Created
December 25, 2019 06:19
-
-
Save BrambleXu/24f99d2ccf228b98c90581de4aa10a81 to your computer and use it in GitHub Desktop.
pareto chart python 3, thanks for https://tylermarrs.com/posts/pareto-plot-with-matplotlib/
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
%matplotlib inline | |
st = {2: 1478515, | |
3: 449113, | |
4: 646495, | |
5: 166796, | |
6: 21064, | |
7: 11003, | |
8: 131289, | |
9: 20193, | |
10: 24, | |
12: 4483, | |
13: 1621, | |
14: 2, | |
16: 3064, | |
17: 1454, | |
18: 6, | |
19: 1, | |
24: 1} | |
df = pd.DataFrame({'Alias Length': list(st.keys()), | |
'Alias Counts': list(st.values())}) | |
def pareto_plot(df, x=None, y=None, title=None, show_pct_y=False, pct_format='{0:.0%}'): | |
xlabel = x | |
ylabel = y | |
tmp = df.sort_values(x) | |
x = tmp[x].values | |
y = tmp[y].values | |
weights = y / y.sum() | |
cumsum = weights.cumsum() | |
fig, ax1 = plt.subplots() | |
ax1.bar(x, y) | |
ax1.set_xlabel(xlabel) | |
ax1.set_ylabel(ylabel) | |
ax2 = ax1.twinx() | |
ax2.plot(x, cumsum, '-ro', alpha=0.5) | |
ax2.set_ylabel('', color='r') | |
ax2.tick_params('y', colors='r') | |
vals = ax2.get_yticks() | |
ax2.set_yticklabels(['{:,.2%}'.format(x) for x in vals]) | |
# hide y-labels on right side | |
if not show_pct_y: | |
ax2.set_yticks([]) | |
formatted_weights = [pct_format.format(x) for x in cumsum] | |
for i, txt in enumerate(formatted_weights): | |
ax2.annotate(txt, (x[i], cumsum[i]), fontweight='heavy') | |
if title: | |
plt.title(title) | |
plt.show() | |
pareto_plot(df, x='Alias Length', y='Alias Counts', title='Alias Pareto Distribution') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment