Skip to content

Instantly share code, notes, and snippets.

@BoiJr
Last active August 8, 2019 16:34
Show Gist options
  • Save BoiJr/39574461b98be0777865cad9099ba1dc to your computer and use it in GitHub Desktop.
Save BoiJr/39574461b98be0777865cad9099ba1dc to your computer and use it in GitHub Desktop.
def __init__(self,unit):
## Type Options ##
## "path" is blue, "success" is green, "failed" is red, "node" is yellow, "blue" is itteration, True is white, False does not create an image ##
## THIS DETERMINES IF A PATH HAS BEEN FOUND AND WHAT IT IS IF IT HAS FOUND A PATH ##
self.pathFound = ["none"]
## KEEPS PATH FINDER LOOKING AS LONG AS THERE IS AN OPEN PATH OPTION ##
self.pathFoundViable = True
self.unit = unit
## THIS IS ALL THE PATH OPTION FOR THE UNIT DISPLAYED AS LINES##
for i in range(len(self.unit.debugPaths)-1,-1,-1):
self.unit.debugPaths[i].basicImage.sprite.kill()
self.unit.debugPaths = []
## THIS IS THE STARTING POINT OF THE PATH FINDER ##
self.pathFindStart = copy.copy(unit.center)
## "nodes" these are places it will attempt to go to ##
self.nodes = [unit.goal]
self.paths = [ [[self.pathFindStart],0] ]
self.reached = [[self.pathFindStart,0,"path in table"]]
self.checked = [ ]
self.failedPaths = []
self.currentNode = 0
self.currentPath = 0
self.currentTime = 0
self.currentFrames = 0
self.enterFrame = "none"
self.tickPathFinder("blank")
def tickPathFinder(self,blank):
aTime = delayCalculator("none")
currentDelay = 0
allotedTime = 5
while self.pathFoundViable == True and currentDelay < allotedTime:
## THIS SWITCHES THE PATH OFF IF NONE OF THE AVAILABLE PATHS HAVE A PLACE TO GO TO ##
self.pathFoundViable = False
## THIS CHECKES ALL POTENTIAL PATHS ##
for i in range(0,len(self.paths) ):
if (currentDelay > allotedTime):
break
if (i >= self.currentPath):
runPath = True
if (self.pathFound != ["none"]):
if (self.pathFound[1] <= self.paths[i][1]):
runPath = False
if (runPath == True):
for j in range(0,len(self.nodes) ):
if (j >= self.currentNode):
self.currentNode = 0
self.currentLine = 0
## CURRENT PATH BEING CHECKED ##
index = len(self.paths[i][0])-1
## STARTING POINT OF THE PATH ##
start = list(self.paths[i][0][index])
## ENDING POINT OF THE PATH ##
end = self.nodes[j]
## if the start and end have not been checked together and the start isnt the end ##
if ([start,end] not in self.checked and start != end):
## Calculates the total distance between start and the end ##
distance = solveDistance(start,end)
distance = distance[2]
## adds the distance to the total path distance ##
pathDistance = self.paths[i][1]+distance
## sets state of path (new,improved,worsened) ##
pathInfo = "new"
## adds start and end to list of paths checked ##
self.checked.append([start,end])
## checks all paths already reached ##
for t in range(0,len(self.reached) ):
## if this point has been reached ##
if (end == self.reached[t][0]):
## if this path is shorter ##
if (pathDistance < self.reached[t][1]):
## Label this path state to be improved ##
pathInfo = "improved"
pathUpdate = self.reached[t]
## if this path is not shorter ##
else:
pathInfo = "worsened"
if (end != self.paths[i][0][index] and pathInfo == "new" or end != self.paths[i][0][index] and pathInfo == "improved"):
## this copies the end nodes seperating it completely from the node ##
realEnd = copy.deepcopy(end)
## this is the diferrence between the endx startx, endy starty #
parametrizationSlope = [end[0]-start[0],end[1]-start[1] ]
## this converts this to a difference relative to the distance of the line ##
parametrizationSlope[0] = parametrizationSlope[0]/distance
parametrizationSlope[1] = parametrizationSlope[1]/distance
## This adds distance equal to the units size as a cusion to the end point following along the parametrization slope line ##
realEnd[0] = realEnd[0]+parametrizationSlope[0]*self.unit.size*.6
realEnd[1] = realEnd[1]+parametrizationSlope[1]*self.unit.size*.6
## This signals that the path had at least one viable path off the previous path ##
self.pathFoundViable = True
## this sets the type of line in case it needs to be drawn ##
type = False
## creates a line object from start to end with the correct type ##
newLine = createLine(start,end,type)
## Creates a table to store all intersections that could happen ##
intersectionTable = checkLines(newLine,objectTable) ## SEND A LINE PLUS A TABLE OF POTENTIAL INTERSECTIONS AND IT WILL RETURN [THE INDEX SPOT IN TABLE,THE LINE,XVAL,YVAL] ##
## Creates a variable for if the path is going to fail ##
addedToFailed = False
## Loops through the intersection Table to find the closest intersection ##
for k in range(0,len(intersectionTable) ):
## If this path hasnt failed yet ##
if (addedToFailed == False):
## adds this path to the failed path list ##
self.failedPaths.append(list(intersectionTable[k]) )
## this solves for the distance between the start of the line and the intersection ##
addedToFailed = solveDistance([intersectionTable[k][2],intersectionTable[k][3]],start)
## sets added to failed to the distance between the start of the line and the intersection ##
addedToFailed = addedToFailed[2]
## If this path has failed ##
elif (addedToFailed != False):
## this solves for the distance between the start of the line and the intersection ##
newAddedToFailed = solveDistance([intersectionTable[k][2],intersectionTable[k][3]],start)
## sets added to failed to the distance between the start of the line and the intersection ##
newAddedToFailed = newAddedToFailed[2]
## if this intersection is closer ##
if (newAddedToFailed < addedToFailed):
## finds index of previous path ##
index = len(self.failedPaths)-1
## deletes previous path ##
del(self.failedPaths[index])
## adds new path ##
self.failedPaths.append(list(intersectionTable[k]) )
## Option to turn itterations on or off ##
itterations = "on"
## checks if itterations are on (they are the lines that check the edge of the unit ##
if (itterations == "on"):
type = False
if (Rules.pathFindingIterationLines == True):
type = "itteration"
## finds the inverse slope ##
inverseX = newLine.parametrizationSlope[1]*-1
inverseY = newLine.parametrizationSlope[0]
## Adjusts to the unit size to the inverse slope to give proper size itteration line ##
netX = inverseX*self.unit.size/2
netY = inverseY*self.unit.size/2
## Creates Line Points "above" the original for start and end ##
inverseStart = [start[0]+netX,start[1]+netY]
inverseEnd = [realEnd[0]+netX,realEnd[1]+netY]
## Creates Line for Itteration Line above ##
parallelLine = createLine(inverseStart,inverseEnd,type)
## Checks for intersections ##
intersectionAddTable = checkLines(parallelLine,objectTable)
## Checks if this needs to be added to debugPath
if (Rules.pathFindingIterationLines == True):
## Adds to debugPath ##
self.unit.debugPaths.append(parallelLine)
## adds all intersections to the intersection table ##
for c in range(0,len(intersectionAddTable) ):
intersectionTable.append(intersectionAddTable[c])
self.failedPaths.append(list(intersectionAddTable[c]) )
## Repeats the above code except with it being "below" the original line ##
secondInverseStart = [start[0]-netX,start[1]-netY]
secondInverseEnd = [realEnd[0]-netX,realEnd[1]-netY]
parallelLine = createLine(secondInverseStart,secondInverseEnd,type)
intersectionAddTable = checkLines(parallelLine,objectTable)
if (Rules.pathFindingIterationLines == True):
self.unit.debugPaths.append(parallelLine)
for c in range(0,len(intersectionAddTable) ):
intersectionTable.append(intersectionAddTable[c])
self.failedPaths.append(list(intersectionAddTable[c]) )
## Creates Line to close the box around original line and then checks similar to above ##
endCapLineStart = [inverseEnd[0],inverseEnd[1]]
endCapLineEnd = [secondInverseEnd[0],secondInverseEnd[1]]
endCapLine = createLine(endCapLineStart,endCapLineEnd,type)
intersectionAddTable = checkLines(endCapLine,objectTable)
if (Rules.pathFindingIterationLines == True):
self.unit.debugPaths.append(endCapLine)
for c in range(0,len(intersectionAddTable) ):
intersectionTable.append(intersectionAddTable[c])
self.failedPaths.append(list(intersectionAddTable[c]) )
## If there was no intersections this is a real path ##
if (len(intersectionTable) == 0):
## Considered a path ##
type = "path"
else:
## Considered a failed path ##
type = "failed"
if (Rules.pathFindingLines == False):
type = False
## Creates Line with proper color Coding (This happened above with wrong color line?) ##
newLine = createLine(start,end,type)
## Checks if this needs to be added to debugPath
if (Rules.pathFindingLines == True):
## Adds to debug path ##
self.unit.debugPaths.append(newLine)
## Runs through all intersections and nodes ##
for k in range(0,len(intersectionTable) ):
for l in range(0,len(intersectionTable[k][0].nodes) ):
## Checks angle and finds line along the average slope ##
angle = (math.pi*intersectionTable[k][0].nodes[l][1])/180
xShift = math.cos(angle)*self.unit.size
yShift = -math.sin(angle)*self.unit.size
## adds shift to node ##
checkX = intersectionTable[k][0].nodes[l][0].realX+xShift
checkY = intersectionTable[k][0].nodes[l][0].realY+yShift
## Puts Node in node table if it wasn't already ##
if ([checkX,checkY] not in self.nodes):
self.nodes.append( [checkX,checkY] )
## If this path is to the goal and there wasn't any intersections ##
if (len(intersectionTable) == 0 and end == self.unit.goal):
## If this is the only sucessful path so far ##
if (self.pathFound == ["none"] ):
## Copies current path chain ##
pointTableCopy = copy.copy(self.paths[i][0])
## adds new point ##
pointTableCopy.append(end)
## adds to successful path list ##
self.pathFound = [pointTableCopy,pathDistance]
else:
## if this isnt the only sucessfulpath so far checks if path distance is shorter ##
if (self.pathFound[1] > pathDistance):
pointTableCopy = copy.copy(self.paths[i][0])
pointTableCopy.append(end)
## Replaces current path ##
self.pathFound = [pointTableCopy,pathDistance]
## If this path had no intersections ##
elif(len(intersectionTable) == 0):
## creates list of points ##
pathPoints = list(self.paths[i][0])
## adds end point ##
pathPoints.append(end)
## adds new path to list of paths ##
self.paths.append([pathPoints,pathDistance])
## updates index ##
newPathIndex = len(self.paths)-1
## adds to list of reached points ##
self.reached.append([end,pathDistance,self.paths[newPathIndex] ])
## if this path is an improvement ##
if (pathInfo == "improved"):
## it removes the old path and updates with correct and new information ##
pathUpdate[1] = pathDistance
oldPath = pathUpdate[2]
self.paths.remove(oldPath)
currentDelay = delayCalculator([aTime])
if (currentDelay > allotedTime):
self.currentNode = j
self.currentPath = i
break
if (self.pathFound[0] != "none" and self.pathFoundViable == False):
for i in range(len(self.unit.debugPaths)-1,-1,-1 ):
for u in range(len(self.pathFound[0])-2,-1,-1):
if (self.unit.debugPaths[i].startPoint == self.pathFound[0][u] and self.unit.debugPaths[i].endPoint == self.pathFound[0][u+1] or self.pathFound[0][u] == self.unit.debugPaths[i].endPoint and self.pathFound[0][u+1] == self.unit.debugPaths[i].startPoint):
self.unit.debugPaths[i].basicImage.sprite.kill()
del self.unit.debugPaths[i]
for i in range(0,len(self.pathFound[0])-1 ):
newLine = createLine(self.pathFound[0][i],self.pathFound[0][i+1],"success")
if (Rules.pathFindingSuccessLines == True):
self.unit.debugPaths.append(newLine)
## THIS ATTEMPTS TO FIND THE NEAREST POINT IF NO PATH CAN BE FOUND ##
elif (self.pathFound[0] == "none" and self.pathFoundViable == False):
closest = solveDistance(self.unit.goal,[self.failedPaths[0][2],self.failedPaths[0][3]])
closest = closest[2]
closest = [closest,0]
for i in range(0,len(self.failedPaths) ):
closestCheck = solveDistance(self.unit.goal,[self.failedPaths[i][2],self.failedPaths[i][3]])
closestCheck = closestCheck[2]
if (closestCheck < closest[0]):
closest = [closestCheck,i]
index = closest[1]
self.failedPaths[index][2]
closestLine = self.failedPaths[closest[1]][1]
inverseX = self.failedPaths[closest[1]][1].parametrizationSlope[1]*-1
inverseY = self.failedPaths[closest[1]][1].parametrizationSlope[0]
netX = inverseX*closest[0]*2
netY = inverseY*closest[0]*2
closestStart = [self.unit.goal[0]-netX/2,self.unit.goal[1]-netY/2]
closestEnd = [self.unit.goal[0]+netX,self.unit.goal[1]+netY]
if (closestStart == closestEnd):
closestEnd = [closestEnd[0]+1,closestEnd[1]+1]
closestLineCreation = createLine(closestStart,closestEnd,"none")
closestIntersectionTable = checkLines(closestLineCreation,[self.failedPaths[closest[1]][0]])
closest = solveDistance(self.unit.goal,[closestIntersectionTable[0][2],closestIntersectionTable[0][3]] )
closest = [closest,0,]
for i in range(0,len(closestIntersectionTable) ):
distance = solveDistance(self.unit.goal,[closestIntersectionTable[i][2],closestIntersectionTable[i][3]] )
if (distance[2] < closest[0][0]):
closest = [distance,i,]
angle = math.atan2(-closest[0][1],closest[0][0])
xShift = math.cos(angle)*self.unit.size*1
yShift = -math.sin(angle)*self.unit.size*1
newGoalX = closestIntersectionTable[closest[1]][2]-xShift
newGoalY = closestIntersectionTable[closest[1]][3]-yShift
self.unit.goal = [newGoalX,newGoalY]
if (self.enterFrame != "none"):
enterFrameTable.remove(self.enterFrame)
self.enterFrame = "none"
self.nodes = [self.unit.goal]
self.paths = [ [[self.pathFindStart],0] ]
self.reached = [[self.pathFindStart,0,"path in table"]]
self.checked = [ ]
self.failedPaths = []
self.currentNode = 0
self.currentPath = 0
self.currentTime = 0
self.currentFrames = 0
self.enterFrame = "none"
self.tickPathFinder("blank")
self.tickPathFinder("blank")
if (self.pathFound != ["none"] and self.pathFoundViable == False):
self.unit.path = self.pathFound
if (self.enterFrame != "none"):
enterFrameTable.remove(self.enterFrame)
self.enterFrame = "none"
print(self.currentFrames)
if (currentDelay >= allotedTime and self.pathFoundViable == True):
self.currentTime += currentDelay
self.currentFrames += 1
#print(" ")
#print("node "+str(self.currentNode) )
#print("path "+str(self.currentPath) )
#print("time "+str(self.currentTime) )
#print("Frames Till Complete "+str(self.currentFrames) )
if (self.enterFrame == "none"):
self.enterFrame = EnterFrame(0,self.tickPathFinder,"blank","onComplete")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment