1025) | |
| %11048 = mhlo.or %11044, %11047 : tensor<1xui32> loc(#loc1038) | |
| %11049 = mhlo.xor %11041, %11048 : tensor<1xui32> loc(#loc1034) | |
| %11050 = mhlo.add %11041, %11049 : tensor<1xui32> loc(#loc1036) | |
| %11051 = mhlo.constant dense<24> : tensor<ui32> loc(#loc1035) | |
| %11052 = "mhlo.broadcast_in_dim"(%11051) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11053 = mhlo.shift_left %11049, %11052 : tensor<1xui32> loc(#loc1037) | |
| %11054 = mhlo.constant dense<8> : tensor<ui32> loc(#loc1035) | |
| %11055 = "mhlo.broadcast_in_dim"(%11054) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11056 = mhlo.shift_right_logical %11049, %11055 : tensor<1xui32> loc(#loc1025) | |
| %11057 = mhlo.or %11053, %11056 : tensor<1xui32> loc(#loc1038) | |
| %11058 = mhlo.xor %11050, %11057 : tensor<1xui32> loc(#loc1034) | |
| %11059 = "mhlo.broadcast_in_dim"(%10884) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11060 = mhlo.add %11050, %11059 : tensor<1xui32> loc(#loc1036) | |
| %11061 = "mhlo.broadcast_in_dim"(%10889) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11062 = mhlo.add %11058, %11061 : tensor<1xui32> loc(#loc1036) | |
| %11063 = mhlo.constant dense<4> : tensor<ui32> loc(#loc1035) | |
| %11064 = "mhlo.broadcast_in_dim"(%11063) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11065 = mhlo.add %11062, %11064 : tensor<1xui32> loc(#loc1036) | |
| %11066 = mhlo.add %11060, %11065 : tensor<1xui32> loc(#loc1036) | |
| %11067 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1035) | |
| %11068 = "mhlo.broadcast_in_dim"(%11067) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11069 = mhlo.shift_left %11065, %11068 : tensor<1xui32> loc(#loc1037) | |
| %11070 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1035) | |
| %11071 = "mhlo.broadcast_in_dim"(%11070) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11072 = mhlo.shift_right_logical %11065, %11071 : tensor<1xui32> loc(#loc1025) | |
| %11073 = mhlo.or %11069, %11072 : tensor<1xui32> loc(#loc1038) | |
| %11074 = mhlo.xor %11066, %11073 : tensor<1xui32> loc(#loc1034) | |
| %11075 = mhlo.add %11066, %11074 : tensor<1xui32> loc(#loc1036) | |
| %11076 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1035) | |
| %11077 = "mhlo.broadcast_in_dim"(%11076) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11078 = mhlo.shift_left %11074, %11077 : tensor<1xui32> loc(#loc1037) | |
| %11079 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1035) | |
| %11080 = "mhlo.broadcast_in_dim"(%11079) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11081 = mhlo.shift_right_logical %11074, %11080 : tensor<1xui32> loc(#loc1025) | |
| %11082 = mhlo.or %11078, %11081 : tensor<1xui32> loc(#loc1038) | |
| %11083 = mhlo.xor %11075, %11082 : tensor<1xui32> loc(#loc1034) | |
| %11084 = mhlo.add %11075, %11083 : tensor<1xui32> loc(#loc1036) | |
| %11085 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1035) | |
| %11086 = "mhlo.broadcast_in_dim"(%11085) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11087 = mhlo.shift_left %11083, %11086 : tensor<1xui32> loc(#loc1037) | |
| %11088 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1035) | |
| %11089 = "mhlo.broadcast_in_dim"(%11088) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11090 = mhlo.shift_right_logical %11083, %11089 : tensor<1xui32> loc(#loc1025) | |
| %11091 = mhlo.or %11087, %11090 : tensor<1xui32> loc(#loc1038) | |
| %11092 = mhlo.xor %11084, %11091 : tensor<1xui32> loc(#loc1034) | |
| %11093 = mhlo.add %11084, %11092 : tensor<1xui32> loc(#loc1036) | |
| %11094 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1035) | |
| %11095 = "mhlo.broadcast_in_dim"(%11094) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1037) | |
| %11096 = mhlo.shift_left %11092, %11095 : tensor<1xui32> loc(#loc1037) | |
| %11097 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1035) | |
| %11098 = "mhlo.broadcast_in_dim"(%11097) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1025) | |
| %11099 = mhlo.shift_right_logical %11092, %11098 : tensor<1xui32> loc(#loc1025) | |
| %11100 = mhlo.or %11096, %11099 : tensor<1xui32> loc(#loc1038) | |
| %11101 = mhlo.xor %11093, %11100 : tensor<1xui32> loc(#loc1034) | |
| %11102 = "mhlo.broadcast_in_dim"(%10889) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11103 = mhlo.add %11093, %11102 : tensor<1xui32> loc(#loc1036) | |
| %11104 = "mhlo.broadcast_in_dim"(%10882) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11105 = mhlo.add %11101, %11104 : tensor<1xui32> loc(#loc1036) | |
| %11106 = mhlo.constant dense<5> : tensor<ui32> loc(#loc1035) | |
| %11107 = "mhlo.broadcast_in_dim"(%11106) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1036) | |
| %11108 = mhlo.add %11105, %11107 : tensor<1xui32> loc(#loc1036) | |
| %11109 = "mhlo.concatenate"(%11103, %11108) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc1028) | |
| %11110 = mhlo.constant dense<0.000000e+00> : tensor<f32> loc(#loc531) | |
| %11111 = "mhlo.broadcast_in_dim"(%11110) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048xf32> loc(#loc1039) | |
| %11112 = "mhlo.reshape"(%11111) : (tensor<2048xf32>) -> tensor<1x1x2048xf32> loc(#loc1040) | |
| %11113 = "mhlo.broadcast_in_dim"(%11112) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048xf32>) -> tensor<1x256x2048xf32> loc(#loc1041) | |
| %11114 = mhlo.add %10872, %11113 : tensor<1x256x2048xf32> loc(#loc1041) | |
| %11115 = mhlo.convert(%11114) : (tensor<1x256x2048xf32>) -> tensor<1x256x2048xf16> loc(#loc1042) | |
| %11116 = mhlo.constant dense<876918311> : tensor<ui32> loc(#loc531) | |
| %11117 = mhlo.constant dense<32> : tensor<ui32> loc(#loc531) | |
| %11118 = mhlo.shift_right_logical %11116, %11117 : tensor<ui32> loc(#loc1043) | |
| %11119 = "mhlo.reshape"(%11118) : (tensor<ui32>) -> tensor<1xui32> loc(#loc1044) | |
| %11120 = mhlo.constant dense<4294967295> : tensor<ui32> loc(#loc531) | |
| %11121 = mhlo.and %11116, %11120 : tensor<ui32> loc(#loc1045) | |
| %11122 = "mhlo.reshape"(%11121) : (tensor<ui32>) -> tensor<1xui32> loc(#loc1044) | |
| %11123 = "mhlo.concatenate"(%11119, %11122) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc1046) | |
| %11124 = "mhlo.slice"(%5202) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1047) | |
| %11125 = "mhlo.reshape"(%11124) : (tensor<1xui32>) -> tensor<ui32> loc(#loc1048) | |
| %11126 = "mhlo.slice"(%5202) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1049) | |
| %11127 = "mhlo.reshape"(%11126) : (tensor<1xui32>) -> tensor<ui32> loc(#loc1048) | |
| %11128 = "mhlo.slice"(%11123) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1050) | |
| %11129 = "mhlo.slice"(%11123) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1051) | |
| %11130 = mhlo.xor %11125, %11127 : tensor<ui32> loc(#loc1052) | |
| %11131 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc1053) | |
| %11132 = mhlo.xor %11130, %11131 : tensor<ui32> loc(#loc1052) | |
| %11133 = "mhlo.broadcast_in_dim"(%11125) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11134 = mhlo.add %11128, %11133 : tensor<1xui32> loc(#loc1054) | |
| %11135 = "mhlo.broadcast_in_dim"(%11127) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11136 = mhlo.add %11129, %11135 : tensor<1xui32> loc(#loc1054) | |
| %11137 = mhlo.add %11134, %11136 : tensor<1xui32> loc(#loc1054) | |
| %11138 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1053) | |
| %11139 = "mhlo.broadcast_in_dim"(%11138) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11140 = mhlo.shift_left %11136, %11139 : tensor<1xui32> loc(#loc1055) | |
| %11141 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1053) | |
| %11142 = "mhlo.broadcast_in_dim"(%11141) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11143 = mhlo.shift_right_logical %11136, %11142 : tensor<1xui32> loc(#loc1043) | |
| %11144 = mhlo.or %11140, %11143 : tensor<1xui32> loc(#loc1056) | |
| %11145 = mhlo.xor %11137, %11144 : tensor<1xui32> loc(#loc1052) | |
| %11146 = mhlo.add %11137, %11145 : tensor<1xui32> loc(#loc1054) | |
| %11147 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1053) | |
| %11148 = "mhlo.broadcast_in_dim"(%11147) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11149 = mhlo.shift_left %11145, %11148 : tensor<1xui32> loc(#loc1055) | |
| %11150 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1053) | |
| %11151 = "mhlo.broadcast_in_dim"(%11150) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11152 = mhlo.shift_right_logical %11145, %11151 : tensor<1xui32> loc(#loc1043) | |
| %11153 = mhlo.or %11149, %11152 : tensor<1xui32> loc(#loc1056) | |
| %11154 = mhlo.xor %11146, %11153 : tensor<1xui32> loc(#loc1052) | |
| %11155 = mhlo.add %11146, %11154 : tensor<1xui32> loc(#loc1054) | |
| %11156 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1053) | |
| %11157 = "mhlo.broadcast_in_dim"(%11156) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11158 = mhlo.shift_left %11154, %11157 : tensor<1xui32> loc(#loc1055) | |
| %11159 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1053) | |
| %11160 = "mhlo.broadcast_in_dim"(%11159) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11161 = mhlo.shift_right_logical %11154, %11160 : tensor<1xui32> loc(#loc1043) | |
| %11162 = mhlo.or %11158, %11161 : tensor<1xui32> loc(#loc1056) | |
| %11163 = mhlo.xor %11155, %11162 : tensor<1xui32> loc(#loc1052) | |
| %11164 = mhlo.add %11155, %11163 : tensor<1xui32> loc(#loc1054) | |
| %11165 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1053) | |
| %11166 = "mhlo.broadcast_in_dim"(%11165) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11167 = mhlo.shift_left %11163, %11166 : tensor<1xui32> loc(#loc1055) | |
| %11168 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1053) | |
| %11169 = "mhlo.broadcast_in_dim"(%11168) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11170 = mhlo.shift_right_logical %11163, %11169 : tensor<1xui32> loc(#loc1043) | |
| %11171 = mhlo.or %11167, %11170 : tensor<1xui32> loc(#loc1056) | |
| %11172 = mhlo.xor %11164, %11171 : tensor<1xui32> loc(#loc1052) | |
| %11173 = "mhlo.broadcast_in_dim"(%11127) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11174 = mhlo.add %11164, %11173 : tensor<1xui32> loc(#loc1054) | |
| %11175 = "mhlo.broadcast_in_dim"(%11132) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11176 = mhlo.add %11172, %11175 : tensor<1xui32> loc(#loc1054) | |
| %11177 = mhlo.constant dense<1> : tensor<ui32> loc(#loc1053) | |
| %11178 = "mhlo.broadcast_in_dim"(%11177) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11179 = mhlo.add %11176, %11178 : tensor<1xui32> loc(#loc1054) | |
| %11180 = mhlo.add %11174, %11179 : tensor<1xui32> loc(#loc1054) | |
| %11181 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1053) | |
| %11182 = "mhlo.broadcast_in_dim"(%11181) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11183 = mhlo.shift_left %11179, %11182 : tensor<1xui32> loc(#loc1055) | |
| %11184 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1053) | |
| %11185 = "mhlo.broadcast_in_dim"(%11184) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11186 = mhlo.shift_right_logical %11179, %11185 : tensor<1xui32> loc(#loc1043) | |
| %11187 = mhlo.or %11183, %11186 : tensor<1xui32> loc(#loc1056) | |
| %11188 = mhlo.xor %11180, %11187 : tensor<1xui32> loc(#loc1052) | |
| %11189 = mhlo.add %11180, %11188 : tensor<1xui32> loc(#loc1054) | |
| %11190 = mhlo.constant dense<29> : tensor<ui32> loc(#loc1053) | |
| %11191 = "mhlo.broadcast_in_dim"(%11190) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11192 = mhlo.shift_left %11188, %11191 : tensor<1xui32> loc(#loc1055) | |
| %11193 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1053) | |
| %11194 = "mhlo.broadcast_in_dim"(%11193) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11195 = mhlo.shift_right_logical %11188, %11194 : tensor<1xui32> loc(#loc1043) | |
| %11196 = mhlo.or %11192, %11195 : tensor<1xui32> loc(#loc1056) | |
| %11197 = mhlo.xor %11189, %11196 : tensor<1xui32> loc(#loc1052) | |
| %11198 = mhlo.add %11189, %11197 : tensor<1xui32> loc(#loc1054) | |
| %11199 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1053) | |
| %11200 = "mhlo.broadcast_in_dim"(%11199) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11201 = mhlo.shift_left %11197, %11200 : tensor<1xui32> loc(#loc1055) | |
| %11202 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1053) | |
| %11203 = "mhlo.broadcast_in_dim"(%11202) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11204 = mhlo.shift_right_logical %11197, %11203 : tensor<1xui32> loc(#loc1043) | |
| %11205 = mhlo.or %11201, %11204 : tensor<1xui32> loc(#loc1056) | |
| %11206 = mhlo.xor %11198, %11205 : tensor<1xui32> loc(#loc1052) | |
| %11207 = mhlo.add %11198, %11206 : tensor<1xui32> loc(#loc1054) | |
| %11208 = mhlo.constant dense<24> : tensor<ui32> loc(#loc1053) | |
| %11209 = "mhlo.broadcast_in_dim"(%11208) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11210 = mhlo.shift_left %11206, %11209 : tensor<1xui32> loc(#loc1055) | |
| %11211 = mhlo.constant dense<8> : tensor<ui32> loc(#loc1053) | |
| %11212 = "mhlo.broadcast_in_dim"(%11211) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11213 = mhlo.shift_right_logical %11206, %11212 : tensor<1xui32> loc(#loc1043) | |
| %11214 = mhlo.or %11210, %11213 : tensor<1xui32> loc(#loc1056) | |
| %11215 = mhlo.xor %11207, %11214 : tensor<1xui32> loc(#loc1052) | |
| %11216 = "mhlo.broadcast_in_dim"(%11132) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11217 = mhlo.add %11207, %11216 : tensor<1xui32> loc(#loc1054) | |
| %11218 = "mhlo.broadcast_in_dim"(%11125) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11219 = mhlo.add %11215, %11218 : tensor<1xui32> loc(#loc1054) | |
| %11220 = mhlo.constant dense<2> : tensor<ui32> loc(#loc1053) | |
| %11221 = "mhlo.broadcast_in_dim"(%11220) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11222 = mhlo.add %11219, %11221 : tensor<1xui32> loc(#loc1054) | |
| %11223 = mhlo.add %11217, %11222 : tensor<1xui32> loc(#loc1054) | |
| %11224 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1053) | |
| %11225 = "mhlo.broadcast_in_dim"(%11224) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11226 = mhlo.shift_left %11222, %11225 : tensor<1xui32> loc(#loc1055) | |
| %11227 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1053) | |
| %11228 = "mhlo.broadcast_in_dim"(%11227) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11229 = mhlo.shift_right_logical %11222, %11228 : tensor<1xui32> loc(#loc1043) | |
| %11230 = mhlo.or %11226, %11229 : tensor<1xui32> loc(#loc1056) | |
| %11231 = mhlo.xor %11223, %11230 : tensor<1xui32> loc(#loc1052) | |
| %11232 = mhlo.add %11223, %11231 : tensor<1xui32> loc(#loc1054) | |
| %11233 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1053) | |
| %11234 = "mhlo.broadcast_in_dim"(%11233) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11235 = mhlo.shift_left %11231, %11234 : tensor<1xui32> loc(#loc1055) | |
| %11236 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1053) | |
| %11237 = "mhlo.broadcast_in_dim"(%11236) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11238 = mhlo.shift_right_logical %11231, %11237 : tensor<1xui32> loc(#loc1043) | |
| %11239 = mhlo.or %11235, %11238 : tensor<1xui32> loc(#loc1056) | |
| %11240 = mhlo.xor %11232, %11239 : tensor<1xui32> loc(#loc1052) | |
| %11241 = mhlo.add %11232, %11240 : tensor<1xui32> loc(#loc1054) | |
| %11242 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1053) | |
| %11243 = "mhlo.broadcast_in_dim"(%11242) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11244 = mhlo.shift_left %11240, %11243 : tensor<1xui32> loc(#loc1055) | |
| %11245 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1053) | |
| %11246 = "mhlo.broadcast_in_dim"(%11245) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11247 = mhlo.shift_right_logical %11240, %11246 : tensor<1xui32> loc(#loc1043) | |
| %11248 = mhlo.or %11244, %11247 : tensor<1xui32> loc(#loc1056) | |
| %11249 = mhlo.xor %11241, %11248 : tensor<1xui32> loc(#loc1052) | |
| %11250 = mhlo.add %11241, %11249 : tensor<1xui32> loc(#loc1054) | |
| %11251 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1053) | |
| %11252 = "mhlo.broadcast_in_dim"(%11251) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11253 = mhlo.shift_left %11249, %11252 : tensor<1xui32> loc(#loc1055) | |
| %11254 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1053) | |
| %11255 = "mhlo.broadcast_in_dim"(%11254) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11256 = mhlo.shift_right_logical %11249, %11255 : tensor<1xui32> loc(#loc1043) | |
| %11257 = mhlo.or %11253, %11256 : tensor<1xui32> loc(#loc1056) | |
| %11258 = mhlo.xor %11250, %11257 : tensor<1xui32> loc(#loc1052) | |
| %11259 = "mhlo.broadcast_in_dim"(%11125) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11260 = mhlo.add %11250, %11259 : tensor<1xui32> loc(#loc1054) | |
| %11261 = "mhlo.broadcast_in_dim"(%11127) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11262 = mhlo.add %11258, %11261 : tensor<1xui32> loc(#loc1054) | |
| %11263 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1053) | |
| %11264 = "mhlo.broadcast_in_dim"(%11263) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11265 = mhlo.add %11262, %11264 : tensor<1xui32> loc(#loc1054) | |
| %11266 = mhlo.add %11260, %11265 : tensor<1xui32> loc(#loc1054) | |
| %11267 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1053) | |
| %11268 = "mhlo.broadcast_in_dim"(%11267) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11269 = mhlo.shift_left %11265, %11268 : tensor<1xui32> loc(#loc1055) | |
| %11270 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1053) | |
| %11271 = "mhlo.broadcast_in_dim"(%11270) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11272 = mhlo.shift_right_logical %11265, %11271 : tensor<1xui32> loc(#loc1043) | |
| %11273 = mhlo.or %11269, %11272 : tensor<1xui32> loc(#loc1056) | |
| %11274 = mhlo.xor %11266, %11273 : tensor<1xui32> loc(#loc1052) | |
| %11275 = mhlo.add %11266, %11274 : tensor<1xui32> loc(#loc1054) | |
| %11276 = mhlo.constant dense<29> : tensor<ui32> loc(#loc1053) | |
| %11277 = "mhlo.broadcast_in_dim"(%11276) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11278 = mhlo.shift_left %11274, %11277 : tensor<1xui32> loc(#loc1055) | |
| %11279 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1053) | |
| %11280 = "mhlo.broadcast_in_dim"(%11279) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11281 = mhlo.shift_right_logical %11274, %11280 : tensor<1xui32> loc(#loc1043) | |
| %11282 = mhlo.or %11278, %11281 : tensor<1xui32> loc(#loc1056) | |
| %11283 = mhlo.xor %11275, %11282 : tensor<1xui32> loc(#loc1052) | |
| %11284 = mhlo.add %11275, %11283 : tensor<1xui32> loc(#loc1054) | |
| %11285 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1053) | |
| %11286 = "mhlo.broadcast_in_dim"(%11285) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11287 = mhlo.shift_left %11283, %11286 : tensor<1xui32> loc(#loc1055) | |
| %11288 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1053) | |
| %11289 = "mhlo.broadcast_in_dim"(%11288) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11290 = mhlo.shift_right_logical %11283, %11289 : tensor<1xui32> loc(#loc1043) | |
| %11291 = mhlo.or %11287, %11290 : tensor<1xui32> loc(#loc1056) | |
| %11292 = mhlo.xor %11284, %11291 : tensor<1xui32> loc(#loc1052) | |
| %11293 = mhlo.add %11284, %11292 : tensor<1xui32> loc(#loc1054) | |
| %11294 = mhlo.constant dense<24> : tensor<ui32> loc(#loc1053) | |
| %11295 = "mhlo.broadcast_in_dim"(%11294) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11296 = mhlo.shift_left %11292, %11295 : tensor<1xui32> loc(#loc1055) | |
| %11297 = mhlo.constant dense<8> : tensor<ui32> loc(#loc1053) | |
| %11298 = "mhlo.broadcast_in_dim"(%11297) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11299 = mhlo.shift_right_logical %11292, %11298 : tensor<1xui32> loc(#loc1043) | |
| %11300 = mhlo.or %11296, %11299 : tensor<1xui32> loc(#loc1056) | |
| %11301 = mhlo.xor %11293, %11300 : tensor<1xui32> loc(#loc1052) | |
| %11302 = "mhlo.broadcast_in_dim"(%11127) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11303 = mhlo.add %11293, %11302 : tensor<1xui32> loc(#loc1054) | |
| %11304 = "mhlo.broadcast_in_dim"(%11132) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11305 = mhlo.add %11301, %11304 : tensor<1xui32> loc(#loc1054) | |
| %11306 = mhlo.constant dense<4> : tensor<ui32> loc(#loc1053) | |
| %11307 = "mhlo.broadcast_in_dim"(%11306) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11308 = mhlo.add %11305, %11307 : tensor<1xui32> loc(#loc1054) | |
| %11309 = mhlo.add %11303, %11308 : tensor<1xui32> loc(#loc1054) | |
| %11310 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1053) | |
| %11311 = "mhlo.broadcast_in_dim"(%11310) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11312 = mhlo.shift_left %11308, %11311 : tensor<1xui32> loc(#loc1055) | |
| %11313 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1053) | |
| %11314 = "mhlo.broadcast_in_dim"(%11313) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11315 = mhlo.shift_right_logical %11308, %11314 : tensor<1xui32> loc(#loc1043) | |
| %11316 = mhlo.or %11312, %11315 : tensor<1xui32> loc(#loc1056) | |
| %11317 = mhlo.xor %11309, %11316 : tensor<1xui32> loc(#loc1052) | |
| %11318 = mhlo.add %11309, %11317 : tensor<1xui32> loc(#loc1054) | |
| %11319 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1053) | |
| %11320 = "mhlo.broadcast_in_dim"(%11319) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11321 = mhlo.shift_left %11317, %11320 : tensor<1xui32> loc(#loc1055) | |
| %11322 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1053) | |
| %11323 = "mhlo.broadcast_in_dim"(%11322) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11324 = mhlo.shift_right_logical %11317, %11323 : tensor<1xui32> loc(#loc1043) | |
| %11325 = mhlo.or %11321, %11324 : tensor<1xui32> loc(#loc1056) | |
| %11326 = mhlo.xor %11318, %11325 : tensor<1xui32> loc(#loc1052) | |
| %11327 = mhlo.add %11318, %11326 : tensor<1xui32> loc(#loc1054) | |
| %11328 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1053) | |
| %11329 = "mhlo.broadcast_in_dim"(%11328) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11330 = mhlo.shift_left %11326, %11329 : tensor<1xui32> loc(#loc1055) | |
| %11331 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1053) | |
| %11332 = "mhlo.broadcast_in_dim"(%11331) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11333 = mhlo.shift_right_logical %11326, %11332 : tensor<1xui32> loc(#loc1043) | |
| %11334 = mhlo.or %11330, %11333 : tensor<1xui32> loc(#loc1056) | |
| %11335 = mhlo.xor %11327, %11334 : tensor<1xui32> loc(#loc1052) | |
| %11336 = mhlo.add %11327, %11335 : tensor<1xui32> loc(#loc1054) | |
| %11337 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1053) | |
| %11338 = "mhlo.broadcast_in_dim"(%11337) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1055) | |
| %11339 = mhlo.shift_left %11335, %11338 : tensor<1xui32> loc(#loc1055) | |
| %11340 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1053) | |
| %11341 = "mhlo.broadcast_in_dim"(%11340) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1043) | |
| %11342 = mhlo.shift_right_logical %11335, %11341 : tensor<1xui32> loc(#loc1043) | |
| %11343 = mhlo.or %11339, %11342 : tensor<1xui32> loc(#loc1056) | |
| %11344 = mhlo.xor %11336, %11343 : tensor<1xui32> loc(#loc1052) | |
| %11345 = "mhlo.broadcast_in_dim"(%11132) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11346 = mhlo.add %11336, %11345 : tensor<1xui32> loc(#loc1054) | |
| %11347 = "mhlo.broadcast_in_dim"(%11125) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11348 = mhlo.add %11344, %11347 : tensor<1xui32> loc(#loc1054) | |
| %11349 = mhlo.constant dense<5> : tensor<ui32> loc(#loc1053) | |
| %11350 = "mhlo.broadcast_in_dim"(%11349) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<1xui32> loc(#loc1054) | |
| %11351 = mhlo.add %11348, %11350 : tensor<1xui32> loc(#loc1054) | |
| %11352 = "mhlo.concatenate"(%11346, %11351) {dimension = 0 : i64} : (tensor<1xui32>, tensor<1xui32>) -> tensor<2xui32> loc(#loc1046) | |
| %11353 = mhlo.constant dense<-0.99999994> : tensor<f32> loc(#loc531) | |
| %11354 = "mhlo.broadcast_in_dim"(%11353) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc1057) | |
| %11355 = mhlo.constant dense<1.000000e+00> : tensor<f32> loc(#loc531) | |
| %11356 = "mhlo.broadcast_in_dim"(%11355) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1xf32> loc(#loc1057) | |
| %11357 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<8388608xui32> loc(#loc1058) | |
| %11358 = "mhlo.slice"(%11352) {limit_indices = dense<1> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1059) | |
| %11359 = "mhlo.reshape"(%11358) : (tensor<1xui32>) -> tensor<ui32> loc(#loc1060) | |
| %11360 = "mhlo.slice"(%11352) {limit_indices = dense<2> : tensor<1xi64>, start_indices = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<2xui32>) -> tensor<1xui32> loc(#loc1061) | |
| %11361 = "mhlo.reshape"(%11360) : (tensor<1xui32>) -> tensor<ui32> loc(#loc1060) | |
| %11362 = "mhlo.slice"(%11357) {limit_indices = dense<4194304> : tensor<1xi64>, start_indices = dense<0> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc1062) | |
| %11363 = "mhlo.slice"(%11357) {limit_indices = dense<8388608> : tensor<1xi64>, start_indices = dense<4194304> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<8388608xui32>) -> tensor<4194304xui32> loc(#loc1063) | |
| %11364 = mhlo.xor %11359, %11361 : tensor<ui32> loc(#loc1064) | |
| %11365 = mhlo.constant dense<466688986> : tensor<ui32> loc(#loc1065) | |
| %11366 = mhlo.xor %11364, %11365 : tensor<ui32> loc(#loc1064) | |
| %11367 = "mhlo.broadcast_in_dim"(%11359) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11368 = mhlo.add %11362, %11367 : tensor<4194304xui32> loc(#loc1066) | |
| %11369 = "mhlo.broadcast_in_dim"(%11361) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11370 = mhlo.add %11363, %11369 : tensor<4194304xui32> loc(#loc1066) | |
| %11371 = mhlo.add %11368, %11370 : tensor<4194304xui32> loc(#loc1066) | |
| %11372 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1065) | |
| %11373 = "mhlo.broadcast_in_dim"(%11372) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11374 = mhlo.shift_left %11370, %11373 : tensor<4194304xui32> loc(#loc1067) | |
| %11375 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1065) | |
| %11376 = "mhlo.broadcast_in_dim"(%11375) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11377 = mhlo.shift_right_logical %11370, %11376 : tensor<4194304xui32> loc(#loc1068) | |
| %11378 = mhlo.or %11374, %11377 : tensor<4194304xui32> loc(#loc1069) | |
| %11379 = mhlo.xor %11371, %11378 : tensor<4194304xui32> loc(#loc1064) | |
| %11380 = mhlo.add %11371, %11379 : tensor<4194304xui32> loc(#loc1066) | |
| %11381 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1065) | |
| %11382 = "mhlo.broadcast_in_dim"(%11381) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11383 = mhlo.shift_left %11379, %11382 : tensor<4194304xui32> loc(#loc1067) | |
| %11384 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1065) | |
| %11385 = "mhlo.broadcast_in_dim"(%11384) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11386 = mhlo.shift_right_logical %11379, %11385 : tensor<4194304xui32> loc(#loc1068) | |
| %11387 = mhlo.or %11383, %11386 : tensor<4194304xui32> loc(#loc1069) | |
| %11388 = mhlo.xor %11380, %11387 : tensor<4194304xui32> loc(#loc1064) | |
| %11389 = mhlo.add %11380, %11388 : tensor<4194304xui32> loc(#loc1066) | |
| %11390 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1065) | |
| %11391 = "mhlo.broadcast_in_dim"(%11390) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11392 = mhlo.shift_left %11388, %11391 : tensor<4194304xui32> loc(#loc1067) | |
| %11393 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1065) | |
| %11394 = "mhlo.broadcast_in_dim"(%11393) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11395 = mhlo.shift_right_logical %11388, %11394 : tensor<4194304xui32> loc(#loc1068) | |
| %11396 = mhlo.or %11392, %11395 : tensor<4194304xui32> loc(#loc1069) | |
| %11397 = mhlo.xor %11389, %11396 : tensor<4194304xui32> loc(#loc1064) | |
| %11398 = mhlo.add %11389, %11397 : tensor<4194304xui32> loc(#loc1066) | |
| %11399 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1065) | |
| %11400 = "mhlo.broadcast_in_dim"(%11399) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11401 = mhlo.shift_left %11397, %11400 : tensor<4194304xui32> loc(#loc1067) | |
| %11402 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1065) | |
| %11403 = "mhlo.broadcast_in_dim"(%11402) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11404 = mhlo.shift_right_logical %11397, %11403 : tensor<4194304xui32> loc(#loc1068) | |
| %11405 = mhlo.or %11401, %11404 : tensor<4194304xui32> loc(#loc1069) | |
| %11406 = mhlo.xor %11398, %11405 : tensor<4194304xui32> loc(#loc1064) | |
| %11407 = "mhlo.broadcast_in_dim"(%11361) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11408 = mhlo.add %11398, %11407 : tensor<4194304xui32> loc(#loc1066) | |
| %11409 = "mhlo.broadcast_in_dim"(%11366) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11410 = mhlo.add %11406, %11409 : tensor<4194304xui32> loc(#loc1066) | |
| %11411 = mhlo.constant dense<1> : tensor<ui32> loc(#loc1065) | |
| %11412 = "mhlo.broadcast_in_dim"(%11411) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11413 = mhlo.add %11410, %11412 : tensor<4194304xui32> loc(#loc1066) | |
| %11414 = mhlo.add %11408, %11413 : tensor<4194304xui32> loc(#loc1066) | |
| %11415 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1065) | |
| %11416 = "mhlo.broadcast_in_dim"(%11415) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11417 = mhlo.shift_left %11413, %11416 : tensor<4194304xui32> loc(#loc1067) | |
| %11418 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1065) | |
| %11419 = "mhlo.broadcast_in_dim"(%11418) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11420 = mhlo.shift_right_logical %11413, %11419 : tensor<4194304xui32> loc(#loc1068) | |
| %11421 = mhlo.or %11417, %11420 : tensor<4194304xui32> loc(#loc1069) | |
| %11422 = mhlo.xor %11414, %11421 : tensor<4194304xui32> loc(#loc1064) | |
| %11423 = mhlo.add %11414, %11422 : tensor<4194304xui32> loc(#loc1066) | |
| %11424 = mhlo.constant dense<29> : tensor<ui32> loc(#loc1065) | |
| %11425 = "mhlo.broadcast_in_dim"(%11424) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11426 = mhlo.shift_left %11422, %11425 : tensor<4194304xui32> loc(#loc1067) | |
| %11427 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1065) | |
| %11428 = "mhlo.broadcast_in_dim"(%11427) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11429 = mhlo.shift_right_logical %11422, %11428 : tensor<4194304xui32> loc(#loc1068) | |
| %11430 = mhlo.or %11426, %11429 : tensor<4194304xui32> loc(#loc1069) | |
| %11431 = mhlo.xor %11423, %11430 : tensor<4194304xui32> loc(#loc1064) | |
| %11432 = mhlo.add %11423, %11431 : tensor<4194304xui32> loc(#loc1066) | |
| %11433 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1065) | |
| %11434 = "mhlo.broadcast_in_dim"(%11433) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11435 = mhlo.shift_left %11431, %11434 : tensor<4194304xui32> loc(#loc1067) | |
| %11436 = mhlo.constant dense<16> : tensor<ui32> loc(#loc1065) | |
| %11437 = "mhlo.broadcast_in_dim"(%11436) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11438 = mhlo.shift_right_logical %11431, %11437 : tensor<4194304xui32> loc(#loc1068) | |
| %11439 = mhlo.or %11435, %11438 : tensor<4194304xui32> loc(#loc1069) | |
| %11440 = mhlo.xor %11432, %11439 : tensor<4194304xui32> loc(#loc1064) | |
| %11441 = mhlo.add %11432, %11440 : tensor<4194304xui32> loc(#loc1066) | |
| %11442 = mhlo.constant dense<24> : tensor<ui32> loc(#loc1065) | |
| %11443 = "mhlo.broadcast_in_dim"(%11442) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11444 = mhlo.shift_left %11440, %11443 : tensor<4194304xui32> loc(#loc1067) | |
| %11445 = mhlo.constant dense<8> : tensor<ui32> loc(#loc1065) | |
| %11446 = "mhlo.broadcast_in_dim"(%11445) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11447 = mhlo.shift_right_logical %11440, %11446 : tensor<4194304xui32> loc(#loc1068) | |
| %11448 = mhlo.or %11444, %11447 : tensor<4194304xui32> loc(#loc1069) | |
| %11449 = mhlo.xor %11441, %11448 : tensor<4194304xui32> loc(#loc1064) | |
| %11450 = "mhlo.broadcast_in_dim"(%11366) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11451 = mhlo.add %11441, %11450 : tensor<4194304xui32> loc(#loc1066) | |
| %11452 = "mhlo.broadcast_in_dim"(%11359) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11453 = mhlo.add %11449, %11452 : tensor<4194304xui32> loc(#loc1066) | |
| %11454 = mhlo.constant dense<2> : tensor<ui32> loc(#loc1065) | |
| %11455 = "mhlo.broadcast_in_dim"(%11454) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11456 = mhlo.add %11453, %11455 : tensor<4194304xui32> loc(#loc1066) | |
| %11457 = mhlo.add %11451, %11456 : tensor<4194304xui32> loc(#loc1066) | |
| %11458 = mhlo.constant dense<13> : tensor<ui32> loc(#loc1065) | |
| %11459 = "mhlo.broadcast_in_dim"(%11458) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11460 = mhlo.shift_left %11456, %11459 : tensor<4194304xui32> loc(#loc1067) | |
| %11461 = mhlo.constant dense<19> : tensor<ui32> loc(#loc1065) | |
| %11462 = "mhlo.broadcast_in_dim"(%11461) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11463 = mhlo.shift_right_logical %11456, %11462 : tensor<4194304xui32> loc(#loc1068) | |
| %11464 = mhlo.or %11460, %11463 : tensor<4194304xui32> loc(#loc1069) | |
| %11465 = mhlo.xor %11457, %11464 : tensor<4194304xui32> loc(#loc1064) | |
| %11466 = mhlo.add %11457, %11465 : tensor<4194304xui32> loc(#loc1066) | |
| %11467 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1065) | |
| %11468 = "mhlo.broadcast_in_dim"(%11467) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11469 = mhlo.shift_left %11465, %11468 : tensor<4194304xui32> loc(#loc1067) | |
| %11470 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1065) | |
| %11471 = "mhlo.broadcast_in_dim"(%11470) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11472 = mhlo.shift_right_logical %11465, %11471 : tensor<4194304xui32> loc(#loc1068) | |
| %11473 = mhlo.or %11469, %11472 : tensor<4194304xui32> loc(#loc1069) | |
| %11474 = mhlo.xor %11466, %11473 : tensor<4194304xui32> loc(#loc1064) | |
| %11475 = mhlo.add %11466, %11474 : tensor<4194304xui32> loc(#loc1066) | |
| %11476 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1065) | |
| %11477 = "mhlo.broadcast_in_dim"(%11476) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11478 = mhlo.shift_left %11474, %11477 : tensor<4194304xui32> loc(#loc1067) | |
| %11479 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1065) | |
| %11480 = "mhlo.broadcast_in_dim"(%11479) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11481 = mhlo.shift_right_logical %11474, %11480 : tensor<4194304xui32> loc(#loc1068) | |
| %11482 = mhlo.or %11478, %11481 : tensor<4194304xui32> loc(#loc1069) | |
| %11483 = mhlo.xor %11475, %11482 : tensor<4194304xui32> loc(#loc1064) | |
| %11484 = mhlo.add %11475, %11483 : tensor<4194304xui32> loc(#loc1066) | |
| %11485 = mhlo.constant dense<6> : tensor<ui32> loc(#loc1065) | |
| %11486 = "mhlo.broadcast_in_dim"(%11485) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11487 = mhlo.shift_left %11483, %11486 : tensor<4194304xui32> loc(#loc1067) | |
| %11488 = mhlo.constant dense<26> : tensor<ui32> loc(#loc1065) | |
| %11489 = "mhlo.broadcast_in_dim"(%11488) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11490 = mhlo.shift_right_logical %11483, %11489 : tensor<4194304xui32> loc(#loc1068) | |
| %11491 = mhlo.or %11487, %11490 : tensor<4194304xui32> loc(#loc1069) | |
| %11492 = mhlo.xor %11484, %11491 : tensor<4194304xui32> loc(#loc1064) | |
| %11493 = "mhlo.broadcast_in_dim"(%11359) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11494 = mhlo.add %11484, %11493 : tensor<4194304xui32> loc(#loc1066) | |
| %11495 = "mhlo.broadcast_in_dim"(%11361) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11496 = mhlo.add %11492, %11495 : tensor<4194304xui32> loc(#loc1066) | |
| %11497 = mhlo.constant dense<3> : tensor<ui32> loc(#loc1065) | |
| %11498 = "mhlo.broadcast_in_dim"(%11497) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1066) | |
| %11499 = mhlo.add %11496, %11498 : tensor<4194304xui32> loc(#loc1066) | |
| %11500 = mhlo.add %11494, %11499 : tensor<4194304xui32> loc(#loc1066) | |
| %11501 = mhlo.constant dense<17> : tensor<ui32> loc(#loc1065) | |
| %11502 = "mhlo.broadcast_in_dim"(%11501) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11503 = mhlo.shift_left %11499, %11502 : tensor<4194304xui32> loc(#loc1067) | |
| %11504 = mhlo.constant dense<15> : tensor<ui32> loc(#loc1065) | |
| %11505 = "mhlo.broadcast_in_dim"(%11504) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1068) | |
| %11506 = mhlo.shift_right_logical %11499, %11505 : tensor<4194304xui32> loc(#loc1068) | |
| %11507 = mhlo.or %11503, %11506 : tensor<4194304xui32> loc(#loc1069) | |
| %11508 = mhlo.xor %11500, %11507 : tensor<4194304xui32> loc(#loc1064) | |
| %11509 = mhlo.add %11500, %11508 : tensor<4194304xui32> loc(#loc1066) | |
| %11510 = mhlo.constant dense<29> : tensor<ui32> loc(#loc1065) | |
| %11511 = "mhlo.broadcast_in_dim"(%11510) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<ui32>) -> tensor<4194304xui32> loc(#loc1067) | |
| %11512 = mhlo.shift_left %11508, %11511 : tensor<41943 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment