Skip to content

Instantly share code, notes, and snippets.

@Breta01
Last active January 9, 2020 14:30
Show Gist options
  • Save Breta01/d61e526a6d1969085faa17eea8f02bb4 to your computer and use it in GitHub Desktop.
Save Breta01/d61e526a6d1969085faa17eea8f02bb4 to your computer and use it in GitHub Desktop.
Code for creating, training and saving TensorFlow model.
import tensorflow as tf
### Linear Regression ###
# Input placeholders
x = tf.placeholder(tf.float32, name='x')
y = tf.placeholder(tf.float32, name='y')
# Model parameters
W1 = tf.Variable([0.1], tf.float32)
W2 = tf.Variable([0.1], tf.float32)
W3 = tf.Variable([0.1], tf.float32)
b = tf.Variable([0.1], tf.float32)
# Output
linear_model = tf.identity(W1 * x + W2 * x**2 + W3 * x**3 + b,
name='activation_opt')
# Loss
loss = tf.reduce_sum(tf.square(linear_model - y), name='loss')
# Optimizer and training step
optimizer = tf.train.AdamOptimizer(0.001)
train = optimizer.minimize(loss, name='train_step')
# Remember output operation for later application
# Adding it to a collections for easy acces
# This is not required if you NAME your output operation
tf.add_to_collection("activation", linear_model)
## Start the session ##
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# CREATE SAVER
saver = tf.train.Saver()
# Training loop
for i in range(10000):
sess.run(train, {x: data, y: expected})
if i % 1000 == 0:
# You can also save checkpoints using global_step variable
saver.save(sess, "models/model_name", global_step=i)
# SAVE TensorFlow graph into path models/model_name
saver.save(sess, "models/model_name")
@apzarabi
Copy link

apzarabi commented Jan 9, 2019

There is a typo in line 22: aplication -> application

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment