Last active
November 1, 2019 22:08
-
-
Save BrambleXu/feb892476202ecc55d03f1f377869755 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math, gzip, pickle | |
import numpy as np | |
import random | |
import torch | |
from torch import tensor | |
from torch.nn import init | |
from fastai import datasets | |
torch.manual_seed(42) | |
##### prepocess ##### | |
MNIST_URL='http://deeplearning.net/data/mnist/mnist.pkl' | |
def get_data(): | |
path = datasets.download_data(MNIST_URL, ext='.gz') | |
with gzip.open(path, 'rb') as f: | |
((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding='latin-1') | |
return map(tensor, (x_train,y_train,x_valid,y_valid)) | |
def normalize(x, m, s): | |
return (x-m)/s # mean, std | |
# load data | |
x_train, y_train, x_valid, y_valid = get_data() | |
# print(x_train.mean(), x_train.std()) | |
# print(x_valid.mean(), x_valid.std()) | |
# normalize | |
train_mean, train_std = x_train.mean(), x_train.std() | |
x_train = normalize(x_train, train_mean, train_std) | |
# NB: Use training, not validation mean for validation set | |
x_valid = normalize(x_valid, train_mean, train_std) | |
# print(x_train.mean(), x_train.std()) | |
# print(x_valid.mean(), x_valid.std()) | |
##### random init: weight mean and std ##### | |
# random init | |
w1 = torch.randn(784, 50) | |
b1 = torch.randn(50) | |
def linear(x, w, b): | |
return x@w + b | |
t1 = linear(x_valid, w1, b1) | |
# print(t1.mean(), t1.std()) | |
##### comparison of kaiming init and random init ##### | |
# random init | |
w1 = torch.randn(784, 50) | |
b1 = torch.randn(50) | |
w2 = torch.randn(50, 10) | |
b2 = torch.randn(10) | |
w3 = torch.randn(10, 1) | |
b3 = torch.randn(1) | |
def linear(x, w, b): | |
return x@w + b | |
def relu(x): | |
return x.clamp_min(0.) | |
t1 = relu(linear(x_valid, w1, b1)) | |
t2 = relu(linear(t1, w2, b2)) | |
t3 = relu(linear(t2, w3, b3)) | |
# print(t1.mean(), t1.std()) | |
# print(t2.mean(), t2.std()) | |
# print(t3.mean(), t3.std()) | |
# kaiming init | |
w1 = torch.randn(784, 50) * math.sqrt(2/784) | |
b1 = torch.randn(50) | |
w2 = torch.randn(50, 10) * math.sqrt(2/50) | |
b2 = torch.randn(10) | |
w3 = torch.randn(10, 1) * math.sqrt(2/10) | |
b3 = torch.randn(1) | |
def linear(x, w, b): | |
return x@w + b | |
def relu(x): | |
return x.clamp_min(0.) | |
t1 = relu(linear(x_valid, w1, b1)) | |
t2 = relu(linear(t1, w2, b2)) | |
t3 = relu(linear(t2, w3, b3)) | |
# print(t1.mean(), t1.std()) | |
# print(t2.mean(), t2.std()) | |
# print(t3.mean(), t3.std()) | |
##### Understand fan_in and fan_out mode in Pytorch implementation ##### | |
# linear layer implementation | |
node_in, node_out = 784, 50 | |
layer = torch.nn.Linear(node_in, node_out) | |
init.kaiming_normal_(layer.weight, mode='fan_in') | |
# with torch.no_grad(): | |
# t = relu(layer(x_valid)) | |
t = relu(layer(x_valid)) | |
# print(t.mean(), t.std()) | |
# weight matrix implementation | |
def linear(x, w, b): | |
return x@w + b | |
node_in, node_out = 784, 50 | |
w1 = torch.randn(node_in, node_out) | |
init.kaiming_normal_(w1, mode='fan_out') | |
b1 = torch.randn(node_out) | |
t = relu(linear(x_valid, w1, b1)) | |
# print(t.mean(), t.std()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment