Last active
September 21, 2019 10:13
-
-
Save BrambleXu/2640af09b1f43b93c2d951ba91ca3d5c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
# read data | |
data = np.loadtxt("linear_data.csv", delimiter=',', skiprows=1) | |
train_x = data[:, 0:2] | |
train_y = data[:, 2] | |
# initialize parameter | |
theta = np.random.randn(3) | |
# standardization | |
mu = train_x.mean(axis=0) | |
sigma = train_x.std(axis=0) | |
def standardizer(x): | |
return (x - mu) / sigma | |
std_x = standardizer(train_x) | |
# get matrix | |
def to_matrix(std_x): | |
return np.array([[1, x1, x2] for x1, x2 in std_x]) | |
mat_x = to_matrix(std_x) | |
# dot product | |
def f(x): | |
return np.dot(x, theta) | |
# sigmoid function | |
def f(x): | |
return 1 / (1 + np.exp(-np.dot(x, theta))) | |
# update times | |
epoch = 2000 | |
# learning rate | |
ETA = 1e-3 | |
# update parameter | |
for _ in range(epoch): | |
""" | |
f(mat_x) - train_y: (20,) | |
mat_x: (20, 3) | |
theta: (3,) | |
dot production: (20,) x (20, 3) -> (3,) | |
""" | |
theta = theta - ETA * np.dot(f(mat_x) - train_y, mat_x) | |
# plot line | |
x1 = np.linspace(-2, 2, 100) | |
x2 = - (theta[0] + x1 * theta[1]) / theta[2] | |
plt.plot(std_x[train_y == 1, 0], std_x[train_y == 1, 1], 'o') # train data of class 1 | |
plt.plot(std_x[train_y == 0, 0], std_x[train_y == 0, 1], 'x') # train data of class 0 | |
plt.plot(x1, x2, linestyle='dashed') # plot the line we learned | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment