Created
October 17, 2022 00:12
-
-
Save Birch-san/c9e0c9ebfae0bdc17d29c3a7d42b9aa4 to your computer and use it in GitHub Desktop.
plotting da histograms (partial snippet from Jupyter notebook)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
# … | |
latents: FloatTensor = self.inner_model(x, sigma, cond=cond, **kwargs) | |
unscaled: Tensor = latents / self.scale_factor | |
chs = [torch.histogram(c) for c in unscaled[0].flatten(1)] | |
h = torch.histogram(unscaled[0].ravel()) | |
plt.figure(figsize=(10,2)) | |
plt.title('Per-channel latent values after denoising sigma %.3f at CFG scale %d' % (sigma.item(), cfg_scale)) | |
for ch, col in zip(chs, ('red','green','blue','purple',)): | |
plt.hist(ch.bin_edges[:-1].cpu(), ch.bin_edges.cpu(), weights=ch.hist.cpu(), color = col, alpha = 0.4) | |
plt.xlabel('Latent value ÷ 0.18215') | |
plt.ylabel('Count') | |
plt.legend(['Ch0','Ch1','Ch2','Ch3']) | |
plt.show() | |
plt.figure(figsize=(10,2)) | |
plt.title('Global latent values after denoising sigma %.3f at CFG scale %d' % (sigma.item(), cfg_scale)) | |
plt.hist(h.bin_edges[:-1].cpu(), h.bin_edges.cpu(), weights=h.hist.cpu()) | |
plt.xlabel('Latent value ÷ 0.18215') | |
plt.ylabel('Count') | |
plt.legend(['All']) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
produces output such as: