Created
July 10, 2022 13:43
-
-
Save Birch-san/77326b08a624fb9aca0e21f2234f508a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torch.nn import Embedding | |
from typing import Tuple, TypeVar, Iterable | |
from typing_extensions import TypeAlias | |
from enum import Enum, auto | |
from math import ceil | |
from torch import BoolTensor, LongTensor, sparse_coo_tensor, ones | |
from itertools import chain | |
class Label(Enum): | |
touhou = 0 | |
hololive = auto() | |
marisa = auto() | |
reimu = auto() | |
youmu = auto() | |
sakuya = auto() | |
flandre = auto() | |
reiuji = auto() | |
reisen = auto() | |
tewi = auto() | |
patchouli = auto() | |
aya = auto() | |
pekora = auto() | |
kronii = auto() | |
gura = auto() | |
suisei = auto() | |
ame = auto() | |
noel = auto() | |
subaru = auto() | |
kiara = auto() | |
black_hair = auto() | |
silver_hair = auto() | |
blue_hair = auto() | |
blonde_hair = auto() | |
purple_hair = auto() | |
orange_hair = auto() | |
bunny_ears = auto() | |
bird_person = auto() | |
vocab_size=len(Label) | |
# t5-small compressed 32100 vocab tokens into 512 dims | |
# there's plenty of range per bfloat16 to represent a variety of tokens | |
embedding_dim=ceil(512/32100 * vocab_size) | |
model = Embedding(num_embeddings=vocab_size, | |
embedding_dim=embedding_dim, | |
sparse=True) | |
T = TypeVar('T') | |
_Caption: TypeAlias = Tuple[Label, ...] | |
_Captions: TypeAlias = Tuple[_Caption, ...] | |
def make_row_indices(enumerated: Tuple[int, _Caption]) -> Tuple[int, ...]: | |
(ix, labels) = enumerated | |
return (ix,) * len(labels) | |
def flatten(captions: Iterable[Tuple[T, ...]]) -> Iterable[T]: | |
return chain.from_iterable(captions) | |
def get_value(label: Label) -> int: | |
return label.value | |
def captions_to_tensor(captions: _Captions) -> BoolTensor: | |
row_indices: Tuple[int, ...] = tuple(flatten(map(make_row_indices, enumerate(captions)))) | |
labels: Tuple[int, ...] = tuple(map(get_value, flatten(captions))) | |
indices_nominal: Tuple[Tuple[int, ...], Tuple[int, ...]] = (row_indices, labels) | |
return sparse_coo_tensor( | |
indices=LongTensor(indices_nominal), | |
values=ones(len(row_indices), dtype=bool), | |
dtype=bool) | |
captions: _Captions = ( | |
(Label.touhou, Label.marisa, Label.blonde_hair), | |
(Label.touhou, Label.reimu, Label.black_hair), | |
(Label.touhou, Label.youmu, Label.silver_hair), | |
(Label.touhou, Label.sakuya, Label.silver_hair), | |
(Label.touhou, Label.flandre, Label.blonde_hair), | |
(Label.touhou, Label.reiuji, Label.black_hair, Label.bird_person), | |
(Label.touhou, Label.reisen, Label.purple_hair, Label.bunny_ears), | |
(Label.touhou, Label.tewi, Label.black_hair, Label.bunny_ears), | |
(Label.touhou, Label.patchouli, Label.purple_hair), | |
(Label.touhou, Label.aya, Label.black_hair, Label.black_hair), | |
(Label.hololive, Label.pekora, Label.blue_hair, Label.bunny_ears), | |
(Label.hololive, Label.kronii, Label.blue_hair), | |
(Label.hololive, Label.suisei, Label.blue_hair), | |
(Label.hololive, Label.gura, Label.silver_hair), | |
(Label.hololive, Label.noel, Label.silver_hair), | |
(Label.hololive, Label.ame, Label.blonde_hair), | |
(Label.hololive, Label.subaru, Label.black_hair, Label.bird_person), | |
(Label.hololive, Label.kiara, Label.black_hair, Label.bird_person), | |
) | |
batch_of_captions_tensor: BoolTensor = captions_to_tensor(captions[:2]) | |
# okay we have our Embedding, we have a batch of captions... now we need to train the Embedding |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment