Skip to content

Instantly share code, notes, and snippets.

@BrianMartell
BrianMartell / puh_throat_impedance_formula_bib_v25.bib
Created December 28, 2025 03:12
PUJ-BrianMartell puh_throat_impedance_formula_bib_v25.bib-Updated Bibliography
@article{tachyon1967,
author = {Feinberg, G.},
title = {Possibility of Faster-Than-Light Particles},
journal = {Phys. Rev.},
volume = {159},
pages = {1089},
year = {1967},
note = {Tachyonic modes}
}
@BrianMartell
BrianMartell / puh_throat_impedance_formula_derivation_v25.tex
Created December 28, 2025 03:10
PUH-BrianMartell the throat impedance formula in PUH v25 is the mechanical description of why the Photon Throat (dense entangled SPF buffer between matter/antimatter jets) allows tachyonic phase velocity v_p > c — impedance Z_throat drops to near-zero at resonance, no drag on phase ripples (sync twins zero-lag). Standard vacuum Z_0 constant (c l…
% Gist-ready — upload as: puh_throat_impedance_formula_derivation_v25.tex
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,amsthm}
\usepackage{siunitx}
\usepackage{geometry}
\usepackage{booktabs}
\usepackage{xcolor}
\usepackage{hyperref}
\usepackage{graphicx}
@BrianMartell
BrianMartell / puh_throat_zero_lag_multiverse_query_simulation.py
Created December 28, 2025 03:08
PUH-BrianMartell puh_throat_zero_lag_multiverse_query_simulation.py-Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
# PUH v25: Throat Zero-Lag Multiverse Query Sim — Latency vs Frequency Offset
f_offset = np.linspace(-0.1, 0.1, 500) # Normalized frequency offset from f_res
v_p_standard = 1 / np.sqrt(1 - f_offset**2 + 1e-6) # Standard finite v_p < c
v_p_puh = 1 / np.sqrt(np.abs(f_offset) + 1e-10) # PUH tachyonic v_p → infinite at resonance
latency_standard = 1 / v_p_standard # Finite lag
latency_puh = 1 / v_p_puh # Zero lag at resonance
@BrianMartell
BrianMartell / puh_throat_zero_lag_multiverse_query_abstract_v25.md
Created December 28, 2025 03:07
PUH-BrianMartell puh_throat_zero_lag_multiverse_query_abstract_v25.md- Updated Abstract

Abstract: Zero-Lag Multiverse Query Condition in PUH v25 (~2,910 Gists)

Author: Brian Martell
Date: December 27, 2025

PUH v25 exact zero-lag multiverse QC throat Z_L \to 0 resonance f_res phase v_p \to \infty tachyonic latency L \to 0 independent d sync efficiency \eta_{throat} = 1 full lock twins. Quantum advantage throat query solved multiverse resonance. From July 14, 2025.

@BrianMartell
BrianMartell / puh_throat_zero_lag_multiverse_query_bib_v25.bib
Created December 28, 2025 03:06
PUH-BrianMartell puh_throat_zero_lag_multiverse_query_bib_v25.bib- Update Bibliography
@article{arute2019,
author = {Arute, Frank and others},
title = {Quantum supremacy using a programmable superconducting processor},
journal = {Nature},
volume = {574},
pages = {505},
year = {2019},
note = {Sycamore quantum advantage}
}
@BrianMartell
BrianMartell / puh_throat_zero_lag_multiverse_query_v25.tex
Created December 28, 2025 03:04
PUH-BrianMartell the exact zero-lag condition for multiverse search in quantum computers (QC) in PUH v25 is the throat tachyonic sync resonance — when qubit frequency matches lattice f_res, throat impedance Z_L →0, phase velocity v_p → infinite (tachyonic modes v>c). Latency L = d / v_p →0 independent distance d. Derivation: Throat Z_L = 0 at re…
% Gist-ready — upload as: puh_throat_zero_lag_multiverse_query_v25.tex
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,amsthm}
\usepackage{siunitx}
\usepackage{geometry}
\usepackage{booktabs}
\usepackage{xcolor}
\usepackage{hyperref}
\usepackage{graphicx}
@BrianMartell
BrianMartell / puh_exact_scale_ratio_dh_simulation.py
Created December 28, 2025 02:59
PUH-BrianMartell puh_exact_scale_ratio_dh_simulation.py-Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
# PUH v25: Exact Scale Ratio D_H Sim — Cover Count vs Scale (Power-Law Exact r_scale ~0.1315)
scale = np.logspace(-1, 1, 500) # Scale r arb. 0.1 to 10
r_scale = 0.1315 # Exact derived
D_h = np.log(240) / np.log(1/r_scale) # ~2.7
N_puh = scale**(-D_h) # Power-law count
plt.figure(figsize=(10,6))
@BrianMartell
BrianMartell / puh_exact_scale_ratio_dh_abstract_v25.md
Created December 28, 2025 02:57
PUH-BrianMartell puh_exact_scale_ratio_dh_abstract_v25.md-Updated Abstract

Abstract: Exact Scale Ratio for D_H Derivation in PUH v25 (~2,909 Gists)

Author: Brian Martell
Date: December 27, 2025

PUH v25 exact scale ratio r_{scale} \approx 0.1315 Hausdorff D_H \approx 2.7 E8 240 roots self-similar nesting D_H = \log 240 / \log (1/r_{scale}) compact volume rebound asymmetry fractal substrate no free param resonances power-law. From July 14, 2025.

@BrianMartell
BrianMartell / puh_exact_scale_ratio_dh_bib_v25.bib
Created December 28, 2025 02:56
PUH-BrianMartell puh_exact_scale_ratio_dh_bib_v25.bib-Updated Bibliography
@book{falconer1990,
author = {Falconer, K. J.},
title = {Fractal Geometry: Mathematical Foundations and Applications},
publisher = {John Wiley \& Sons},
year = {1990},
note = {Hausdorff self-similar scaling}
}
@book{mandelbrot1982,
author = {Mandelbrot, B. B.},
@BrianMartell
BrianMartell / puh_exact_scale_ratio_dh_derivation_v25.tex
Created December 28, 2025 02:54
PUH-BrianMartell the exact scale ratio for the Hausdorff dimension D_H ≈ 2.7 in PUH v25 is the self-similar nesting factor r_scale of E8 roots — how many times the 240 root pattern repeats when zooming in/out (fractal rebound projection). Derivation: D_H = log(240) / log(1/r_scale). Solve for r_scale with D_H = 2.7 exact packing efficiency (non-…
% Gist-ready — upload as: puh_exact_scale_ratio_dh_derivation_v25.tex
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,amsthm}
\usepackage{siunitx}
\usepackage{geometry}
\usepackage{booktabs}
\usepackage{xcolor}
\usepackage{hyperref}
\usepackage{graphicx}