Skip to content

Instantly share code, notes, and snippets.

@BrianChevalier
Last active March 19, 2017 06:11
Show Gist options
  • Save BrianChevalier/81bf87c9498f78b37a43dd430101b463 to your computer and use it in GitHub Desktop.
Save BrianChevalier/81bf87c9498f78b37a43dd430101b463 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import Packages"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from numpy import array\n",
"from numpy import matrix\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Input Physical Probelm Data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"gravity = 9.81 # acceleration of gravity\n",
"e3 = array([0, 0, 1]) # direction of gravity (e3)\n",
"mass = 2.0 # mass of particle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Initial conditions and analysis start and end times "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"xo = array([0.0, 0.0, 55.0]) # initial position of particle\n",
"vo = array([25.0, 15.0, 55.0]) # initial velocity of particle\n",
"to = 0.0 # initial time (usually zero)\n",
"tf = 12.5 # final time (end of analysis)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#.... Numerical analysis parameters.\n",
"dt = 0.1 # analysis time step\n",
"beta = 0.5 # numerical integration parameter\n",
"\n",
"#.... Set time and output counters to get ready to start analysis\n",
"t = to; \n",
"out = 0; \n",
"iout = 0;\n",
" \n",
"#.... Initialize position and velocity (put in 'xold' and 'vold' arrays)\n",
"xold = xo;\n",
"vold = vo; \n",
"\n",
"#.... Compute initial acceleration from the equation of motion\n",
"aold = -gravity*e3;\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Note: All arguments are required.\n",
"# We're not fancy enough to implement all.\n",
"def frange(start, stop, step):\n",
" i = start\n",
" while i < stop:\n",
" yield i\n",
" i += step\n",
"\n",
"#for i in frange(0.5, 1, 0.1):\n",
" #print(i)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def update(xold, vold, anew, aold):\n",
" beta = 0.5\n",
" dt = 0.1\n",
" #....... Compute new velocity and position by trapezoidal rule \n",
" vnew = vold + dt*(beta*aold + (1-beta)*anew)\n",
" xnew = xold + dt*(beta*vold + (1-beta)*vnew)\n",
" \n",
" #....... Put current state (new) into old slot to get ready for new step\n",
" aold = anew\n",
" vold = vnew\n",
" xold = xnew\n",
" return (xold, vold, aold)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Set up the history matrix"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" xx xy xz\n",
"t \n",
"0.0 0.0 0.0 55.0\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"#history = {'t' : [to], 'xold' : [xo], 'vold' : [vo], 'aold' : [aold]}\n",
"history = {'t' : [to], 'xx' : [xo[0]], 'xy' : [xo[1]], 'xz' : [xo[2]]}\n",
"\n",
"#new = {'t' : to+1, 'x': 1,'y': 1,'z': 3}\n",
"\n",
"#for item in history:\n",
"# history[item].append(new[item])\n",
"\n",
"df = pd.DataFrame(history)\n",
"print(df.set_index('t'))\n",
"\n",
"#for item in plt.style.available:\n",
"# plt.style.use(item)\n",
"# df.plot.line(['t'])\n",
"# plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compute motion by numerical integration\n",
"- loop over time steps"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" xx xy xz\n",
"t \n",
"0.0 0 0 55\n",
"[0.0] [630.0] [378.0] [-1673.8712]\n",
"[0.1] [632.5] [379.5] [-1693.14145]\n",
"[0.2] [635.0] [381.0] [-1712.5098]\n",
"[0.30000000000000004] [637.5] [382.5] [-1731.97625]\n",
"[0.4] [640.0] [384.0] [-1751.5408]\n",
"[0.5] [642.5] [385.5] [-1771.20345]\n",
"[0.6] [645.0] [387.0] [-1790.9642]\n",
"[0.7] [647.5] [388.5] [-1810.82305]\n",
"[0.7999999999999999] [650.0] [390.0] [-1830.78]\n",
"[0.8999999999999999] [652.5] [391.5] [-1850.83505]\n",
"[0.9999999999999999] [655.0] [393.0] [-1870.9882]\n",
"[1.0999999999999999] [657.5] [394.5] [-1891.23945]\n",
"[1.2] [660.0] [396.0] [-1911.5888]\n",
"[1.3] [662.5] [397.5] [-1932.03625]\n",
"[1.4000000000000001] [665.0] [399.0] [-1952.5818]\n",
"[1.5000000000000002] [667.5] [400.5] [-1973.22545]\n",
"[1.6000000000000003] [670.0] [402.0] [-1993.9672]\n",
"[1.7000000000000004] [672.5] [403.5] [-2014.80705]\n",
"[1.8000000000000005] [675.0] [405.0] [-2035.745]\n",
"[1.9000000000000006] [677.5] [406.5] [-2056.78105]\n",
"[2.0000000000000004] [680.0] [408.0] [-2077.9152]\n",
"[2.1000000000000005] [682.5] [409.5] [-2099.14745]\n",
"[2.2000000000000006] [685.0] [411.0] [-2120.4778]\n",
"[2.3000000000000007] [687.5] [412.5] [-2141.90625]\n",
"[2.400000000000001] [690.0] [414.0] [-2163.4328]\n",
"[2.500000000000001] [692.5] [415.5] [-2185.05745]\n",
"[2.600000000000001] [695.0] [417.0] [-2206.7802]\n",
"[2.700000000000001] [697.5] [418.5] [-2228.60105]\n",
"[2.800000000000001] [700.0] [420.0] [-2250.52]\n",
"... ... ... ...\n",
"[9.599999999999982] [1815.0] [1089.0] [-21805.0778]\n",
"[9.699999999999982] [1817.5] [1090.5] [-21870.84745]\n",
"[9.799999999999981] [1820.0] [1092.0] [-21936.7152]\n",
"[9.89999999999998] [1822.5] [1093.5] [-22002.68105]\n",
"[9.99999999999998] [1825.0] [1095.0] [-22068.745]\n",
"[10.09999999999998] [1827.5] [1096.5] [-22134.90705]\n",
"[10.19999999999998] [1830.0] [1098.0] [-22201.1672]\n",
"[10.29999999999998] [1832.5] [1099.5] [-22267.52545]\n",
"[10.399999999999979] [1835.0] [1101.0] [-22333.9818]\n",
"[10.499999999999979] [1837.5] [1102.5] [-22400.53625]\n",
"[10.599999999999978] [1840.0] [1104.0] [-22467.1888]\n",
"[10.699999999999978] [1842.5] [1105.5] [-22533.93945]\n",
"[10.799999999999978] [1845.0] [1107.0] [-22600.7882]\n",
"[10.899999999999977] [1847.5] [1108.5] [-22667.73505]\n",
"[10.999999999999977] [1850.0] [1110.0] [-22734.78]\n",
"[11.099999999999977] [1852.5] [1111.5] [-22801.92305]\n",
"[11.199999999999976] [1855.0] [1113.0] [-22869.1642]\n",
"[11.299999999999976] [1857.5] [1114.5] [-22936.50345]\n",
"[11.399999999999975] [1860.0] [1116.0] [-23003.9408]\n",
"[11.499999999999975] [1862.5] [1117.5] [-23071.47625]\n",
"[11.599999999999975] [1865.0] [1119.0] [-23139.1098]\n",
"[11.699999999999974] [1867.5] [1120.5] [-23206.84145]\n",
"[11.799999999999974] [1870.0] [1122.0] [-23274.6712]\n",
"[11.899999999999974] [1872.5] [1123.5] [-23342.59905]\n",
"[11.999999999999973] [1875.0] [1125.0] [-23410.625]\n",
"[12.099999999999973] [1877.5] [1126.5] [-23478.74905]\n",
"[12.199999999999973] [1880.0] [1128.0] [-23546.9712]\n",
"[12.299999999999972] [1882.5] [1129.5] [-23615.29145]\n",
"[12.399999999999972] [1885.0] [1131.0] [-23683.7098]\n",
"[12.499999999999972] [1887.5] [1132.5] [-23752.22625]\n",
"\n",
"[505 rows x 3 columns]\n"
]
}
],
"source": [
"\n",
"\n",
"for t in frange(to, tf, dt): \n",
" \n",
" #new = {'t' : t, 'xold[0]': xold,'vold': vold,'aold': aold}\n",
" new = {'t' : [t], 'xx' : [xold[0]], 'xy' : [xold[1]], 'xz' : [xold[2]]}\n",
"\n",
" for item in history:\n",
" history[item].append(new[item])\n",
"\n",
" \n",
" #Compute new acceleration from equation of motion \n",
" anew = -gravity*e3\n",
" (xold, vold, aold) = update(xold, vold, anew, aold)\n",
"\n",
" \n",
" \n",
"df = pd.DataFrame(history)\n",
"print(df.set_index('t'))\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"ename": "TypeError",
"evalue": "float() argument must be a string or a number, not 'dict'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-29-7cb7283dadb7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#for item in plt.style.available:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# plt.style.use(item)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# df.plot.line('t')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# plt.show()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 3316\u001b[0m mplDeprecation)\n\u001b[1;32m 3317\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3318\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3319\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3320\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1890\u001b[0m warnings.warn(msg % (label_namer, func.__name__),\n\u001b[1;32m 1891\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1892\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1893\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1894\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1405\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1406\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_lines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1407\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_line\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1408\u001b[0m \u001b[0mlines\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1409\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36madd_line\u001b[0;34m(self, line)\u001b[0m\n\u001b[1;32m 1785\u001b[0m \u001b[0mline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_clip_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1786\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1787\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_line_limits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1788\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_label\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1789\u001b[0m \u001b[0mline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_label\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'_line%d'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlines\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_update_line_limits\u001b[0;34m(self, line)\u001b[0m\n\u001b[1;32m 1807\u001b[0m \u001b[0mFigures\u001b[0m \u001b[0mout\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mdata\u001b[0m \u001b[0mlimit\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mgiven\u001b[0m \u001b[0mline\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mupdating\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataLim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1808\u001b[0m \"\"\"\n\u001b[0;32m-> 1809\u001b[0;31m \u001b[0mpath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1810\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1811\u001b[0m \u001b[0;32mreturn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/matplotlib/lines.py\u001b[0m in \u001b[0;36mget_path\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 987\u001b[0m \"\"\"\n\u001b[1;32m 988\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_invalidy\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_invalidx\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 989\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrecache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 990\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_path\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 991\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/matplotlib/lines.py\u001b[0m in \u001b[0;36mrecache\u001b[0;34m(self, always)\u001b[0m\n\u001b[1;32m 683\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myconv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfilled\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 684\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 685\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myconv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 686\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 687\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/BrianBadahdah/anaconda/lib/python3.6/site-packages/numpy/core/numeric.py\u001b[0m in \u001b[0;36masarray\u001b[0;34m(a, dtype, order)\u001b[0m\n\u001b[1;32m 480\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 481\u001b[0m \"\"\"\n\u001b[0;32m--> 482\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 483\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0masanyarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: float() argument must be a string or a number, not 'dict'"
]
}
],
"source": [
"plt.plot(history)\n",
"#for item in plt.style.available:\n",
"# plt.style.use(item)\n",
"# df.plot.line('t')\n",
"# plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2\n",
"3\n",
"4\n"
]
}
],
"source": [
"def f(x):\n",
" y0 = x + 1\n",
" y1 = x * 3\n",
" y2 = y0 ** 2\n",
" return (y0,y1,y2)\n",
"\n",
"(y0,y1,y2) = f(1)\n",
"print(y0)\n",
"print(y1)\n",
"print(y2)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(1.105, 1.1, 1)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update(1,1,1,1)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['bmh', 'classic', 'dark_background', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn']\n"
]
}
],
"source": [
"print(plt.style.available)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import seaborn\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment