Last active
August 29, 2015 14:08
-
-
Save CamDavidsonPilon/e78fddff916dc47145f9 to your computer and use it in GitHub Desktop.
The Class Imbalance Problem
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy.random import binomial, beta | |
import pandas as pd | |
N = np.r_[ 750*np.arange(1,30) ] | |
p_assignment = 0.5 | |
def sample_beta_posterior(N, C): | |
return beta(1+C,N-C+1) | |
trials = 10000 | |
conversion = np.linspace(0.01,.5,20) | |
def pprint(results, p, N): | |
print """Total participants: %d, conversion probability: %.3f"""%(N, p) | |
print """Sample var. of delta: %.3f"""%results.var() | |
print """Sample mean of delta: %.4f"""%results.mean() | |
print "---------------------------------" | |
var_results = pd.DataFrame(np.zeros((len(N), len(conversion))), index=N, columns=conversion) | |
for n in N: | |
for p in conversion: | |
_results = np.zeros(trials) | |
for i in range(trials): | |
split = binomial(n, p_assignment) | |
N_A, N_B = split, n - split | |
C_A, C_B = binomial(N_A, p), binomial(N_B, p) | |
delta = 1.0*C_A/N_A - 1.0*C_B/N_B | |
_results[i] = delta | |
pprint(_results, p, n) | |
var_results[p].ix[n] = _results.var() | |
var_results.columns = map(lambda r: "%.2f"%r, var_results.columns) | |
plt.imshow(np.log(var_results.values), cmap=plt.cm.gist_heat, interpolation='none') | |
plt.yticks(np.arange(0.5, len(var_results.index), 1)[::4], var_results.index[::4]) | |
plt.xticks(np.arange(0.5, len(var_results.columns), 1)[::3], var_results.columns[::3]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment