Created
June 13, 2020 12:44
-
-
Save Bogatinov/87f70d7570c4cb0e65f4a5c644da3012 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.naive_bayes import CategoricalNB | |
from sklearn.preprocessing import OrdinalEncoder | |
import math | |
if __name__ == '__main__': | |
dataset = [ | |
['high', 'light', 'hard', 'dab'], | |
['high', 'light', 'hard', 'bor'], | |
['high', 'light', 'hard', 'dab'], | |
['high', 'light', 'soft', 'bor'], | |
['high', 'dark', 'hard', 'dab'], | |
['high', 'dark', 'soft', 'bor'], | |
['low', 'dark', 'soft', 'dab'], | |
['high', 'light', 'soft', 'bor'], | |
['low', 'dark', 'hard', 'bor'], | |
['low', 'dark', 'hard', 'dab'] | |
] | |
encoder = OrdinalEncoder() | |
encoder.fit([dataset[i][:-1] for i in range(0, len(dataset))]) | |
upperThreshold = math.ceil(0.67 * len(dataset)) | |
train_set = dataset[0:upperThreshold] | |
test_set = dataset[upperThreshold:] | |
X = encoder.transform([train_set[i][:-1] for i in range(0, len(train_set))]) | |
Y = [train_set[i][-1] for i in range(0, len(train_set))] | |
clf = CategoricalNB(alpha=2.0) | |
clf.fit(X, Y) | |
test_set_x = encoder.transform([test_set[i][:-1] for i in range(0, len(test_set))]) | |
accuracy = 0 | |
for i in range(0,len(test_set)): | |
predict = clf.predict([test_set_x[i]]) | |
if predict[0] == test_set[i][-1]: | |
accuracy += 1 | |
print(accuracy / len(test_set)) | |
entry = encoder.transform([['low', 'light', 'hard']]) | |
print(clf.predict(entry)) | |
print(clf.predict_proba(entry)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment