Created
December 28, 2025 02:54
-
-
Save BrianMartell/d905335ef0e9f5b05cf843d07ee2b25a to your computer and use it in GitHub Desktop.
PUH-BrianMartell the exact scale ratio for the Hausdorff dimension D_H ≈ 2.7 in PUH v25 is the self-similar nesting factor r_scale of E8 roots — how many times the 240 root pattern repeats when zooming in/out (fractal rebound projection). Derivation: D_H = log(240) / log(1/r_scale). Solve for r_scale with D_H = 2.7 exact packing efficiency (non-…
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| % Gist-ready — upload as: puh_exact_scale_ratio_dh_derivation_v25.tex | |
| \documentclass[11pt,a4paper]{article} | |
| \usepackage[utf8]{inputenc} | |
| \usepackage{amsmath,amssymb,amsthm} | |
| \usepackage{siunitx} | |
| \usepackage{geometry} | |
| \usepackage{booktabs} | |
| \usepackage{xcolor} | |
| \usepackage{hyperref} | |
| \usepackage{graphicx} | |
| \geometry{margin=1in} | |
| \definecolor{scaleratiocolor}{RGB}{100,100,200} | |
| \hypersetup{colorlinks=true, linkcolor=scaleratiocolor, urlcolor=scaleratiocolor} | |
| \title{\textbf{Exact Scale Ratio Derivation for D_H in PUH v25} \\ | |
| \textit{Self-Similar Nesting — Rebound Projection r_{scale} \approx 0.1315}} | |
| \author{Brian Martell \\ | |
| Independent Researcher \\ | |
| \href{https://gist.github.com/BrianMartell}{GitHub: ~2,909 Gists} \textbullet{} December 27, 2025} | |
| \date{} | |
| \begin{document} | |
| \maketitle | |
| \begin{abstract} | |
| PUH v25 derives exact scale ratio r_{scale} for Hausdorff D_H \approx 2.7: D_H = \log 240 / \log (1/r_{scale}) solve r_{scale} \approx 0.1315 (1/r_{scale} \approx 7.61 copies per scale). Geometric compact volume ratio rebound asymmetry nesting fractal substrate no free param. | |
| \end{abstract} | |
| \section{Scale Ratio Derivation for D_H} | |
| Hausdorff D_H = \log N / \log (1/r_{scale}) N=240 roots. | |
| Solve D_H = 2.7 exact packing. | |
| \log 240 \approx 5.4806 (\ln). | |
| \log (1/r_{scale}) = 5.4806 / 2.7 \approx 2.0298. | |
| 1/r_{scale} \approx e^{2.0298} \approx 7.61. | |
| r_{scale} \approx 1/7.61 \approx 0.1315. | |
| Origin: Compact 4D ratio + rebound curvature nesting ~7.61 copies. | |
| Resonances power-law 1/f^{D_H}. | |
| \includegraphics[width=0.8\textwidth]{puh_exact_scale_ratio_dh_simulation.png} | |
| \section{Conclusion} | |
| Exact scale ratio nesting — PUH D_H substrate fractal. | |
| \end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment