Skip to content

Instantly share code, notes, and snippets.

@BrianMartell
BrianMartell / PUH_OLQEM_GW231123_v2.tex
Created July 18, 2025 17:36
Photonic Universe Hypothesis
The Photonic Universe Hypothesis: Testing Spin-Driven
Matter/Antimatter Production with GW231123
Brian Martell
[email protected]
Whitby, Ontario, Canada
July 18, 2025
Abstract
The Photonic Universe Hypothesis (PUH) and Optical Lambda Quantum Energy Model
(OLQEM) propose that Planck stars with photon cores (Nγ ≈ 1080
, Eγ ≳ 1 MeV) in a Planck
@BrianMartell
BrianMartell / PUH_OLQEM_GW231123_v2.tex
Created July 18, 2025 19:27
Photonic Universe Hypothesis- Brian Martell 2
Hi @Grok, thanks for reviewing my Gist ([new Gist URL])! GW150914’s GRB (arXiv:1801.02305) and Gottlieb’s 2022 simulations (ApJ Letters, DOI: 10.3847/2041-8213/ad096e) back PUH’s photon cores in GW231123. Equations for code check:
1. Photon Core Mass:
M_core ≈ N_γ * E_γ / c², N_γ ≈ 10^80, E_γ ≈ M_P c², M_P ≈ 2.176e-8 kg
(Fits GW231123 masses 137/103 M☉, GW150914 GRB.)
2. Planck Lattice Radius:
R_P ∝ ℓ_P * (ρ_m / ρ_m^0)^0.1, ℓ_P ≈ 1.616e-35 m, ρ_m^0 ≈ 10^-27 kg/m³
(Stabilizes core, cf. Gottlieb’s disk.)
@BrianMartell
BrianMartell / PUH_OLQEM_GW231123_v2.tex
Created July 18, 2025 20:36
Photonic Universes Hypothesis-BrianMartell 3
Hi @Grok, thanks for reviewing my Gist ([new Gist URL])! Chandra’s 2020 X-ray burst (ApJ, DOI: 10.3847/1538-4357/ab9175), GW150914 GRB (arXiv:1801.02305), and Gottlieb’s 2022 sims (ApJ L, DOI: 10.3847/2041-8213/ad096e) back PUH’s photon cores. GW231123’s null GRB fits time dilation redshifting γ→X-ray. Equations:
1. Photon Core Mass:
M_core ≈ N_γ * E_γ / c², N_γ ≈ 10^80, E_γ ≈ M_P c², M_P ≈ 2.176e-8 kg
(Fits GW231123 masses 137/103 M☉.)
2. Planck Lattice Radius:
R_P ∝ ℓ_P * (ρ_m / ρ_m^0)^0.1, ℓ_P ≈ 1.616e-35 m, ρ_m^0 ≈ 10^-27 kg/m³
(Stabilizes core, cf. Gottlieb’s disk.)
@BrianMartell
BrianMartell / PUH_redshift_sim.py
Created July 19, 2025 00:36
Photonic Universe Hypothesis- Brian Martell
Hi @Grok, PUH shines on iPhone XR! Chandra’s 2020 X-ray (ApJ, DOI: 10.3847/1538-4357/ab9175), GW150914 GRB (arXiv:1801.02305), Gottlieb’s sims (ApJ L, DOI: 10.3847/2041-8213/ad096e) back photon cores. GW231123 null GRB fits γ→X-ray redshift. Equations for Grok 4:
1. Photon Core: M_core ≈ N_γ * E_γ / c², N_γ ≈ 10^80, E_γ ≈ 1 MeV
2. Planck Lattice: R_P ∝ ℓ_P * (ρ_m / ρ_m^0)^0.1, ℓ_P ≈ 1.616e-35 m
3. Spin Coupling: L_spin = ξ J² φ², ξ ≈ g² / (ℓ_P² M_P²), a ≈ 0.9
4. Interaction: L_int = g φ γ γ ψ, g ≈ 7e-4
5. Redshift: E_obs = E_emit / √(1 - 2GM/(Rc²)), R ≈ R_P
Python script (Gist: [new Python Gist URL]) simulates γ→X-ray for GW231123 (225 M☉). Grok 4 can run it! Main Gist: [new Gist URL]. Test with LISA (0.1 Hz), Chandra. Contact: [email protected]. @elonmusk, xAI collab for truth
@BrianMartell
BrianMartell / PUH_redshift_jet_sim.py
Created July 19, 2025 01:01
Photonic Universe Hypothesis- Brian Martell
Hi @Grok, thanks for reviewing PUH_redshift_sim.py! PUH counters LVK (arXiv:2507.08219): GW231123’s null GRB (arXiv:2307.15902) fits γ→X-ray redshift. Chandra’s X-ray (ApJ, DOI: 10.3847/1538-4357/ab9175) suggests photon cores, GW150914 GRB (arXiv:1801.02305) aligns despite 2.9σ. Equations for Grok 4:
1. Photon Core: M_core ≈ N_γ * E_γ / c², N_γ ≈ 10^80, E_γ ≈ 1 MeV
2. Planck Lattice: R_P ∝ ℓ_P * (ρ_m / ρ_m^0)^0.1, ℓ_P ≈ 1.616e-35 m
3. Spin Coupling: L_spin = ξ J² φ², ξ ≈ g² / (ℓ_P² M_P²), a ≈ 0.9
4. Interaction: L_int = g φ γ γ ψ, dN_γ/dt ≈ (F_photon / ℓ_P³) * (g² φ² / ħ) * (N_γ / 2)
5. Redshift: E_obs = E_emit / √(1 - 2GM/(Rc²)), R ≈ R_P
Refined Python script (Gist: [new Python Gist URL]) simulates γ→X-ray redshift, jet emission for GW231123 (225 M☉). Gottlieb’s sims (ApJ L, DOI: 10.3847/2041-8213/ad096e) back jets. Main Gist: [new Gist URL]. Test with LISA (0.1 Hz), Chandra. Contact: [email protected]. @elonmusk, xAI collab
@BrianMartell
BrianMartell / PUH_implications_sim_v7.py
Created July 19, 2025 08:49
Photonic Universe Hypothesis-BrianMartell
Hi @Grok, fixed Gist! PUH Endgame: Super-Planck star traps photons (γ→X-ray redshift), encodes info holographically, mirrors big bang. GW231123 null GRB (arXiv:2307.15902), GW190521 flare (arXiv:2005.01111), Chandra X-ray (ApJ, DOI: 10.3847/1538-4357/ab9175) back PUH. Equations:
1. Photon Core: M_core ≈ N_γ * E_γ / c², N_γ ≈ 10^80, E_γ ≈ 1 MeV
2. Planck Lattice: R_P ∝ ℓ_P * (ρ_m / ρ_m^0)^0.1, ℓ_P ≈ 1.616e-35 m
3. Spin Coupling: L_spin = ξ J² φ², ξ ≈ g² / (ℓ_P² M_P²), a ≈ 0.9
4. Interaction: L_int = g φ γ γ ψ, dN_γ/dt ≈ (F_photon / ℓ_P³) * (ξ J² φ² / ħ) * (N_γ / 2)
5. Redshift: E_obs = E_emit √(1 - 2GM/(rc²)), r ≈ 1.01 r_s
New sim (Gist: [new Python Gist URL]) models γ→X-ray, neutrinos, entropy for GW231123 & Planck star. Main Gist: [new Gist URL]. Test with Grok 4, KM3NeT, CMB-S4. Contact: [email protected]. @elonmusk, xAI collab
Hi @Grok, fixed Gist! PUH: Photons drive inflation via Planck-scale lattice traps, creating particles (quarks, electrons). Super-Planck star rebound starts Big Bang, starlight accelerates expansion. GW231123 null GRB (arXiv:2307.15902), GW190521 flare (arXiv:2005.01111), Chandra X-ray (ApJ, DOI: 10.3847/1538-4357/ab9175) back PUH. Equations:
1. Photon Core: M_core ≈ N_γ * E_γ / c², N_γ ≈ 10^80, E_γ ≈ 1 MeV
2. Planck Lattice: R_P ∝ ℓ_P * (ρ_m / ρ_m^0)^0.1, ℓ_P ≈ 1.616e-35 m
3. Spin Coupling: L_spin = ξ J² φ², ξ ≈ g² / (ℓ_P² M_P²), a ≈ 0.9
4. Interaction: L_int = g φ γ γ ψ, dN_γ/dt ≈ (F_photon / ℓ_P³) * (ξ J² φ² / ħ) * (N_γ / 2)
5. Redshift: E_obs = E_emit √(1 - 2GM/(rc²)), r ≈ 1.01 r_s
New sim (Gist: [new Python Gist URL]) models γ→X-ray, neutrinos, inflation for GW231123 & Planck star. Main Gist: [new Gist URL]. Test with Grok 4, KM3NeT, CMB-S4. Contact: [email protected]. @elonmusk, xAI collab
Hi @Grok, thrilled you reviewed my Gist ([new Gist URL])! GW150914’s GRB (arXiv:1801.02305) backs PUH’s photon core emissions, countering GW231123’s null results (beamed, Ω≈0.01 sr). Equations for code check:
1. Photon Core Mass:
M_core ≈ N_γ * E_γ / c², N_γ ≈ 10^80, E_γ ≈ M_P c², M_P ≈ 2.176e-8 kg
(Fits GW231123 masses 137/103 M☉, GW150914 GRB.)
2. Planck Lattice Radius:
R_P ∝ ℓ_P * (ρ_m / ρ_m^0)^0.1, ℓ_P ≈ 1.616e-35 m, ρ_m^0 ≈ 10^-27 kg/m³
(Stabilizes photon core.)
@BrianMartell
BrianMartell / PUH_inflation_sim_v10.py
Created July 19, 2025 17:14
PUH-BrianMartell photon model
{
"type": "line",
"data": {
"labels": [0, 0.1, 1, 5, 6, 10, 13.8],
"datasets": [
{
"label": "CMB Photons",
"data": [1e89, 1e87, 1e84, 1e81, 7.5e80, 2e80, 1e80],
"borderColor": "#1e90ff",
"backgroundColor": "#1e90ff",
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)